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Abstract The real-time availability of several satellite-based precipitation products has recently
provided hydrologists with an unprecedented opportunity to improve current hydrologic predic-
tion capability for vast river basins, particularly for ungauged regions. However, the accuracy of
real-time satellite precipitation data remains uncertain. This study aims to use three widely used
real-time satellite precipitation products, namely, TRMM Multi satellite Precipitation Analysis
real-time precipitation product 3B42 (TMPA 3B42RT), Precipitation Estimation from Remote
Sensing Information using Artificial Neural Network (PERSIAN), and NOAA/Climate Precip-
itation Center Morphing Technique (CMORPH), for ensemble stream flow simulation with the
gridded xinanjiang (XAJ) model and shuffled complex evolution metropolis (SCEM-UA)
algorithm in the middle-latitude Mishui basin in South China. To account the bias of the satellite
precipitation data and consider the input uncertainty, two different methods, i.e. a precipitation
error multiplier and a precipitation error model were introduced. For each precipitation input
model, the posterior probability distribution of the parameters and their associated uncertainty
were calibrated using the SCEM-UA algorithm, and 15,000 ensemble stream flow simulations
were conducted. The simulations of the satellite precipitation data were then optimally merged
using the Bayseian model averaging (BMA) method. The result shows that in Mishui basin, the
three sets of real-time satellite precipitation data largely underestimated rainfall. Streamflow
simulation performed poorly when the raw satellite precipitation data were taken as input and
the model parameters were calibrated with gauged data. By implementing the precipitation error
multiplier and the precipitation error model and then recalibrating the model, the behavior of the
simulated stream flow and calculated uncertainty boundary were significantly improved. Fur-
thermore, the BMA combination of the simulations from the three datasets resulted in a
significantly better prediction with a remarkably reliable uncertainty boundary and was compa-
rable with the simulation using the post-real-time bias-corrected research quality TMPA 3B42V7.
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The proposed methodology of bias adjustment, uncertainty analysis, and BMA combination
collectively facilitates the application of the current three real-time satellite data to hydrological
prediction and water resource management over many under-gauged basins. This research is also
an investigation on the hydrological utility of multi-satellite precipitation data ensembles, which
can potentially integrate additional more satellite products when the Global Precipitation Mea-
suring mission with 9-satellite constellation is anticipated in 2014.
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1 Introduction

Precipitation is one of the most important and active physical process in the hydrologic cycle,
and its temporal and spatial distribution significantly affect the land surface hydrological fluxes
and states (Gottschalck et al., 2005; Su et al., 2008; Kidd and Huffman., 2011). Obtaining
accurate and reliable precipitation data is thus very important for the real-time monitoring of
local, regional, and global disasters as well as hydrologic process simulation and climate
change research (Jiang et al. 2010; Yu et al. 2011). Among the three primary sources of
precipitation observations (i.e., surface networks, ground-based radar, and satellite remote
sensing retrieval), satellite remote sensing retrieval data can provide complete coverage of the
global precipitation map (Kucera et al., 2013). A number of new global high-resolution
satellite-based precipitation products have recently been made operationally available, includ-
ing the TRMM Multi satellite Precipitation Analysis (TMPA) 3B42 (Huffman et al. 2007),
NOAA/Climate Precipitation Center Morphing Technique (CMORPH) (Joyce et al., 2004),
Precipitation Estimation from Remote Sensing Information using Artificial Neural Network
(PERSIAN) (Sorooshian et al., 2000), Precipitation estimation from remotely sensed imagery
using Artificial Neural Network-Cloud Classification System (PERSIAN-CCS) (Hong et al.
2004), Global Satellite Mapping of Precipitation (GSMaP) (Kubota et al., 2007) and so on.
These high-resolution satellite precipitation products can be divided into two types: post-real-
time research satellite precipitation product (e.g., TMPA 3B42V7, hereinafter referred to as
3B42V7) and real-time pure satellite precipitation products (e.g., TMPA 3B42RT, hereinafter
referred to as 3B42RT). These products provide new data sources for hydrological research
and applications. Thus, facilitating the full-scale application of these satellite precipitation
products in monthly, daily, and sub-daily hydrological operations is important.

