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Abstract Drought is a natural phenomenon that presents spatial and temporal features whose
knowledge is fundamental for an appropriate water resources management. In particular, the
assessment of probabilities and return periods of areal extent of droughts of different severities
over a region can provide useful information for planning drought management. In this study,
an analytical methodology to characterize probabilistically the relationship between meteoro-
logical drought severity (computed in terms of Standardized Precipitation Index, SPI) and areal
extent, expressed as Drought severity-Area-Frequency (SAF) curves, is proposed. In particu-
lar, analytical expressions of SAF curves describing the proportion of the total area of the
region of interest where the SPI values are below a fixed threshold are derived. The developed
curves enable to characterize a given drought event in a region, by computing the probability
of occurrence of SAF curves exceeding the one observed. The proposed methodology is
validated through the investigation of the spatio-temporal features of drought occurrences over
Sicily, Italy, for the period 1921–2005.
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1 Introduction

Drought analysis is essential for a better assessment of drought impacts on socioeconomic and
environmental systems, as well as for an adequate planning and implementation of effective
mitigation measures.

At-site drought analysis, which is based on hydrometeorological time series ob-
served at a given location, comprises various tools spanning from computation of
drought indices for monitoring purposes (Bonaccorso et al. 2012 and references
therein) to stochastic characterization of droughts aiming at deriving the marginal
and joint probability distributions of drought characteristics (Zelenhasic and Salvai
1987; Kendall and Dracup 1992; Shiau and Shen 2001; Bonaccorso et al. 2003b,
2013; Cancelliere and Salas 2004, 2010; Mohan and Sahoo 2008). While at-site
analysis can provide useful information on drought occurrences in a limited area,
regional analysis enables to identify droughts that affect significantly a large region by
considering, besides drought duration and severity, also drought areal extent.

One of the simplest regional drought analysis consists in spatially interpolating drought-
related meteorological variables or drought indices computed at-site, in order to describe
spatial variability of drought events (e.g. the rainfall depth at the time interval i, the deviation
of the total rainfall from the corresponding long term mean, the Standardizad Precipitation
Index, the Palmer Drought Index, etc.). In this case, the areal extent of an historical drought
can be drawn by plotting a drought descriptor versus the corresponding percentage areal
extent.

A slightly more sophisticated analysis may consist in deriving the relationship between a
drought descriptor of selected probability of occurrence (or return period) and the correspond-
ing percentage areal extent. Among the latter category, drought severity-area-frequency (SAF)
curves have been proposed for drought assessment in a region.

Once that droughts have been locally identified, the approach generally adopted to derive
SAF curves consists of the following steps (Kim et al. 2002; Loukas and Vasiliades 2004;
Mishra and Desai 2005; Mishra and Singh 2008): 1) estimate a measure of drought severity
(e.g. sum of negative precipitation runs in a dry spell, sum of negative SPI values in a dry spell,
etc.) associated with different areal extents (in terms of percentage area) by considering
different areal thresholds; 2) determine the probability distribution that best fits drought
severity series for different areal extents; 3) perform frequency analysis in order to associate
drought severity with different return periods; 4) draw SAF curves for the region under
consideration. Alternatively, the probability distribution of areal extent for a fixed threshold
of the index, measuring drought severity, can also be derived to characterize SAF curves.

Depending on the available observational records and the applied drought identification
method, there might be few relevant drought events for a robust regional drought frequency
analysis oriented to SAF curves derivation. To this end, some authors have proposed Monte
Carlo simulation methods to synthetically extend the historical records (Henriques and Santos
1999; Hisdal and Tallaksen 2003; Burke and Brown 2010).

As an alternative to the traditional inferential approach, probabilistic characterization of
regional droughts can be performed by analytical derivation or approximation of the proba-
bility distributions of regional drought characteristics. To this end, Santos (1983) analyzed the
probabilistic features of regional drought characteristics, assuming precipitation series time
independent and distributed according to a multivariate normal. In particular, based on the
statistics of the underlying precipitation, the author derived the moments and approximate
pdf’s of regional drought areal coverage, duration and intensity, assumed normally distributed
as well.
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Cancelliere (2011) used the moments derived by Santos (1983) to compute the parameters
of probability distributions of regional drought characteristics, properly chosen in order to take
into account that some variables are too skewed and/or bounded to be assumed as normally
distributed.

