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Abstract Selecting the Yarkand River as a typical representative of an inland river in northwest
China, We identified the variation pattern of hydro-climatic process based on the hydrological
andmeteorological data during the period of 1957~2008, and constructed an integrated model to
simulate the change of annual runoff (AR) with annual average temperature (AAT) and annual
precipitation (AP) by combining wavelet analysis (WA) and artificial neural network (ANN) at
different time scale. The results showed that the pattern of hydro-climatic process is scale-
dependent in time. At 16-year and 32-year time scale, AR presents a monotonically increasing
trend with the similar trend of AAT and AP. But at 2-year, 4-year, and 8-year time scale, AR
exhibits a nonlinear variation with fluctuations of AAT and AP. The back propagation artificial
neural network based on wavelet decomposition (BPANNBWD) well simulated the change of
AR with AATand AP at the all five time scales. Compared to the traditional statistics model, the
simulation effect of BPANNBWD is better than that of multiple linear regression (MLR) at every
time scale. The results also revealed the fact that the simulation effect at a larger time scale (e.g.
16-year or 32-year scale) is better than that at a smaller time scale (e.g. 2-year or 4-year scale).

Keywords Annual runoff . Regional climate change . Wavelet decomposition .
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1 Introduction

Water is a critical ecological element because it is scarce in an arid environment (Kim et al.
2003). Therefore, water source has severely restricted the sustainable development in the arid
region of northwest China. For the arid region in northwest China, the water resource which
can be utilized is mainly from the streamflow of inland rivers. So the runoff variation of an
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inland river has aroused more and more attention (Chen et al. 2009; Hao et al. 2008; Li et al.
2008; Xu et al. 2008a, 2009a; Wang et al. 2013).

As a scientific base for water utilization planning, hydrological prediction has been paid
attention by the scientists in various countries. One of the traditional forecasting methods for
hydrology system is the regressive analysis (Ding and Deng, 1988). But in the recent 20 years,
various methods such as grey model (Deng 1989), functional-coefficient time series model
(Shao et al. 2009), wavelet analysis (Smith et al. 1998; Chou 2007; Sang 2012), artificial
neural network (Hsu et al. 1995; Hu et al. 2008), fractal and chaotic theory (Wilcox et al. 1991;
Xu et al. 2008a, 2009a) have been widely applied in the hydrological prediction. Specially,
some hybrid models (Kim et al. 2003; Lin 2006; Wang and Ding 2003; Sahay and Srivastava
2014; Yarar 2014) have been used.

Because the hydrology process is closely interconnected with climatic process, and greatly
influenced by climate change, the key of hydrological prediction is to understand the hydro-
climatic process. Theoretically, hydro-climatic process can be evaluated to determine if they
comprise an ordered, deterministic system, an unordered, random system, or a chaotic, dynamic
system, andwhether change patterns of periodicity or quasi-periodicity exist. Many case studies
in different countries and regions have suggested that the hydro-climatic process is a complex
system, with nonlinearity as its basic characteristic (Ibbitt and Woods 2004; Sivakumar 2007;
Wang et al. 2008; Xu et al. 2011a, 2013a). But it is difficult to achieve a thorough understanding
of the complex mechanism of nonlinear hydro-climatic process (Xu et al. 2010).

In the last 10 years, many studies have been conducted to evaluate climatic change and
hydrological processes in the arid regions of northwestern China (Chen and Xu 2005; Wang
et al. 2010; Xu et al. 2011a, 2011b; Zhang et al. 2010). A number of studies have indicated that
there was a visible transition in the hydro-climatic processes in the past half-century (Chen and
Xu 2005; Chen et al. 2006; et al. 2007; Wang et al. 2010). This transition was characterized by
a continual increase in temperature and precipitation, added river runoff volumes, increased
lake water surface elevation and area, and elevated groundwater levels. This transition may
bring a series questions if these changes represent a localized transition to a warm and wet
climate type in response to global warming, or merely reflect a centennial periodicity in
hydrological dynamics. To date, these questions have not received satisfactory answers;
therefore, more studies are required to understand the nonlinear hydro-climatic process from
different perspectives by using different methods (Xu et al. 2013a).

To further understand the change of runoff in an inland river and its response to regional
climate change in northwest China at different time scales, we selected the Yarkand River as a
typical representative to analyze the variation patterns of annual runoff (AR), annual average
temperature (AAT) and annual precipitation (AP) by using wavelet analysis (WA), and con-
structed an integrated model to simulate the variation of AR with AAT and AP by integrating
wavelet decomposition (WD) and back propagation artificial neural network (BPANN).