Numerous studies have evaluated the accuracy and hydrological simulation utility of the
available satellite precipitation products. These studies highlighted that different satellite
precipitation products have variable accuracy and distinct hydrological utility in different
regions (Stisen and Sandholt 2010; Behrangi et al., 2011; Yong et al., 2012; Jiang et al.,
2012; Li et al., 2013; Xue et al., 2013). Moreover, a post-real-time gauge bias-adjusted satellite
precipitation product (e.g., 3B42V7) usually has higher accuracy than a real-time pure satellite
precipitation product (e.g., 3B42RT). However, in practical application, the timeliness of a
satellite precipitation product is critical to real-time disaster monitoring. Thus, a new challenge
has been presented by requirement for the bias adjustment of real-time pure satellite precip-
itation products and the improvement of the stream flow simulation by merging the informa-
tion from different real-time pure satellite precipitation products. Hong et al. (2006) assumed
the error of the satellite precipitation product to be a nonlinear function of rainfall space-time
integration scale, rain intensity, and sampling frequency to assess the influence of precipitation
estimation error on the uncertainty of hydrological response and to determine the accuracy
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confidence interval. Strauch et al. (2012) used different precipitation data ensembles for stream
flow simulation uncertainty analysis and found that ensemble modeling with multiple precip-
itation inputs can considerably increase the level of confidence in simulation results.
Gebregiorgis and Hossain (2011) merged individual satellite precipitation products according
to their prior hydrologic predictability and indicated that the merging method can yield a more
superior product for stream flow prediction. Although these studies have conducted on the bias
adjustment, satellite ensemble generation, and stream flow simulation using the available real-
time satellite precipitation products, these works still have to be supplemented.

Thus, this study focus on an integrated framework of bias adjustment, uncertainty analysis, and
ensemble combination collectively facilitates the application of the current three real-time satellite
data to hydrological prediction and water resource management over many under-gauged basins.
There are three main steps: (1) adjust the bias of the three most widely used global high-resolution
real-time pure satellite precipitation products (3B42RT, PERSIAN, and CMORPH) using two
different methods: a precipitation error multiplier and a precipitation error model; (2) perform
15,000 ensemble stream flow simulations using the griddedXinanjiangmodel (hereinafter referred
to as XAJ, Zhao et al., 1992) and the shuffled complex evolution metropolis algorithm (SCEM-
UA, Vrugt et al., 2003) for each precipitation input model; and (3) optimally merge the simulations
from the three sets of real-time satellite precipitation data using the Bayesian model averaging
method (BMA). The BMA-combined results of the three real-time pure satellite precipitation
products are compared with the gauge-based and 3B42V7-based simulation to verify the effec-
tiveness of the bias adjustment, uncertainty analysis, and BMA combination method.

The remainder of this paper is organized as follows: Section 2 introduces the study area and
the datasets used. Section 3 describes the detailed methodology. Section 4 discusses the
simulation results of different simulation scenarios. Finally, Section 5 draws the conclusions.

2 Study Area and Data

2.1 Study Area

Mishui basin, a tributary of Xiangjiang River with a drainage area of 9,972 km2 above the Ganxi
hydrologic station, was selected as the study area (Fig. 1). The basin is located southeast of Hunan
Province in South China and extends from longitudes 112.85°E to 114.20°E and latitudes 26.00°N
to 27.20°N. The basin has a complex topography, with elevations ranging from 49 m to 2093 m
above sea level. The land use in the basin is composed of forest and shrubs (54.4 %), grassland
(33.5 %), cropland (11.8 %), and urban and water (0.3 %). The climate is a humid subtropical
monsoon type, with average temperature of approximately 18.0 °C andmean annual precipitation of
approximately 1,561mm. The temporal and spatial distribution of precipitation is uneven because of
atmospheric circulation and because most of the annual precipitation occurs between April and
September. In thesemonths, particularly in June, basin-wide heavy rains continuously occur, thereby
resulting in floods. Mishui basin is a typical middle-latitude humid basin in China.