Principal Component Analysis (PCA) can be also applied to study spatial variability of
drought events over a region (Lloyd-Hughes and Saunders 2002; Bonaccorso et al. 2003a;
Vicente-Serrano 2006; Bordi et al. 2009; Santos et al. 2010; Raziei et al. 2011, 2013).

In this study an analytical approach to probabilistically characterize the relationship
between drought severity and areal extent, namely drought SAF curves, is proposed,
following the results from Santos (1983) and Cancelliere (2011). The developed procedure
enables to characterize a given drought event in a region, by comparing the corresponding
drought severity-areal extent relationship with theoretical SAF curves corresponding to dif-
ferent non-exceedance probabilities.

Hereinafter, drought severity is expressed in terms of Standardized Precipitation Index
(SPI) (McKee et al. 1993), and drought areal extent is the proportion of the total area of the
region under investigation where the SPI values are below a fixed threshold. In practice,
different thresholds are selected ranging between the SPI classification values commonly
applied to categorize, besides dry conditions, also wet conditions (see Table 1).

The proposed methodology is applied to investigate spatio-temporal features of meteoro-
logical drought occurrences over Sicily, Italy, for the period 1921–2005, and the validity of the
approach is verified by comparing the observed areal extent for given SPI thresholds, with the
corresponding quantiles computed by means of the derived analytical approximations.

2 Probabilistic Characterization of Drought Areal Extent

In order to probabilistically characterize drought areal extent in a region, we will consider that
in the area of interest there are m precipitation stations. Each station k can be characterized by
the corresponding area of influence sk, computed for instance by the Thiessen’s polygons
method, which can also be expressed as a fraction ak of the total area. It may be worthwhile to
note that the assumption of m stations can be easily extended to the case when precipitation
information is available at gridded locations.

Let Xk,t be the monthly precipitation observed at station k and at time t. For each station k,
the SPI series can be computed based on Xk,t, t=1, 2, … n by means of an equi-probability
transformation of aggregated monthly precipitation values into standard normal values, with
the aggregation time scale generally fixed according to the purpose of the analysis. In practice,
computation of the SPI index requires: i) fitting a probability distribution to aggregated

Table 1 Weather classification
based on the Standardized Precipi-
tation Index (Hayes et al. 1999)

SPI Values Category

2.00 and above Extremely wet

1.50 to 1.99 Very wet

1.00 to 1.49 Moderately wet

−0.99 to 0.99 Near normal

−1.00 to −1.49 Moderately dry

−1.50 to −1.99 Severely dry

−2.00 and less Extremely dry
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monthly precipitation series (e.g. 3-month, 6-month, 12-month,… aggregation time scale), ii)
computing for each value the non-exceedance probability and iii) determining the
corresponding standard normal quantile, which is the SPI value. As a consequence of the
index computation procedure, the resulting SPI series will be distributed as a standard normal
random variable. Negative values of the index will broadly define drought conditions, while
positive values will identify wet ones. Also, different threshold values can be introduced, thus
characterizing in some details drought or wet conditions. For further details on SPI
computation, the readers may, for instance, refer to Edwards and McKee (1997).

With reference to each station k, let Zk,t be the SPI value at time t and z0 be a SPI threshold
value.

Then the following indicator variable can be defined:

Ik;t ¼ 0 if Zk;t > z0
Ik;t ¼ 1 if Zk;t ≤z0

ð1Þ

where Ik,t is an indicator variable with probability pk=P[Zk,t≤z0] of being 1 and 1– pk
of being 0.

