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Abstract Statistically and dynamically downscaled climate projections are the two important
data sources for evaluation of climate change and its impact on water availability, water quality
and ecosystems. Though bias correction helps to adjust the climate model output to behave
more similarly to observations, the hydrologic response still can be biased. This study uses
Variable Infiltration Capacity (VIC) model to evaluate the hydrologic response of the trans-
state Oologah Lake watershed to climate change by using both statistically and dynamically
downscaled multiple climate projections. Simulated historical and projected climate data from
the North American Regional Climate Change Assessment Program (NARCCAP) and Bias-
Corrected and Spatially Downscaled–Coupled Model Intercomparison Phase 3 (BCSD-
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CMIP3) forced the hydrologic model. In addition, different river network upscaling methods
are also compared for a higher VIC model performance. Evaluation and comparison shows the
following the results. (1) From the hydrologic point of view, the dynamically downscaled
NARCCAP projection performed better, most likely in capturing a larger portion of
mesoscale-driven convective rainfall than the statistically downscaled CMIP3 projections;
hence, the VIC model generated higher seasonal streamflow amplitudes that are closer to
observations. Additionally, the statistically downscaled GCMs are less likely to capture the
hydrological simulation probably due to missing integration of climate variables of wind, solar
radiation and others, even though their precipitation and temperature are bias corrected to be
more favorably than the NARCCAP simulations. (2) Future water availability (precipitation,
runoff, and baseflow) in the watershed would increase annually by 3–4 %, suggested by both
NARCCAP and BCSD-CMIP3. Temperature increases (2.5–3 °C) are much more consistent
between the two types of climate projections both seasonally and annually. However, NARC
CAP suggested 2–3 times higher seasonal variability of precipitation and other water fluxes
than the BCSD-CMIP3 models. (3) The hydrologic performance could be used as a potential
metric to comparatively differentiate climate models, since the land surface and atmosphere
processes are considered integrally.

Keywords Climate change . NARCCAP. Statistical downscaling . VIC . Oologah Lake
watershed

1 Introduction

The assessment of hydrologic responses to climate change and variability has been widely
conducted for watershed management, planning, and water-related natural hazards such as
floods and droughts. Dynamical downscaling (Takle et al. 1999; Mearns et al. 2009) and
statistical downscaling (Wilby and Harris 2006; Maurer et al. 2007) are the two general
methods to generate fine-resolution meteorological variables from global climate models
(GCMs). The downscaled climate forcing output can be translated into hydrological state
using watershed-modeling approach for management of water resources. However, uncer-
tainties arising from climate and land surface models impose a significant challenge for
related studies. Both downscaling methods introduce more uncertainty in addition to
inheriting the GCMs’ uncertainty (Wood et al. 2004; Castro et al. 2005; Fowler et al.
2007; Lo et al. 2008).

Multi-model simulations (ensembles) can reduce bias and uncertainty by incorporating
more global and regional climate models (RCMs). By doing so, inter-model differences due to
internal variability, parameterization, and land-atmosphere interactions can be accounted,
providing estimations that are superior to a single good simulation (Phillips and Gleckler
2006; Gleckler et al. 2008). For example, the program of Prediction of Regional Scenarios and
Uncertainties for Defining European Climate Change Risks and Effects (PRUDENCE) and its
improvement of Ensemble-Based Predictions of Climate Changes and Their Impacts
(ENSEMBLES) combined uncertainty from global and regional models and systematically
examined climate projections for Europe (Christensen et al. 2007, 2009). In North America,
the North American Regional Climate Change Assessment Program (NARCCAP) is currently
the most comprehensive regional climate-modeling project for climate change impact studies
(Mearns et al. 2009, 2012). Although multi-model weighting approaches have been used to
select climate models based on their historical simulation performance for many climatic and
hydrologic studies (Giorgi and Mearns 2003; Gleckler et al. 2008; Christensen et al. 2010;
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Sobolowski and Pavelsky 2012; Zhang and Huang 2012), the equally weighting method also
is advocated because the weighting approaches could drive further biases due to the limitation
of evaluation metrics (Pierce et al. 2009; Knutti et al. 2010; Mearns et al. 2012).