2.2 Data

2.2.1 Satellite Precipitation Products

The satellite precipitation products used in this study include one post-real-time research satellite
precipitation product, i.e., 3B42V7, and three real-time pure satellite precipitation products, i.e.,
3B42RT, CMORPH, and PERSIAN. All these satellite precipitation products are generated by
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combining multi-source information from more accurate (but infrequent) microwave (MW) obser-
vations andmore frequent (but indirect) infrared (IR) observations, but the data sources and retrieval
algorithms are different (Bitew andGebremichael, 2011). The TMPAmethod (Huffman et al., 2007)
retrieves real-time precipitation through three consecutive stages: 1) polar-orbitingMWprecipitation
estimates are calibrated by TRMMMWestimates and then combined together, 2) geostationary IR
precipitation estimates are calibrated using the merged MW precipitation to fill in gaps of the MW
coverage, and 3) MW and IR data are combined to form the real-time pure satellite precipitation
product (i.e., 3B42RT). The CMORPH method (Joyce et al., 2004) obtains real-time precipitation
estimations fromMWdata but uses a tracking approach in which IR data are used to derive a cloud
motion field that is subsequently used to propagate raining pixels. The PERSIAN method
(Sorooshian et al., 2000) uses a neural network approach to derive the relationships between IR
andMWdata and is applied to the IR data to generate real-time precipitation estimates. Thus, TMPA
and CMORPH products primarily rely onMW data for precipitation estimates, whereas PERSIAN
primarily uses IR data. All the three satellite precipitation products are real-time versions. By
contrast, TMPA products provide a post-real-time research version precipitation estimate, i.e.,
3B42V7. 3B42V7 uses the TRMM combined instrument (includes the TRMM precipitation radar
and TRMMMW)product as a calibrator of theMWestimates from other satellites. Additionally, the
3B42V7 estimate adjusts its bias based on monthly rain gauge observations (Huffman et al., 2007).
3B42V7 has been identified as the most accurate among all available satellite precipitation products.
The resolution of the satellite precipitation products used in this study are 0.25 and 3 hourly,
although finer resolutions are also available for CMORPH and PERSIAN. The 3-hourly satellite
precipitation products were aggregated to produce the accumulated daily precipitation for daily
stream flow simulation.

Fig. 1 Map of Mishui basin in South China
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2.2.2 Gauged Precipitation and Discharge Data

The observed daily precipitation data for 2003 to 2008 were derived from 35 rain gauge
stations in Mishui basin using roughly two rain gauges within one 0.25 grid. For the same
period, daily stream flow and potential evapotranspiration data were collected from the Ganxi
hydrologic station and Wulipai evaporation station, respectively. The inverse distance
weighting (Bartier and Keller, 1996) of the three nearest rain gauges was used to obtain the
spatially distributed precipitation database of Mishui basin. The 30 arc-second global digital
elevation model data were obtained from the U.S. Geological Survey, whereas the vegetation-
type data were obtained from the International Geosphere-Biosphere Program.

3 Methodology

3.1 Simulation Scenarios

For the post-real-time research satellite precipitation product 3B42V7, the XAJ model param-
eters were calibrated based on the rain gauge precipitation measurements. The period from
2003 to 2005 was selected as the calibration period, whereas that from 2006 to 2008 was
selected as the validation period. The SCEM-UA algorithm was used for parameter calibration
and uncertainty analysis.

For the three real-time satellite precipitation products (i.e., 3B42RT, PERSIAN, and
CMORPH), rainfall was largely underestimated. The average biases of the products from
2003 to 2008 are −42.72 %, −56.80 %, and −40.81 %. The biases should be adjusted before
using the products for stream flow simulation. Thus, we adopt three different cases to combine
the XAJ model and SCEM-UA algorithm for stream flow simulation.