2 Study Area and Data

2.1 Study Area

Originating from the surrounding mountains, one of the headwaters of the Tarim River, the
Yarkand River is a typical inland river in northwest China, which has been relatively
undisturbed by human activities. Therefore, to understand the response of runoff in an inland
river to regional climate change in northwest China, we specially selected the Yarkand River as
a case for modelling and demonstration in this study.
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The Yarkand River (Fig. 1) is located in the southeastern region of Xinjiang Uygur
Autonomous Region, with a length of 1097 km. The Yarkand River (35°40′~40°31′
N,74°28′~80°54′E) has a total basin area of 9.89×104 km2, including 6.08×104 km2 as the
mountain area, which accounts for 61.5 %, and 3.81×104 km2 as the plain area, which takes up
38.5 % (Sun et al. 2006). The main stream of the Yarkand River originates from Karakoram
Pass in the north slope of Karakoram Mountain, where is full of towering peaks and glaciers.
The Yarkand River is a typical inland river, and there is rare precipitation and no water
recharge to the stream in the plain area. The multi-year average runoff in the Yarkand River
consists of 64.0 % from glacial ablation, 13.4 % from rain and snow supply, and 22.6 % from
groundwater supply, respectively (Sabit and Tohti 2005; Liu et al. 2008).

2.2 Data

As a headwater of the Tarim River, the streamflow is rarely disturbed by human activities,
whereas mainly affected by climatic factors, especially temperature and precipitation in the
mountainous (Hao et al. 2008; Tao et al. 2011). In order to analyze the stream flow of the
Yarkand River and its response to regional climate change, we use the data of runoff as well as
temperature and precipitation. The runoff data were from the Kaqun hydrological station, and
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temperature and precipitation data were from Tash Kurghan meteorological station. The two
stations are located in the source areas of the river; the amount of water used by humans is
minimal compared to the total discharge. Therefore, the observed hydrological and meteoro-
logical records reflect the natural conditions.

To investigate the annual variation of runoff and its relation with regional climate change,
this study used the raw data of annual runoff (AR), annual average temperature (AAT) and
annual precipitation (AP) from 1957 to 2008, which were revealed in Fig. 2.

3 Methods

In order to simulate the annual runoff and its response to regional climate change at different
time scales, we constructed an integrated model by integrating wavelet analysis (WA) and
artificial neural network (ANN). We firstly identified the variation pattern of annual runoff and
its related climatic factors by using WA at a given time scale, and then simulated the variation
of annual runoff with its related climatic factors by using ANN based on WA at the
corresponding time scale.

3.1 Wavelet analysis

Wavelet transformation has been shown to be a powerful technique for characterizing the
frequency, intensity, scale, and duration of variations in hydro-climatic process (Labat 2005;
Chou 2007; Xu et al. 2009b; Sang 2012). Wavelet analysis can also reveal localized time and
frequency information without requiring the signal time series to be stationary, as required by
the Fourier transform and other spectral methods (Farge 1992; Torrence and Compo 1998).
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One of our tasks in this paper is to approximate the variation patterns of runoff and its
related climatic factors by using wavelet decomposition and reconstruction at different time
scales.

The principle of wavelet decomposition and reconstruction is as follows (Mallat 1989;
Farge 1992; Torrence and Compo 1998). Considering a given signal X(t), such as AR, AAT
and AP, etc., which can be built up as a sequence of projections onto Father and Mother
wavelets indexed by both k {k=1, 2, ......} and s {s=2j, j=1, 2, ......}. The coefficients in the
expansion are given by the projections

sJ ;k ¼
Z

X tð ÞΦ J ;k tð Þdt

d j;k ¼
Z

X tð ÞΨ j;k tð Þdt j ¼ 1; 2;…; J

8><
>: ð1Þ

where J is the maximum scale sustainable by the number of data points, Φ j;k ¼ 2− j=2Φ t−2 jk
2 j

� �
is father wavelet, and Ψ j;k ¼ 2− j=2Ψ t−2 jk

2 j

� �
is mother wavelet. Generally, father wavelet is

used for the lowest-frequency smooth components, which requires wavelet with the widest
support; mother wavelet is used for the highest-frequency detailed components. In other
words, father wavelet is used for the major trend components, and mother wavelet is used
for all deviations from the trend.