Thus, Ik,t =1 indicates that at time t at site k, the SPI value Zk,t is below a fixed threshold z0.
Let Adt be the proportion of the total area of the region under investigation where Zk,t≤z0 in

a given interval t, defined as:

Adt z0ð Þ ¼
X
k¼1

m

ak ⋅Ik;t ð2Þ

Following a similar line of reasoning adopted by Santos (1983), the first two moments of
Adt can be expressed as:

ε Adt½ � ¼ ε
X
k¼1

m

ak ⋅I k;t

" #
¼

X
k¼1

m

ak ⋅pk ð3Þ

and

Var Adt½ � ¼
X
k¼1

m

a2k ⋅pk ⋅ 1−pkð Þ þ 2
X
k¼1

m X
j¼kþ1

m

ak ⋅aj⋅ pk; j−pkp j

� �
ð4Þ

where pk,j=P[zk,t≤z0,zj,t≤z0].
Note that, since by definition SPI is distributed according to a standard normal, it is

pk=Φ(zo), where Φ(.) is the standard normal cumulative density function. Then the above
equations can be rewritten as:

ε Adt½ � ¼ ε
X
k¼1

m

akIk;t

" #
¼

X
k¼1

m

akpk ¼
X
k¼1

m

ak ⋅Φ z0ð Þ ¼ Φ z0ð Þ ð5Þ

Var Adt½ � ¼
X
k¼1

m

a2kΦ z0ð Þ 1−Φ z0ð Þ½ � þ 2
X
k¼1

m X
j¼kþ1

m

aka j pk; j−Φ
2 z0ð Þ

h i
ð6Þ

Inspection of Eqs. (3), (4) and (5), (6) enables to draw some general remarks about the
features of Adt in relation to the characteristics of the underlying SPI field and in particular of
the spatial correlation between SPI at different stations. More specifically, Eq. (5) reveals that
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the expected value of Adt is a function of z0 only, and therefore clearly it does not depend on
the spatial correlation between stations. On the other hand the variance of Adt is function of
pk,j, which in turn will depend on the spatial correlation. In particular, the term [pk,j – Φ

2(z0)] in
Eq. (6) will be zero in the case of independence between precipitation observations in stations
k and j, while it will be greater than zero in the case of positive dependence in the precipitation
(or SPI) field.

As an example, if z0=0, the Sheppard’s solution (Sheppard 1899) can be applied for pk,j,
namely:

pk; j ¼ P Zk;t ≤0; Z j;t ≤0
� � ¼ 1

4
þ 1

2π
sin−1 rk; j

� � ð7Þ

As it can be observed from Fig. 1, where the term [pk,j – Φ
2 (z0)] is plotted versus the spatial

correlation coefficient rk,j for the case z0=0, the former is always greater than or equal to zero.
As a consequence, it can be concluded that the stronger the spatial dependence of

precipitation (and hence of SPI) in a region, the larger the variance of Adt.
The joint probability pk,j can be computed once that the joint distribution of (Zk,t,Zj,t) is

known. Given that the Zk,t are by definition marginally distributed according to a standard
normal, as a first approximation it is reasonable to assume Zk,t and Zj,t bivariate normal with
zero vector mean bμ and variance-covariance matrix Σ:

Σ ¼ 1 γk; j
γ j;k 1

� 	
ð8Þ

where γk,j=Cov(Zk,t,Zj,t).

Fig. 1 [pk,j – Φ2(z0)] versus the spatial correlation rk,j for z0=0 (see Eq. (7))
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With the exception of a few simple cases, finding the exact distribution of Adt is a difficult
task, as it entails derivation of the multivariate distribution of dependent Bernoulli random
variables rescaled with respect to the corresponding influence areas ak (Santos 1983;
Cancelliere 2011). For instance, assuming all the influence areas equal (ak=aj for every k, j)
and neglecting spatial correlation between precipitation at the different stations, it can be
shown that the random variable m·Adt is distributed according to a binomial distribution with
parameters pk and m (Mood et al. 1974).

For the more general case, since Adt is bounded between 0 and 1, a beta distribution can be
adopted as an approximation (Johnson et al. 1994; Sheffield et al. 2004; Cancelliere 2011):

f Adt að Þ ¼ 1

B δ; ξð Þ ⋅a
δ−1 1−að Þξ−1 0≤a≤1ð Þ ð9Þ

where B (δ,ξ) is the complete beta function ∫0
1
wδ−1(1−w)ξ−1dw.