Previous studies, as mentioned above, used either statistically or dynamically downscaled
climate projections (e.g., Ghosh and Katkar 2012; Hanel et al. 2013; Fiseha et al. 2014). Wood
et al. (2004), exceptionally, assessed statistical and dynamical downscaling methods, but was
based on a single RCM and GCM. In this study, multi-model projections from the newly
available NARCCAP are served as a primary data source, which are compared with statisti-
cally downscaled CMIP3 GCM ensembles from both aspects of climate forcing and hydro-
logical response with the Variable Infiltration Capacity (VIC) land surface model. The impact
of possible future climates on the hydrological system is further assessed after the climate
projection evaluation and comparison. The study area is focused on the Oologah Lake
(Verdigris River) watershed with area of 4,340 square mile (11,240 km2), extending north-
westward from Oologah Lake and upstream along the Verdigris River to Kansas (Fig. 1). The
watershed is an important water source for Tulsa, OK, and nearby regions. We chose the
Oologah Lake watershed also because 1) there is an existing and relatively long hydro-
logic period of record, and 2) prior study efforts by the U.S. Army Corps of Engineers
(USACE) suggested that high alteration of water quantity and quality could be associated
with the climate change and variability within the basin. Statistical downscaled projec-
tions from CMIP3 have shown an increase of temperature (3 °C) and slight increase of
precipitation for the nearby region in the next 50 years (Liu et al. 2012a, b), but with
significant uncertainty arising from different GCMs. This climate change and impact
study takes into account both statistically and dynamically downscaled climate projec-
tions and multiple river network upscaling methods for hydrological simulation improve-
ment, which would provide better information to assist watershed management and
planning for the region.

Fig. 1 Study area with features of river, lakes, and political boundaries (left), elevation (middle), and land use
and cover from the UMD (University of Maryland) 13-land-cover-type scheme (right). The abbreviations of land
use and cover type in the legend are: Eve (evergreen), Ndl (needle leaf), Brd (broad leaf), Dcd (deciduous), Wd
(wood), Clo (close), and Opn (open)
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2 Data and Method

2.1 NARCCAP

NARCCAP is currently the most comprehensive regional climate-modeling project for the
North America (Mearns et al. 2009, 2012). Four (4) GCMs were chosen in the project to
provide boundary conditions for 6 RCMs running fine-resolution (50 km) regional climate
simulations over the conterminous United States and Canada for the time periods of 1971–
2000 and 2041–2070. NARCCAP uses the A2 emission scenario; hence, the global average
CO2 is projected to reach 850 ppm by 2100 (IPCC 2000). To assess the RCMs’ performance
alone, the project also includes the reanalysis data produced by the National Centers for
Environmental Prediction (NCEP) and the U.S. Department of Energy (DOE) to drive the
RCMs for the time period 1979–2004. Here we chose 8 different RCM/GCM combinations
(including all the currently available simulations that have complete historical and future
projections) from the archive distributed by NCAR’s Earth System Grid data portal. The
selected RCM/GCM combinations are described in Table 1. Meteorological variables from
these pairs include 3-hourly precipitation and wind speed and daily maximum and minimum
temperature. In order to be directly comparable to other data sources (such as statistically
downscaled climate projections) and compatible with the VIC model’s spatial dimension, these
NARCCAP variables are interpolated to a 1/8th-degree grid size using a linear method.

2.2 BCSD-CMIP3

For comparison of hydrological responses driven by different downscaled climate projections,
the Bias-corrected and Spatially downscaled–Coupled Model Intercomparison Phase 3
(BCSD-CMIP3) was also incorporated (using the LLNL-Reclamation-SCU downscaled cli-
mate projections data derived from the World Climate Research Program’s CMIP3 multi-
model dataset that is stored and served at the LLNL Green Data Oasis). This multi-model
dataset includes 112 World Climate Research Program (WCRP) CMIP3 members with the
CO2 emission scenarios of A1b, A2 and B1, and each climate projection was bias-corrected
and spatially downscaled (Wood et al. 2002; Maurer et al. 2007). CO2 emission increases from
B1, A1b to A2 scenarios. The A2 scenario represents a very high degree of climate change and
provides more information from the impact and adaptation point of views. Since only A2
emission scenario is used in NARCCAP, for direct comparison, the A1b and B1 scenarios in
BCSD-CMIP3 are not considered for the climate change impacts. Similarly, the statistically