1. In case 1, the XAJ model parameters were calibrated based on the rain gauge precipitation
measurements, and model runs were repeated with the three real-time satellite precipita-
tion products as inputs. The simulations of the three real-time satellite precipitation
products were then merged using the BMA method.

2. In case 2, the biases of the three real-time satellite precipitation products were adjusted
using a precipitation error multiplier, and then the model parameters were recalibrated
with each of the bias-adjusted satellite precipitation products as input. Finally, the
simulations of the three bias-adjusted real-time satellite precipitation products were
merged using the BMA method. The formula for the error multiplier is given by

Pe ¼ φ t ⋅ P ð1Þ

φ t ¼ N m;σ2
m

� � ð2Þ
where Pe is the bias-adjusted satellite precipitation, P is the raw satellite precipitation, 8t is a
normal error multiplier with a mean value of m and a variance of σm

2 , and t is the number of the
total simulation days. In this study, the m values are determined based on the bias of each
satellite precipitation. The m value range for 3B42RT is [1.73, 1.77], that for PERSIAN is
[2.29, 2.33], and that for CMORPH is [1.67, 1.71]. The three satellite precipitation products
have the same σm

2 value range of [1e-5, 1e-3]. In the model calibration, m and σm
2

were regarded as two model parameters, such that we can obtain the optimal values
of these parameters.
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(3) In case 3, the biases of the three real-time satellite precipitation products were adjusted
using a simple precipitation error model. The biases of the three sets of real-time satellite
precipitation data were assumed as a nonlinear function of rainfall space–time integration
scale, rain intensity, and sampling frequency. The model parameters were then
recalibrated with each of the bias-adjusted satellite precipitation products as input.
Finally, the simulations of the three bias-adjusted real-time satellite precipitation products
were merged using the BMA method. The formula for the error model is given by

me ¼ f
1

L
;
Δt

T
;P

� �
¼ a ⋅

1

L

� �b

⋅
Δt

T

� �c

⋅ Pð Þd ð3Þ

Pe ¼ P þ me ⋅ε ð4Þ
where me is the basin scale bias of satellite precipitation, L is the space–time integration scale
of satellite precipitation, T is the time scale of satellite precipitation, Δt is the sampling
frequency of satellite precipitation, Pe is the bias-adjusted satellite precipitation, and P is the
raw satellite precipitation. a, b, c, and d are the four parameters of the precipitation error
model, the values of which can be estimated by comparing the estimated bias and the true bias
time series for the calibration period. ε is a normal value with a mean value ofm and a variance
of σm

2 . The m value range is [0.95, 1.05], and the σm
2 value range is [1e-5, 1e-3]. Similar to case

2, the m and σm
2 were regarded as two model parameters in the model calibration, such that we

can determine the optimal values of these parameters.

3.2 XAJ Model

Xinanjiang model is a well-known physically based conceptual hydrological model developed
by Zhao in the 1970s (Zhao, 1992). Since its development, the Xinanjiang model has been
successfully and widely used in the humid and semi-humid regions of China. The runoff
generation method of the Xinanjiang model has also been widely used in distributed hydro-
logical models. For example, the core of the model, which describes the spatial heterogeneity
of tension water and free water within a basin based on the storage capacity distribution curves,
was employed by the three-layer variable infiltration capacity model. In this work, a gridded-
structured Xinanjiang model for stream flow simulation was constructed. The simulation was
performed by computing the runoff and dividing the runoff types within each grid. The slope
and river network convergence processes were then integrated to obtain the stream flow series
of the hydrologic station. The model was operated daily with a 0.25×0.25 spatial resolution
from January 2003 to December 2008. The model has 16 parameters, and they were auto-
matically calibrated using the SCEM-UA algorithm, which can be used for model parameter
calibration and uncertainty analysis.