Once a mother wavelet is selected, the wavelet transform can be used to decompose a signal
according to scale, allowing separation of the fine-scale behavior (detail) from the large-scale
behavior (approximation) of the signal (Bruce et al. 2002). The relationship between scale and
signal behavior is designated as follows: a low scale corresponds to compressedwavelet as well as
rapidly changing details, namely high frequency, whereas a high scale corresponds to stretched
wavelet and slowly changing coarse features, namely low frequency. Signal decomposition is
typically conducted in an iterative fashion using a series of scales such as a=2, 4, 8, ......, 2L, with
successive approximations being split in turn so that one signal is broken down into many lower
resolution components.

The representation of the signal X (t) now can be given by:

X tð Þ ¼ S J þ DJ þ DJ−1 þ…þ Dj þ…þ D1 ð2Þ

where S J ¼ ∑
k
s J ;kΦ J ;k tð Þ and Dj ¼ ∑

k
d j;kΨ j;k tð Þ; j ¼ 1; 2;…; J

In general, we have the relationship as

S j−1 ¼ S j þ Dj ð3Þ

where {SJ,SJ−1,…,S1} is a sequence of multi-resolution approximations of the function X (t)
at ever-increasing levels of refinement. The corresponding multi-resolution decomposition of
X (t) is given by {SJ,DJ,DJ−1,…,Dj,…,D1}.

Selecting a proper wavelet function is a prerequisite for wavelet analysis. The actual criteria
for wavelet selection include self-similarity, compactness, and smoothness (Ramsey 1999; Xu
et al. 2004). Choosing the Symmlet as the basic wavelet, we experimented with alternative
choices of scaling functions, and found the qualitative results from ‘Sym8’ are robust. There-
fore, ‘Sym8’were used for approximating the variation patterns of AR, AATandAP at different
time scales in this study.
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3.2 Back Propagation Artificial Neural Network Based on Wavelet Decomposition

In order to simulate the variation of annual runoff with regional climate change at different
time scales, we constructed an integrated approach, a back propagation artificial neural
network based on wavelet decomposition (BPANNBWD). We first approximated the variation
patterns of AR, AAT and AP by using wavelet decomposition on the basis of the discrete
wavelet transform (DWT) at a given time scale, and then simulated the variations of AR with
AAT and AP by using the back propagation artificial neural network based on the wavelet
approximation at the corresponding time scale.

In the back-propagation artificial neural networks, a number of smaller processing elements
(PEs) are arranged in layers: an input layer, one or more hidden layers, and an output layer
(Hsu et al. 1995). The input from each PE in the previous layer (xi) is multiplied by a
connection weight (wji). These connection weights are adjustable and may be likened to the
coefficients in statistical models. At each PE, the weighted input signals are summed and a
threshold value (θj) is added. This combined input (Ij) is then passed through a non-linear
transfer function (f ( )) to produce the output of the PE (yj). The output of one PE provides the
input to the PEs in the next layer. This process can be summarized in equations as follows
(Maier and Dandy 1998):

I j ¼
X

wjixiþθ j ð4Þ

yi ¼ f I j
� � ð5Þ

Our ANN model is a three-tier structure: an input X with two variables (i.e. AAT and AP) is
linearly mapped to intermediate variables (called hidden neurons) H, which are then
nonlinearly mapped to the output y (i.e. AR).

By comparing the advantages and disadvantages of artificial neural network transfer
functions (Dorofki et al. 2012), we selected the activation function as hyperbolic tangent
sigmoid transfer function as follows:

f Ið Þ ¼ 1−e−Ið Þ
1þ e−Ið Þ ð6Þ

where f(⋅) represents transfer function, and I represents input
As mentioned above, this is achieved by repeatedly presenting examples of the input/output

relationship to the model and adjusting the model coefficients (i.e. the connection weights) in
an attempt to minimize an error function between the historical outputs and the outputs
predicted by the model. This calibration process is generally referred to as ‘training’. The
aim of the training procedure is to adjust the connection weights until the global minimum in
the error surface has been reached.

The back-propagation process is commenced by presenting the first example of the desired
relationship to the network. The input signal flows through the network, producing an output
signal, which is a function of the values of the connection weights, the transfer function and the
network geometry. The output signal produced is then compared with the desired (historical)
output signal with the aid of an error (cost) function.