The parameters δ, ξ can be estimated as a function of the first two moments μA=ε[Adt] and
σA
2 =Var[Adt] given by Eqs. (3) and (4) as (Johnson et al. 1994):

δ ¼ μ2
A⋅

1−μA

σ2
A

� 	
−μA ð10Þ

ξ ¼ 1−μAð Þ⋅δ
μA

ð11Þ

Therefore, once that the first two moments of areal extent are known, the beta probability
distribution is defined as well.

Finally, SAF curves for a fixed probability and different threshold values z0, can be derived
by using the inverse of the cumulative distribution function of the beta distribution (namely the
integral of Eq. (9)). In practice, for fixed non-exceedance probability q, the corresponding areal
extent Ad(q), will be given by the solution of the following equation:

q ¼
ZAd qð Þ

0

1

B δ; ξð Þ a
δ−1 1−að Þξ−1da ð12Þ

where the parameters δ, ξ are implicitly function of z0 through Eqs. (5), (6), (10) and (11).
Note that from a computational point of view, the solution of Eq. (12) can be easily found by
means of standard numerical methods.

3 Probabilistic Characterization of Drought in Sicily

3.1 Case Study

The developed methodology has been applied to characterize probabilistically drought areal
extent in Sicily island, Italy. Sicily is one of the largest islands in the Mediterranean sea with a
surface of approx. 25,000 km2. The climate of the island is semiarid, with mean annual
precipitation around 700 mm and high intra-annual variability from year to year.

Available data include a dataset of monthly precipitation collected by the Water
Observatory of Sicily Region at 105 rainfall stations over the period 1921–2005 (85 years),
where occasionally missing-values have been estimated by regression techniques. Such data
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are submitted to a manual inspection for internal consistency and temporal coherency by the
Water Observatory, before publication (Sciuto et al. 2009). Corresponding monthly SPI series
have been computed for each station considering a 12-month aggregation time scale (SPI-12),
with view to a possible application of the proposed methodology to other drought indices, such
as the Palmer index, and to a comparison of related results. Indeed, Lloyd-Hughes and
Saunders (2002) have demonstrated that SPI-12 exhibits a close correspondence to the
Palmer Drought Severity Index in studying drought climatology for Europe. Also, a good
correspondence has been observed between SPI-12 and the Palmer Hydrological Drought
Index (PHDI) in Sicily by Rossi et al. (2009). Besides, a different SPI aggregation time scale
than the one here considered, can be chosen according to the purpose of the study.

Percentages of influence area ak of each station with respect to the whole regional area were
determined by means of Thiessen polygons. Figure 2 shows the location of the investigated
stations, as well as the related influence polygons.

Then for each month, observed Severity-Area curves have been computed by considering
the percentage of the total area Adt(z0) where observed SPI is below a given z0 value, namely
by applying Eq. (2).

As an example, with reference to an aggregation time scale of 12 months, Fig. 3 shows
three of such curves, corresponding to three different months and years. Inspection of the plot
reveals the different conditions that occurred in these 3 months with respect to drought. In
particular, the curve related to April 2002 indicates that a high percentage of the total area was
affected by dry conditions (z0≤0) and in particular that almost 80 % of the total area was
affected by SPI values below −1.5. On the other hand, the curve related to December 1976
clearly indicates the relatively wet conditions observed over the island, with no areas with
negative SPI values and only 15 % of the area with SPI less than 1. The third curve is related to
April 1966 and reveals a generally normal condition with respect to drought, where most of the
area (approx. 90 %) exhibit SPI values between −1 and 1.

Fig. 2 Location of investigated precipitation stations in Sicily island and related Thiessen polygons
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In order to characterize probabilistically the above mentioned SAF curves, the procedure
outlined in Section 2 has been applied. More specifically, capitalizing on the fact that the SPI
series are by definition zero mean, unit variance, the sample cross-covariances bγk; j of the
observed SPI values at the 105 stations have been computed as:

bγk; j ¼ X
t¼1

m

zk;tz j;t ð13Þ

By fixing the z0 value, the expected value and variance of the percentage of the area Adt(z0),
where Zt,k≤z0, have been computed by means of Eqs. (5) and (6), assuming the underlying SPI
values distributed according to a multivariate normal.