3.3 Parameter Calibration and Uncertainty Analysis

The SCEM-UA was built upon the principles of shuffled complex evolution (SCE-UA), an
effective and efficient global optimization technique developed by Duan et al. (1994). Vrugt
et al. (2003) combined the strengths of the Monte Carlo Markov Chain sampler with the
concept of complex shuffling from SCE-UA to form an algorithm that not only provides the
most probable parameter set, but also estimates the uncertainty associated with estimated
parameters. The SCEM-UA can simultaneously identify the most likely parameter set and its
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associated posterior probability distribution in every model run (Ajami et al., 2007). The
SCEM-UA has been successfully used for hydrologic and climate applications, such as
rainfall-runoff model parameter calibration and uncertainty analysis (Kwon et al., 2012).
The detailed calculation steps of SCEM-UA can be found in the literatures Vrugt et al.
(2003) and Ajami et al (2007). In this study, the initial samples and the computation times
were set at 5,000 and 10,000, respectively.

3.4 Streamflow Merging Method

Bayesian model averaging (BMA) is a probabilistic scheme for model combinations that
derives the consensus prediction from competing predictions using likelihood measures as
model weights. BMA has previously been primarily used to generalize linear regression
applications. Raftery et al. (2005) successfully applied BMA to dynamical numerical weather
predictions. Duan et al. (2007) and Ajami et al. (2007) used the BMA scheme to combine
multi-models for hydrologic ensemble prediction, which can develop more skillful and reliable
probabilistic prediction. The advantage of the BMA is that the weights are directly bound with
individual model simulation, i.e., a better performing model can receive a higher weight than a
poorly performing one. A more robust and stable result can be obtained when the BMA
method is used to combine different simulations. In this study, we use the BMA to merge the
simulated stream flows of the three real-time satellite precipitation products. Each satellite
precipitation product has its own merits in terms of capturing real rainfall events. With
different satellite precipitation products as input forcing data, the hydrological model can
generate various stream flow series with different accuracies. Merging the different satellite
data forced stream flow simulations using the BMA method is thus considered a novel method
that may generate a better, more stable stream flow series. The detailed calculation steps of the
BMA method can be found in the literatures Duan et al. (2007) and Ajami et al. (2007).

3.5 Evaluation Statistics

The validation statistical indices of Nash–Sutcliffe coefficient (NSCE), relative bias (BIAS),
and root mean square error (RMSE) were employed to evaluate hydrologic model performance
based on the observed and simulated stream flow series. These three indices jointly measure
the consistency of the simulated and observed stream flow series both in terms of temporal
distribution and amount. The formula for NSCE, BIAS, and RMSE are given by

NSCE ¼ 1−

X
i¼1

n

Qoi −Qsið Þ2

X
i¼1

n

Qoi −Qo

� �2 ð5Þ

BIAS ¼

X
i¼1

n

Qsi −
X
i¼1

n

Qoi

X
i¼1

n

Qoi

� 100% ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i¼1

n

Qsi −Qoið Þ2
s

ð7Þ
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where Qoi is the observed runoff at time step i, Qsi is the simulated runoff at time step i, Qo is
the mean value of the observed stream flow values, Qs is the mean value of the simulated
stream flow values, and n is the number of simulation days.

The validation statistical indices of the containing ratio (CR), average bandwidth (B), and
average deviation amplitude (D) were adopted to evaluate the prediction bounds of the
hydrological models (Xiong et al., 2009). CR denotes the ratio of the number of observed
stream flows enveloped by prediction bounds to the total number of observed hydrographs,
expressed as a percentage. B represents the average bandwidth of the whole prediction bounds.
With a certain confidence level, a small B indicates a perfect prediction bound. D denotes the
actual discrepancy between the trajectories consisting of the middle points of the prediction
bounds and the observed hydrograph and shows the symmetry with respect to the observed
stream flows and the middle point of the prediction bounds. The formulas for CR, B, and D are
given by

CR ¼ nc
n
� 100% ð8Þ

B ¼ 1

n

X
i¼1

n

qui − qlið Þ ð9Þ

D ¼ 1

n

X
i¼1

n 1

2
qui þ qlið Þ −Qoij j ð10Þ

where nc is the number of observed stream flows enveloped by prediction bounds; n is the total
number of the observed hydrographs; qui and qli are the upper and low boundaries of the
prediction bounds at time step i, respectively.