The model parameters are optimized by minimizing the mean square error given by the cost
function:

E ¼< jjy−yobsjj2 > ð7Þ
where yobs is the observed data, <⋅> denotes a sample or time mean
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Because it can train any network as long as its weight, net input, and transfer functions have
derivative functions (Kermani et al. 2005), we selected Levenberg-Marquardt (trainlm) as the
training function in the computing environment of MATLAB.

It is evident that the BPANNBWDmodel is a multivariable simulation model for cause and
effect, which is different from the hybrid models for hydrologic prediction of a time series such
as the wavelet network (Wang and Ding 2003), wavelet neuro fuzzy model (Yarar 2014) and
wavelet transform-genetic algorithm-neural network model (Sahay and Srivastava 2014). In
the BPANNBWDmodel, variations of AAP and AP are regarded as the causes of the variation
of AR, namely the variation of annual runoff is its response to regional climate change.

3.3 Test for Simulation Effect

To further compare the simulation effect of BPANNBWD with that of traditional statistics
model such as multiple linear regression (MLR) at different time scales, we also constructed
the multiple linear regression based on wavelet decomposition (MLRBWD). The principle of
MLRBWD is as follows (Xu et al. 2008b, 2013c): the data series of AR, AAT and AP were
firstly approximated by using wavelet decomposition (DW) at a chosen time scale; then the
variations of AR with AAT and AP were estimated by using the multiple linear regression
(MLR) based on the wavelet approximation at the corresponding time scale.

At each time scale, the variation of annual runoff with regional climate change was
simulated by the multiple linear regression equation (MLRE) as follows:

y ¼ a0 þ a1x1 þ a2x2 þ⋯þ akxk ð8Þ

where, y is dependent variable, xi the independent variables; ai is the regression coefficient,
which is generally calculated by method of least squares (Xu 2002). In this study, the
dependent variable is the annual runoff (AR) and the independent variables are related climatic
factors, such as the annual average temperature (AAT) and annual precipitation (AP), etc.

In order to identify the uncertainty of the estimates for a given simulation model, the
coefficient of determination was calculated as follows:

CD ¼ 1−
RSS

TSS
¼ 1−

X
i¼1

n

yi−byi� �2

X
i¼1

n

yi−yð Þ2
ð9Þ

where CD is the coefficient of determination;byi and yi are the simulate value and actual data of

runoff respectively; yis the mean of yi(i=1,2,…,n); RSS ¼ ∑
i¼1

n
yi−byið Þ2 is the residual sum of

squares; TSS ¼ ∑
i¼1

n
yi−yð Þ2 is the total sum of squares. The CD value is a measure of how

well the simulate results represent the actual data.
Statistics tells us that a bigger CD indicates a higher certainty and lower uncertainty of the

simulation model (Xu 2002).
To compare the relative goodness of models at different time scales, we also used the

measure of Akaike information criterion (AIC). The formula of AIC is as follows (Anderson
et al. 2000):

AIC ¼ 2k þ nln RSS=nð Þ ð10Þ
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where k is the number of parameters estimated in the model; n is the number of samples; RSS
is the same as in formula (9)

Akaike information criterion means that a smaller AIC indicates a better model.
For small sample sizes (i.e., n/K≤40), the second-order Akaike Information Criterion

(AICc) should be used instead

AICc ¼ AIC þ 2k k þ 1ð Þ
n−k−1

ð11Þ

where n is the sample size. As the sample size increases, the last term of the AICc approaches
zero, and the AICc tends to yield the same conclusions as the AIC (Burnham and Anderson
2002).

4 Results and discussion

4.1 Variation patterns of annual runoff and its related regional climate factors

Our previous study indicated that (Xu et al. 2010, 2011a), the annual average temperature
(AAT) and annual precipitation (AP) are the most important two factors that related with the
annual runoff (AR). The result was also supported by the other studies for the headwaters of
the Tarim River Basin (Hao et al. 2008; Chen et al. 2009; Ling et al. 2013).

Because the original signal series of AR, AAT and AP presented fluctuations with
high frequency, it is hard to identify any variation patterns from the raw data (Xu et al.
2011a, 2013a). For mining out the variation patterns of AR, AAT and AP, we need to
represent the signal series by wavelet analysis at different time scales (Xu et al. 2008b,
2009b).

For computing the wavelet decomposition of AR, AAT and AP, the five time scales are
designated as S1 to S5, which represent 2- year, 4-year, 8-year, 16-year and 32-year time scale
respectively. We used the method described in section 3.1 to represent the signal series of AR,
AAT and AP, and the results are shown as Fig. 3.