Table 1 The NARCCAP RCM/GCM models used in this study

RCMs Canadian global
climate
model version
3 (CGCM3)

Hadley centre
climate model
version 3
(HADCM3)

Community
climate
system model
(CCSM)

Geophysical
fluid dynamics
laboratory
(GFDL)

GCMs

Canadian regional climate model
(CRCM)

✔ ✔

Hadley regional model 3 (HRM3) ✔ ✔

Regional climate model version 3
(RCM3)

✔ ✔

Weather research and forecasting
model (WRFP)

✔ ✔
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downscaled atmospheric forcing includes precipitation, wind speed, and maximum and
minimum temperatures, which are on daily scale with spatial resolution of 1/8th degree.

2.3 VIC Model

The VIC model of Liang et al. (1994, 1996, 1999) is implemented for the Oologah Lake
watershed (Fig. 1). It is a semi-distributed, grid-based hydrological model that simulates land
surface-atmosphere hydrometeorological processes with both the water and energy budgets.
The VIC model has been widely applied to river basins with various scales over the continental
U.S. and the globe (Abdulla et al. 1996; Bowling et al. 2000; Nijssen et al. 2001; Su et al.
2005; Andreadis and Lettenmaier 2006; Christensen and Lettenmaier 2006; Gao et al. 2007; te
Linde et al. 2008). In our application, version 4.1.2.c is used with three soil layers defined
according to the U.S. State Soil Graphic (STATSGO) dataset. Land use and cover is leveraged
from LDAS (Land Data Assimilation System) project (http://ldas.gsfc.nasa.gov/nldas/
NLDASnews.php), which is originally derived from UMD (University of Maryland) 13-
land-cover-type scheme (Fig. 1). Since our model is composed of 1/8th-degree cells, the proper
upscaling of routing phase parameters (e.g., flow direction) becomes very important for the
VIC runoff routing process (Lohmann et al. 1996). Wu et al. (2012) developed a new global
river network database at multiple spatial scales from 1/16th to 2°. In our case, the upscaling is
conducted from the Hydro-1 k digital elevation model (DEM) using an algorithm provided by
VIC developing group (http://www.hydro.washington.edu). Figure 2 shows the comparison of
upscaled river networks with these two methods. The network based on Wu et al. (2012) has
more flow line distortion than our own calculated one for this region, especially in the
northwest upstream portion where it creates parallel streamflow rather than draining water
thorough a converging system.

The VIC model is first driven by atmospheric forcing from the University of Washington’s
(UW’s) gridded dataset (Maurer et al 2002). This dataset is processed with an elevation effects

Fig. 2 Upscaled river networks with algorithms from (a) Wu et al. (2012) and (b) VIC developing group. The
background is 1 km DEM derived flow accumulations
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correction by the Parameter-Elevation Regressions on Independent Slopes Model (PRISM)
(Daly et al. 1994). Figure 3 shows the daily and monthly VIC simulated hydrographs, which
show good agreement with the observations at the Verdigris River near Lenapah (Fig. 1) for
both calibration (1990–1997) and validation (1968–1989) periods. This gauge is located close
to the final outlet of the basin and measures the total water discharge into the Oologah Lake;
therefore, the proper reproduction of its long-term hydrography validates the VIC model and
demonstrates its applicability for potential climate change impacts to the water availability in
the basin. The hydrologic model is calibrated with the SP-UCI (shuffled complexes with
principal component analysis) algorithm (Chu et al. 2010, 2011). This algorithm can prevent
population degradation and provide better parameter effectiveness than its original method
SCE_UA (shuffled complexes evolution) (Duan et al. 1993, 1994). Table 2 presents the
statistics of VIC model performance in terms of root mean square error (RMSE) and Nash-
Sutcliffe efficiency (NSCE), computed by the Equations below.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Where N, S, and M represent the number of observations, VIC simulation, and gauge
observation, respectively. Mavr represents the average of gauge observation. After calibration
the model performs much better than a priori simulation with NSCE increasing from 0.53 to
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Fig. 3 Daily (a) and monthly (b) VIC simulation and observation of hydrography at Verdigris River near
Lenapah, OK. The gray bars show the precipitation amount over the Oologah Lake watershed
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0.62 (daily) and 0.59 to 0.74 (monthly) during 1990–1997 and even higher values of 0.66
(daily) and 0.8 (monthly) for the validation period 1968–1997.