4 Results and Discussion

4.1 Streamflow Simulation from Gauge Data and 3B42V7

To evaluate the stream flow simulation utility of the three real-time satellite precipitation
products, the XAJ model was first calibrated using the data of 35 rain gauge stations as input in
where. The calibration was processed automatically with the objective function of maximizing
the likelihood function using the SCEM-UA algorithm, and the model parameters were
selected within the experiential numerical range. Figure 2 shows the daily and monthly
comparisons of the observed stream flow with the mean value of 10,000 simulations (when
the model parameters are in convergence) and the calculated 95 % confidence interval for both
the calibration and validation periods. Overall, good agreement exists between the observed
and simulated stream flow series both in the daily and monthly time scales. The statistical
indices, which reflect the simulated stream flow performances (with daily NSCE of 0.91 and
0.80, monthly NSCE of 0.97 and 0.91, BIAS of 0.97 % and 4.81 %, and daily RMSE of 0.32
and 0.65 mm, as well as monthly RMSE of 6.89 and 17.62 mm for the calibration period and
validation periods, respectively), indicate that the XAJ model can capture key features of the
observed hydrograph. The statistical indices, which reflect the reliable performance of the
calculated uncertainty boundary (with daily CR of 81.20 % and 83.30 %, monthly CR of
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97.22 % and 97.22 %, daily B of 1.45 and 1.82 mm, monthly B of 44.11 and 55.45 mm, and
daily D of 0.43 and 0.59 mm, and monthly D of 5.79 and 8.68 mm for the calibration and
validation periods, respectively), indicate that the uncertainty boundary can consistently
contain the observed hydrograph.

For the 3B42V7 satellite precipitation, we use the rain gauge data calibrated XAJ model for
the stream flow simulation. Figure 3 shows the daily and monthly comparisons of the observed
stream flow with the mean value of 10,000 3B42V7-simulated simulations and calculated
95 % confidence interval for both the calibration and validation periods. The 3B42V7-
simulated stream flow is in good agreement with the observed hydrograph. The calculated
95 % confidence interval contains most of the observed stream flow series, but at the daily time
scale, some minimum and maximum values run out of the interval. The statistical indices of
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Fig. 2 XAJ model simulated runoff and calculated 95 % confidence interval based on the gauged rainfall data as
input: a daily Calibration Period (CP) time series, b daily Validation Period (VP) time series and c
monthly time series
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the simulated stream flow performances (with daily NSCE of 0.59 and 0.55, monthly NSCE of
0.87 and 0.75, BIAS of−12.06 % and−7.45 %, daily RMSE of 0.65 and 0.96 mm, and monthly
RMSE of 15.10 and 28.77 mm for the calibration and validation periods, respectively) indicate
that the 3B42V7 simulated stream flow captured most of the features of the observed
hydrograph. The uncertainty boundary performance statistical indices (with daily CR of
61.77 % and 64.78 %, monthly CR of 88.89 % and 83.33 %, daily B of 1.37 and 1.62 mm,
monthly B of 41.74 and 49.39 mm, daily D of 0.73 and 0.98 mm, and monthly D of 9.93 and
17.26 mm for the calibration and validation periods, respectively), indicate that the 3B42V7-
calculated uncertainty boundary contains much information on the observed hydrograph. At
the daily time scale, the simulated stream flow is in agreement with the observed hydrograph

(a)

Time Series (day)
2005/1/1  2005/3/1  2005/5/1  2005/7/1  2005/9/1  2005/11/1  

R
un

of
f 

(m
m

)