Figure 3a revealed the five variation patterns for AR at the time scale of S1, S2, S3, S4, and
S5 respectively. The S1 curve retains a large amount of residual noise from the raw data (see
Fig. 2 for a comparison), and drastic fluctuations along the entire time span. Furthermore, the
S1 curve also indicates that, although the annual runoff varied greatly throughout the study
period, there was a hidden slightly increasing trend. The S2 curve still retains a considerable
amount of residual, as indicated by the presence of 4 peaks and 4 valleys. However, the S2
curve is much smoother than the S1 curve, which allows the hidden increasing trend to be
more apparent. The S3 curve retains much less residual, as indicated by the presence of 2
peaks and 2 valleys. Compared to S2, the increase in runoff over time is more apparent in S3.
Finally, the S5 curve presents an ascending tendency, whereas the increasing trend is obvious
in the S4 curve.

Accordingly, Fig. 3b and Fig. 3c provide us the cognition for comparing the variation
patterns of AAT and AP at different time scales. Similar to AR, AAT and AP also presented
five variation patterns at the time scale of S1, S2, S3, S4, and S5 respectively. The S1 and S2
curve showed a hidden slightly increasing trend with drastic fluctuations, whereas the curves
are getting much smoother and the increasing trend becomes even more obvious with the time
scale increases. It is evident that the S4 and S5 curve for AAT and AP exhibited a visible
monotonically increasing trend similar to that for AR.
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In conclusion, the results as Fig. 3 revealed a fact that the pattern of hydro-climatic process
is scale-dependent in time. At 16-year and 32-year time scale, AR presented a monotonically
increasing trend with the similar trend of AAT and AP. But at 2-year, 4-year, and 8-year time
scale, AR presented a nonlinear variation with fluctuations of AAT and AP.

4.2 Simulation for Annual Runoff With Regional Climate Change

To simulate the variation of annual runoff with regional climate change at different time scales,
we used the BPANNBDW method described in section 3.2 to individually construct a 3-layer
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back-propagation artificial neural network based on the wavelet decomposition results of AR,
AAT and AP for each time scale.

The network structure of the 3-layer back-propagation artificial neural network is “2-1-1”,
which indicates that there is an input layer with two variables (i.e. AAT and AP), an output
layer with one variables (i.e. AR), and a hidden layer in the network. The neuron number of the
hidden layer in the network for each time scale is not same, which is 3, 5, 5, 5 and 4 at the time
scale of S1, S2, S3, S4 and S5 respectively (Table 1).

Using the computing software, MATLAB, we selected the transfer function as tansig, and
training function as trainlm to train network.

Based on wavelet decomposition results of AR, AAT and AP from 1957 to 2008, we
randomly extracted 80 %, 10 % and 10 % of the data as training, validation and testing
samples, respectively. The results show that, at the time scales of S1, S2, S3, S4 and S5, the all
network models have reached the expected error target (0.001) with learning rate of 0.01. The
optimized parameters of the BPANN to simulate the annual runoff with regional climate
change at different time scales are showed in Table 1.

Table 2 listed the simulation error of BPANNBWD at the 2-year, 4-year 8-year, 16-year,
and 32-year time scale. The results showed that, as the time scale increased from S1 to S5, the
smaller the estimated error is, and the better the simulation effect is.

Figure 4 shows the simulated results by BPANNBWD on the five time scales, which take
input variables: annual average temperature (AAT) and annual precipitation (AP), to simulate
output variable: annual runoff (AR). In this figure, sub-figure (a), (b), (c), (d) and (e) show the
comparison between original data of annual runoff and its simulation, at the 2-year, 4-year 8-
year, 16-year, and 32-year time scale, respectively.

By comparing the CD and AIC value in Table 3, we can know the effect (good or bad) of
different models at different time scales.