3 Results

3.1 Historical Climate Simulations and Hydrological Performance

The annual temperature and precipitation (1968–1997 mean) from NARCCAP multiple
models are shown in Fig. 4a and b, respectively. For comparison, the UW’s observations are
also included in this figure. Generally, NARCCAP simulated the temperature field favorably,
including the distinct south-north decreasing trend that persists in every model as reflected by
the UW dataset, but with temperature over-prediction by 2 models (CRCM-CCSM and
HRM3-HADCM3) and under-prediction by the RCM3-GFDL. For the precipitation, more
differences and spatial variations are apparent among the NARCCAP models relative to the
observation. Both precipitation magnitude and pattern tend to be more influenced by the
RCMs; that is the same RCM pairs have very similar precipitation simulations even though
they are driven by different GCMs. In particular, the WRFG and CRCM models reproduce
similar spatial patterns to the observed field, with the precipitation maximum in the southeast
and minimum in the northwest. Both GCMs underestimate the precipitation magnitude,
however. The UK regional climate model of HRM3 performs worst by producing an

Table 2 Statistics of VIC streamflow simulations in the calibration and validation periods

A-priori (1990–1997) Calibration (1990–1997) Validation (1968–1989)

Nash-Sutcliffe (daily/monthly) 0.53/0.59 0.62/0.74 0.66/0.8

RMSE (m3/s) (daily/monthly) 105.3/68.8 96.3/55.8 87.8/47.0
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Fig. 4 Annual precipitation (a) and mean temperature (b) comparison between each NARCCAP model and the
observation for the time period 1968–1997
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unrealistic high precipitation center in the northwest but with annually reasonable precipitation
amount.

Figure 5 shows monthly precipitation and temperature (1968–1997 mean) from NARC
CAP (a and b) and BCSD-CMIP3 (c and d) models and corresponding observations. The
NARCCAP multi-model simulations generally agree with the observed precipitation cycle that
has dual maximums occurring in May and September, respectively. However, all ensemble
members tend to underestimate rainfall for autumn. The annual temperature cycle is well
simulated by NARCCAP except somewhat overestimation of values during the summer. It is
notable that the HRM3 performs abnormally in both temperature and precipitation simulations,
although their annual averages are closest to the observation. The lower panel of the Fig. 5
shows that BCSD-CMIP3 simulations almost exactly replicate observations for both temper-
ature and precipitation because the bias-correction procedure has been applied during statistical
downscaling of coarse GCMs. The BCSD-CMIP3 ensemble, however, slightly underestimates
the total spring precipitation.

The average monthly streamflow simulated with VIC forced by multiple climate models
from NARCCAP and BCSD-CMIP3 is shown in Fig. 6a and b, respectively. The gauge
observation at the Verdigris River near Lenapah, OK, is also included as a reference. Although
substantial variability emerges due to different RCM/GCM performance, the six NARCCAP
driven streamflows cover the observation reasonably over seasonal variation and provide the
most promising ensemble average. In contrast, the streamflow from BCSD-CMIP3 ensemble
departs from the observations, with underestimation from February to June and overestimation
in January and August. Combining the Figs. 5 and 6, we note that the bias-corrected
statistically downscaled GCMs are less likely to lead to favorable hydrological simulations,
even though their precipitation and temperature fields are more comparable to the observation
at the multiple year mean scale.
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Fig. 5 Average monthly precipitation and temperature from NARCCAP (a and b) and BCSD–CMIP3 models (c
and d) coupled with relevant observations for the time period 1968–1997
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3.2 Future Climatic and Hydrological Change and Uncertainty