Then the parameters δ, ξ of the distribution of Adt(z0) (assumed as beta) have been
computed by means of Eqs. (10) and (11). In Fig. 4 the probability plots of the derived
distributions of Adt(z0), are shown for different z0 values. The plots reveal a generally good
agreement between observed quantiles and those computed by means of the derived distribu-
tions, which is particularly remarkable considering that no distribution fitting has been carried
out since the parameters of the distribution have been determined analytically as a function of
the characteristics of the underlying SPI field.

Once the distribution of Adt(z0) is known, quantiles Ad(q) corresponding to non-exceedance
probabilities q can be computed by inverting the beta distribution. Such quantiles represent the
percentage of the area with non-exceedence probability q where the SPI values are below z0,
and therefore, the plot of Ad(q) vs. z0 will enable to characterize probabilistically the Severity-
Area curves.

Fig. 3 Severity-Area curves related to three relevant months
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In Fig. 5 the values of q in the plane [Ad(q), z0] have been interpolated and
represented according to a colour scale. On the same plot, the three observed SAF
curves already illustrated in Fig. 3 are also shown. As the x-axis covers both negative
and positive values of z0, the figure accounts for dry and wet conditions at the same
time, thus returning an overall picture of the regional climatic behaviour and related
occurrence probability for any given month and year. Clearly, if the focus is on
regional drought analysis only, one should look at the half plane corresponding to
negative z0.

The plot confirms the severe drought conditions that occurred on April 2002,
whose corresponding SAF curve exhibits non-exceedance probabilities in the order
of 99 %. On the other hand, the curve related to December 1976 exhibits non-
exceedance probabilities in the order of 1 %, thus confirming the significant wet
conditions experienced over the island in that month. Similar considerations can be
drawn for April 1966, thus confirming the relatively normal conditions of the island
in that month.

4 Conclusions

Probabilistic characterization of areal extent of droughts occurring over a region is an
important step toward a robust water resources planning. Drought assessment on a regional

Fig. 4 Probability plots of the distribution of areal extent as a function of the threshold z0. The plots compare the
observed areal extent with the corresponding quantiles computed by means of the derived analytical
approximations
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and multi-monthly spatial and temporal scale respectively, can also be useful to evaluate the
appropriateness of inter-basin water transfers as a drought mitigation measure.

In this study, an analytical methodology to probabilistically characterize the rela-
tionship between meteorological drought severity (computed in terms of Standardized
Precipitation Index, SPI) and areal extent, expressed as Drought severity-Area-
Frequency (SAF) curves, has been proposed. In particular, approximate analytical
expressions of SAF curves, describing the proportion of the total area of the study
region where SPI values are below a fixed threshold as a function of non-exceedance
probabilities, have been derived and validated with reference to drought occurrences
over Sicily, Italy, for the period 1921–2005.

The derived analytical expressions enable to draw some general conclusions about the
effect of spatial dependence of SPI fields on the moments of areal extent. In particular, it has
been shown that the stronger the spatial dependence, the higher the variance of areal extent of
SPI values below a given threshold will be. Clearly, the possibility to take into account the
spatial dependence of the considered drought severity variable represents a significant ad-
vancement of the proposed methodology with respect to the inferential procedure traditionally
applied to derive SAF curves.

Validation of the procedure with reference to observed droughts and wet periods in Sicily,
has confirmed the validity of the proposed analytical approach, that enables to derive the
distributional properties of areal extent of drought, on the basis of the stochastic structure of the
underlying SPI series.

Finally it may be worthwhile to highlight the fact that although the methodology has been
developed with reference to SPI, it can be easily extended to other drought indices such as
PDSI (Palmer 1965) or RDI (Tsakiris et al. 2007), in order to analyze and monitor the spatial
features of these indices.

Fig. 5 Severity-Area-Frequency curves and observed Severity-Area curves for three relevant months
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