The CD value at the time scale of S1 and S2 (i.e. 2-year and 4-year scale) is 0.2103 and
0.4924 respectively, which is relatively lower; but that at the time scale of S3, S4 and S5
(i.e. 8-year, 16-year and 32-year scale) is high as 0.9904, 0.9955 and 0.9986 respectively.
These results indicated that the certainty of estimates at the larger time scale (i.e. 8-year,

Table 1 Optimized parameters of
BPANN at different time scales Time Scale Neuron number

of the hidden layer
Input
variables

Output
variables

Best
epoch

S1 3 AAT, AP AR 11

S2 5 AAT, AP AR 4

S3 5 AAT, AP AR 107

S4 5 AAT, AP AR 4

S5 4 AAT, AP AR 7

Table 2 Simulation errors of BPANNBWD at different time scales

Time scale S1 S2 S3 S4 S5

Average absolute error 5.8683 2.7563 0.2259 0.1131 0.0651

Average relative error 9.07 % 4.23 % 0.35 % 0.17 % 0.10 %
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16-year and 32-year scale) are markedly higher than the smaller time scale (i.e. 2-year and
4-year scale).
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The AIC value at each time scale also tells us the similar results, the model at time scale of
S5 is the best, that at time scale of S4 is better, that at time scale of S3 is moderate, that at time
scale of S2 is the penult, and that at time scale of S1 is the worst.

In fact, our related study (Xu et al. 2008b, 2011a, 2011b, 2013b) revealed that the hydro-
climatic process at a large time scale (e.g. 16-year or 32-year scale) is basically a linear process
with monotonic trend, but at a small time scale (e.g. 2-year or 4-year scale) the process is
essentially a nonlinear process with complicated causations. Therefore, the estimated precision
at a large time scale (e.g. 16-year or 32-year scale) is high, whereas it is difficult to accurately
predict at a small time scale (e.g. 2-year or 4-year scale).

4.3 Comparing the Simulation Effect With the Traditional Statistics Method

To compare the simulation effect of BPANNBWD with that of the traditional statistics method
such as multiple linear regression (MLR), we also used the MLRBWD method described in
section 3.3 to fit a group of multiple linear regression equations (MLREs) for simulating the
variations of AR with AAT and AP at the five time scales. Table 4 showed the four indices,
average absolute error, average relative error, CD and AIC for the MLRBWD at the time scale
of S1, S2, S3, S4 and S5 respectively.

Comparing table 2 to table 4, we found that the simulation errors, average absolute error
and average relative error of BPANNBWD are both smaller than those of MLRBWD at every
time scale. Comparing table 3 to table 4, we found that the CD value of BPANNBWD is
bigger than that of MLRBWD at every time scale. Moreover, the AIC value of BPANNBWD
is smaller than that of MLRBWD at every time scale. That is to say, all the four indices,
average absolute error, average relative error, CD and AIC indicate that the simulated effect
from BPANNBWD is better than that from MLRBWD at every time scale.

Table 3 CD and AIC values of
BPANNBWD at different time
scales

Time Scale CD AIC

S1 0.361 204.542

S2 0.4924 131.308

S3 0.9904 -112.333

S4 0.9955 -186.356

S5 0.9986 -260.496

Table 4 Simulation effect of
MLRBWD at different time scales Time scale Average absolute

error
Average relative
error

CD AIC

S1 6.266 9.665 % 0.2103 209.924

S2 3.250 4.959 % 0.416 143.263

S3 0.880 1.354 % 0.894 12.960

S4 0.329 0.502 % 0.975 -96.714

S5 0.109 0.165 % 0.996 -209.172
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5 Conclusions

Selecting the Yarkand River as a typical representative, this study identified the variation
pattern of annual runoff (AR), annual average temperature (AAT) and annual precipitation
(AP) by using wavelet analysis (WA), and constructed an integrated model, i.e. the back
propagation artificial neural network based on wavelet decomposition (BPANNBWD), to
simulate the change of AR with AAT and AP at different time scales.

The main conclusions of this study are as follows:

1. The integrated approach combining wavelet analysis (WA) and artificial neural network
(ANN) provides a way to understand the relationship between the runoff of an inland river
and its related climatic factors in northwest China from a multi-scale perspective.

2. Variations of annual runoff (AR) with annual average temperature (AAT) and annual
precipitation (AP) are scale-dependent in time. The variation patterns of AR, AAT and AP
present basically linear trends at 16-year and 32-year time scale, but they exhibit nonlinear
fluctuations at 2-year, 4-year and 8-year time scale.

3. The BPANNBWD well simulated the variation of AR with AAT and AP at the all five
time scales. Compared to the traditional statistics method, the simulation effect of
BPANNBWD is better than that of multiple linear regression (MLR) at every time scale.
Moreover, the simulation effect at a larger time scale (e.g. 16-year or 32-year scale) is
better than that at a smaller time scale (e.g. 2-year or 4-year scale).
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