Figure 7 shows the future changes in ensemble-mean for temperature and precipitation over
the Oologah Lake watershed from the NARCCAP dynamically downscaled and BCSD-
CMIP3 models. We only used the A2 emission for the CMIP3 models in order to make a
direct comparison with the NARCCAP models that only adopt the A2 scenario. All the
changes described here are absolute deviations relative to the 1968–1997 mean. Although
the NARCCAP-projected temperature increase for 2040–2069 is a slightly greater than that for
BCSD-CMIP3, they are very consistent with respect to the seasonal variations, with larger
increase (3 °C) in summer and smaller increase (2.5 °C) in winter. The temperature increase
(1–1.5 °C) in 2010–2039 is projected only by the CMIP3 models, which is lower than that in
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Fig. 6 Average monthly streamflow from multiple NARCCAP models (a) and BCSD-CMIP3 (b) compared to
the observation at Verdigris River near Lenapah, OK, for the time period 1968–1997
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2040–2069 but with a similar monthly variation pattern. As for the precipitation changes, there
are more differences between the two types of projections, especially for the changing
magnitudes that are much more amplified in the NARCCAP models. Generally, increases of
precipitation are projected for most months except from June to August, and the annual
averages (with increase of 3 mm) are comparable between the two types of projections.
However, NARCCAP- projected changes (either increase or decrease) are usually 2–3 times
greater than BSCD-CMIP3.

The VIC simulated changes of water fluxes (ET, baseflow and runoff) for the Oologah Lake
watershed are shown in Fig. 8. Respectively, Fig. 8a shows the changes driven by the NARC
CAP dynamically downscaled models for 2040–2069, and Fig. 8b and c display the changes
driven by the BCSD-CMIP3 A2-emission models for 2040–2069 and 2010–2039. All the
changes here are percentages relative to 1968–1997 mean. Both NARCCAP and BCSD-
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Fig. 7 Ensemble-mean changes in temperature (a) and precipitation (b) for the Oologah Lake watershed by
NARCCAP dynamical downscaling models and BCSD-CMIP3 A2 emission models. All changes are absolute
deviations from 1968 to 1997 mean
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CMIP3 suggest winter-increasing and summer-decreasing water availability (precipitation,
runoff, and baseflow) in the Oologah Lake watershed with overall increase of 3–4 % annually
for 2040–2069. However, similar to the precipitation change in Fig. 7b, the seasonal differ-
ences arise in the amplitude of hydrologic changes simulated with the CMIP3 and NARCCAP
projections. In general greater increase (from Oct. to May) or decrease (June to Sept.) of
streamflow (runoff and baseflow) is clearly ascribed to the NARCCAP forcing (Fig. 8a), while
a less changing amplitude is generated with the BCSD-CMIP3 forcing (Fig. 8b). ET signif-
icantly increases with the CMIP3 projections but decreases with the NARCCAP, yielding
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Fig. 8 Water flux ensemble-mean changes in the Oologah Lake watershed for 2040–2069 by NARCCAP
dynamical downscaling models (a) and for 2040–2069 (b) and 2010–2039 (c) driven by BCSD-CMIP3 A2
emission models. All changes are relative to 1968–1997 mean
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more water in forms of runoff and baseflow in NARCCAP. Figure 8c displays the hydrology
changes for period of 2010–2039 with the CMIP3 forcing, which is similar to those for period
of 2040–2069 (Fig. 8b) but with less hydrology changes.

Because the BCSD-CMIP3 used more GCMs than NARCCAP, its uncertainty range,
represented by the difference between maximum change and minimum change, is wider for
precipitation and water fluxes of ET, runoff, and baseflow. Annually, NARCCAP and BCSD-
CMIP3 project precipitation change ranges from 1.9 to −3.1 % and from 1.7 to 19.8 %,
respectively. However, the temperature uncertainties are similar between them, with increases
ranging from 1.2 to 3.8 °C in annual average.

4 Discussion and Conclusions

Based on the results in section 3, both the statistical and dynamical downscaling can provide
useful information for regional climate processes in terms of spatial and temporal (monthly)
patterns. Due to the bias correction coupled in the statistical downscaling, the BCSD-CMIP3
ensemble is more comparable to the historical precipitation and temperature observations, as
shown in Fig. 5. However, when translating into hydrologic states, those statistically down-
scaled forcings perform worse, i.e., the entire underestimation of ensemble streamflow during
wet seasons (Fig. 6). NARCCAP models, in contrast, provide wide variability and a promising
ensemble mean for monthly streamflow simulations. Mearns et al. (2012) evaluated
precipitation and temperature generated by six NARCCAP RCMs over the conterminous
North American. They pointed out that the difference of model performance is discernible, but
it is difficult to state one model is absolutely better than another in reproducing climate
dynamics. In our case, the HRM3 driven by HADCM3, consistent with Mearns et al. (2012),
performs worst in seasonal variation, but its annual averages of precipitation and temperature
are closest to observations and the hydrological response is also acceptable compared to other
NARCCAP models. Therefore, we adopt all the models and consider an ensemble- mean
changes for climate and hydrology over the study region. Some studies have tried to use
weighted model average to improve climate realization (Gleckler et al. 2008; Christensen et al.
2010; Sobolowski and Pavelsky 2012), however, metrics usage could further bias climate
change impacts because models performances vary from different evaluation angle.

Previous studies mostly are focused on precipitation and temperature and seldom consider
other variables such as wind, humidity, and solar radiation. This study suggests that the
hydrologic performance could be used as a potential metric, since the land surface and
atmosphere interact more realistically with more factors considered. We can see that the
bias-corrected statistically downscaled GCMs are less likely to capture the hydrological
simulation, even though their precipitation and temperature are more favorably than the
NARCCAP simulations. Conversely, the hydrologic simulation with NARRCAP forcing
demonstrates a tolerance to precipitation bias, suggested by the fact that the overestimation
of rainfall in fall (Fig. 5) does not propagate into streamflow simulation (Fig. 6). Furthermore,
because mesoscale convective systems tend to drive much of the region’s rainfall during the
late spring and the early summer months, the higher precipitation and induced larger
streamflow amplitude in the NARCCAP simulations may result from better mesoscale
dynamics represented through the regional climate models as compared to the statistically
downscaled datasets. As indicated by Gutowski et al. (2010), the NARCCAP are capable of
generating extreme precipitation over the northern United States.

In conclusion, this study uses VIC (Variable Infiltration Capacity) model to evaluate the
hydrologic response of Oologah Lake watershed to climate change by taking into account both
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statistically and dynamically downscaled climate projections from the BCSD-CMIP3 and
NARCCAP. Evaluation and comparison of the results shows that (1) future water availability
(precipitation, runoff, and baseflow) in the Oologah Lake watershed would increase annually
by 3–4 %, suggested by both NARCCAP and BCSD-CMIP3. Temperature increases (2.5–
3 °C) are more consistent between the two types of climate projections both seasonally and
annually. (2) However, significant difference arises in the projected changes of precipitation
and hydrology between CMIP3 and NARCCAP for different months and seasons. NARC
CAP-projected changes (either increase or decrease) are usually 2–3 times greater than BSCD-
CMIP3. (3) From the hydrological point of view, the dynamically downscaled NARCCAP
projection performed better, most likely in capturing a larger portion of mesoscale-driven
convective rainfall than the statistically downscaled CMIP3 projections, so that the VIC model
generated higher seasonal streamflow amplitudes that are closer to observations. (5) This study
suggests that the hydrologic performance could be used as a potential metric to comparatively
differentiate climate models, since the land surface and atmosphere are processed integrally
with more atmospheric factors included. (6) Current climate models still need to improve
physics and parameterization to represent convective precipitation adequately. The advantages
of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) could provide new
insights about climate change and variability (Taylor et al. 2011). Continued work will analyze
the results with the better climate model inputs.

Acknowledgments This research was funded by the Responses to Climate Change program, U.S. Army Corps
of Engineers Institute for Water Resources and the South Central Climate Science Center, U.S. Geological
Survey. We wish to thank the North American Regional Climate Change Assessment Program (NARCCAP) for
providing the data used in this paper. “Bias Corrected and Downscaled WCRP CMIP3 Climate Projections”
archive at http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/.

References

Abdulla FA, Lettenmaier DP, Wood EF, Smith JA (1996) Application of a macroscale hydrologic model to
estimate the water balance of the Arkansas-Red River Basin. J Geophys Res 101(D3):7449–7459

Andreadis KM, Lettenmaier DP (2006) Trends in 20th century drought over the continental United States.
Geophys Res Lett 33(10), L10403

Bowling LC, Storck P, Lettenmaier DP (2000) Hydrologic effects of logging in western Washington, United
States. Water Resour Res 36(11):3223–3240

Castro CL, Pielke RA Sr, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added
using the Regional Atmopsheric Modeling System (RAMS). J Geophys Res D Atmos 110(5):1–21

Christensen N, Lettenmaier DP (2006) A multimodel ensemble approach to assessment of climate change
impacts on the hydrology and water resources of the Colorado River basin. Hydrol Earth Syst Sci Discuss
3(6):3727–3770

Christensen J, Carter T, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of
regional climate models: the PRUDENCE project. Clim Chang 81:1–6

Christensen J, Rammukainen M, Lenderink G (2009) Formulation of very-high-resolution regional climate
model ensembles for Europe. In: Van der Linden P, Mitchell JFB (eds) ENSEMBLES: climate change and
its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Center, pp.
47–58

Christensen J, Kjellstr E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate
models. Clim Res 44(2–3):179–194

Chu W, Gao X, Sorooshian S (2010) Improving the shuffled complex evolution scheme for optimization of
complex nonlinear hydrological systems: application to the calibration of the Sacramento soil-moisture
accounting model. Water Resour Res 46(9):W09530

Chu W, Gao X, Sorooshian S (2011) A solution to the crucial problem of population degeneration in high-
dimensional evolutionary optimization. IEEE Syst J 5(3):362–373

Climate Change and Hydrological Response in Oologah Lake Basin 3303

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/


Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation
over mountainous terrain. J Appl Meteorol 33(2):140–158

Duan QY, Gupta HV, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global
minimization. J Optim Theory Appl 76(3):501–521

Duan QY, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for
calibrating watershed models. J Hydrol 158(3–4):265–284

Fiseha BM, Setegn SG, Melesse AM, Volpi E, Fiori A (2014) Impact of climate change on the hydrology of
upper Tiber River Basin using bias corrected regional climate model. Water Resour Manag 28(5):1327–1343

Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent
advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578

Gao H, Wood EF, Drusch M, McCabe MF (2007) Copula-derived observation operators for assimilating TMI
and AMSR-E retrieved soil moisture into land surface models. J Hydrometeorol 8(3):413–429

Ghosh S, Katkar S (2012) Modeling uncertainty resulting from multiple downscaling methods in assessing
hydrological impacts of climate change. Water Resour Manag 26(12):3559–3579

Giorgi F, Mearns LO (2003) Probability of regional climate change based on the Reliability Ensemble Averaging
(REA) method. Geophys Res Lett 30(12):1629

Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113(D6),
D06104

Gutowski WJ Jr, Arritt RW, Kawazoe S, Flory DM, Takle ES, Biner S, Caya D, Jones RG, Laprise R, Leung LR,
Mearns LO, Moufouma-Okia W, Nunes AMB, Qian Y, Roads JO, Sloan LC, Snyder MA (2010) Regional
extreme monthly precipitation simulated by NARCCAP RCMs. J Hydrometeorol 11(6):1373–1379

Hanel M, Mrkvičková M, Máca P, Vizina A, Pech P (2013) Evaluation of simple statistical downscaling methods
for monthly regional climate model simulations with respect to the estimated changes in Runoff in the Czech
Republic. Water Resour Manag 27(15):5261–5279

Intergovernmental Panel on Climate Change (IPCC) (2000) Special report on emissions scenarios. Cambridge
Univ. Press, Cambridge

Knutti R, Abromowitz G, Collins M, Eyering V, Gleckler P, Hewitson B, Mearns L (2010) Good practice
guidance paper on assessing and combining multi model climate projections. In: IPCC (ed) Meeting Report
of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi
Model Climate Projections, p 15

Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface
water and energy fluxes for general circulation models. J Geophys Res 99(D7):14415–14428

Liang X, Wood EF, Lettenmaier DP (1996) Surface soil moisture parameterization of the VIC-2L model:
evaluation and modification. Glob Planet Chang 13(1–4):195–206

Liang X, Wood EF, Lettenmaier DP (1999) Modeling ground heat flux in land surface parameterization schemes.
J Geophys Res 104(D8):9581–9600

Liu L, Hong Y, Hocker J, Shafer M, Carter L, Gourley J, Bednarczyk C, Yong B, Adhikari P (2012a) Analyzing
projected changes and trends of temperature and precipitation in the southern USA from 16 downscaled
global climate models. Theor Appl Climatol 109(3–4):345–360

Liu L, Hong Y, Bednarczyk C, Yong B, Shafer M, Riley R, Hocker J (2012b) Hydro-climatological drought
analyses and projections using meteorological and hydrological drought indices: a case study in Blue River
Basin, Oklahoma. Water Resour Manag 26(10):2761–2779

Lo JCF, Yang ZL, Pielke Sr RA (2008) Assessment of three dynamical climate downscaling methods using the
Weather Research and Forecasting (WRF) model. J Geophys Res D Atmos 113(9)

Lohmann D, Nolte-Holube R, Raschke E (1996) A large-scale horizontal routing model to be coupled to land
surface parametrization schemes. Tellus Ser A 48(5):708–721

Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically based dataset of
land surface fluxes and states for the conterminous United States. J Clim 15(22):3237–3251

Maurer EP, Brekke L, Pruitt T, Duffy PB (2007) Fine-resolution climate projections enhance regional climate
change impact studies. EOS Trans Am Geophys Union 88(47):504

Mearns LO, Gutowski W, Jones R, Leung R, McGinnis S, Nunes A, Qian Y (2009) A regional climate change
assessment program for North America. EOS Trans Am Geophys Union 90(36):311

Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D, Correia J, Flory D, Gutowski W,
Takle ES, Jones R, Leung R, Moufouma-Okia W, McDaniel L, Nunes AMB, Qian Y, Roads J, Sloan L,
Snyder M (2012) The North American Regional climate change assessment program: overview of phase i
results. Bull Am Meteorol Soc 93(9):1337–1362

Nijssen B, Schnur R, Lettenmaier DP (2001) Global retrospective estimation of soil moisture using the variable
infiltration capacity land surface model, 1980–93. J Clim 14(8):1790–1808

Phillips TJ, Gleckler PJ (2006) Evaluation of continental precipitation in 20th century climate simulations: the
utility of multimodel statistics. Water Resour Res 42(3):W03202

3304 L. Qiao et al.



Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate
change studies. Proc Natl Acad Sci 106(21):8441–8446

Sobolowski S, Pavelsky T (2012) Evaluation of present and future North American Regional Climate Change
Assessment Program (NARCCAP) regional climate simulations over the southeast United States. J Geophys
Res 117(D1), D01101

Su F, Adam JC, Bowling LC, Lettenmaier DP (2005) Streamflow simulations of the terrestrial Arctic domain. J
Geophys Res 110(D8), D08112

Takle ES, Gutowski WJ Jr, Arritt RW, Pan Z, Anderson CJ, da Silva RR, Caya D, Chen S-C, Giorgi F,
Christensen JH, Hong S-Y, Juang H-MH, Katzfey J, Lapenta WM, Laprise R, Liston GE, Lopez P,
McGregor J, Pielke RA Sr, Roads JO (1999) Project to Intercompare Regional Climate Simulations
(PIRCS): description and initial results. J Geophys Res 104(D16):19443–19461

Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull AmMeteorol
Soc 93(4):485–498

te Linde AH, Aerts JCJH, Hurkmans RTWL, Eberle M (2008) Comparing model performance of two rainfall-
runoff models in the Rhine basin using different atmospheric forcing data sets. Hydrol Earth Syst Sci 12(3):
943–957

Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow
scenarios for the River Thames, UK. Water Resour Res 42(2):W02419

Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the
eastern United States. J Geophys Res D Atmos 107(20):6–1–6–15

Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical
approaches to downscaling climate model outputs. Clim Chang 62(1):189–216

Wu H, Kimball JS, Li H, Huang M, Leung LR, Adler RF (2012) A new global river network database for
macroscale hydrologic modeling. Water Resour Res 48(9):W09701

Zhang H, Huang G (2012) Development of climate change projections for small watersheds using multi-model
ensemble simulation and stochastic weather generation. Clim Dyn:1–17

Climate Change and Hydrological Response in Oologah Lake Basin 3305


	Climate...
	Abstract
	Introduction
	Data and Method
	NARCCAP
	BCSD-CMIP3
	VIC Model

	Results
	Historical Climate Simulations and Hydrological Performance
	Future Climatic and Hydrological Change and Uncertainty

	Discussion and Conclusions
	References