0

5

10

15

20

25

30

Pr
ec

ip
it

at
io

n 
(m

m
)

0

50

100

150

200

250

300

95% confidence Interval
XAJ mean
Observed runoff
3B42V7 Precipitation

(b)

Time Series (day)
2008/1/1  2008/3/1  2008/5/1  2008/7/1  2008/9/1  2008/11/1  

R
un

of
f 

(m
m

)

0

5

10

15

20

25

30

Pr
ec

ip
it

at
io

n 
(m

m
)

0

50

100

150

200

250

300

95% confidence Interval
XAJ mean
Observed runoff
3B42V7 Precipitation

Time series (m)
2003/1  2004/1  2005/1  2006/1  2007/1  2008/1  2009/1  

R
un

of
f 

(m
m

)

0

80

160

240

320

400
95% confidence interval
XAJ mean
Observed runoff

(c)

Fig. 3 XAJ model simulated runoff and calculated 95 % confidence interval based on the 3B42V7 data as input:
(a) daily CP time series, (b) daily VP time series and (c) monthly time series
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to a certain extent, but has not captured some flood events, thus resulting in a low NSCE value.
The 3B42V7 slightly underestimated rainfall (BIAS are−6.28 % and−7.02 % for the calibra-
tion and validation periods, respectively), but simulated stream flow also exhibited a certain
negative BIAS. The calculated 95 % confidence interval contains more than 60 % of the
observed hydrograph. At the monthly time scale, the simulated stream flow agrees well with
the observed hydrograph, and it can characterize the seasonal and annual characteristics of the
runoff. The calculated 95 % confidence interval contains most (more than 80 %) of the
observed hydrograph.

4.2 Streamflow Simulation from 3B42RT, PERSIAN, and CMORPH

For the three real-time satellite precipitation products, we adopt the three different cases
described in Section 3.1 for the stream flow simulation. Figures 4, 5, and 6 compare the
BMA-combined 10,000 stream flow mean value series and calculated 95 % confidence
interval with the observed hydrograph at the daily and monthly time scales in three different
simulation cases. In case 1, the raw 3B42RT, PERSIAN, and CMORPH data were used as
model input, and the simulated stream flow shows large underestimation compared with the
observed hydrograph. The biases of the three real-time satellite precipitation products should
thus be adjusted. Therefore, in cases 2 and 3, a simple precipitation error multiplier and a
statistic precipitation error model were introduced to adjust the bias of the three real-time
satellite precipitation products and to perform the input uncertainty analysis. The results show
a significant improvement in the precision of the stream flow simulated from cases 2 and 3
compared with case 1, and the calculated 95 % confidence intervals contain most of the
observed hydrograph.

Table 1 shows the statistical measures of the simulated stream flow of the three real-time
satellite precipitation products and the BMA-combined stream flow during the calibration and
validation periods. In case 1, the BMA-combined stream flow has low NSCE, large negative
BIAS, and large RMSE for both the daily and monthly time scales, which denotes that the
BMA-combined stream flow fits poorly with the observed hydrograph. The daily NSCE,
BIAS and RMSE values of the case 1 BMA-combined stream flow are 0.16 (0.17),−56.42 %
(−69.75 %) and 0.93 mm (1.31 mm) for the calibration (validation) period, respectively. In
cases 2 and 3, the NSCE, BIAS, and RMSE values all exhibited significant improvement for
both the daily and monthly time scales. The daily NSCE, BIAS and RMSE values of the case 2
BMA-combined stream flow are 0.50 (0.53), 4.78 % (1.71 %) and 0.72 mm (0.98 mm) for the
calibration (validation) period, respectively. And the daily NSCE, BIAS and RMSE values of
the case 3 BMA-combined stream flow are 0.58 (0.54), 0.29 % (−10.48 %) and 0.66 mm
(0.98 mm) for the calibration (validation) period, respectively. Furthermore, comparing the
statistical measures of the simulated stream flow of each satellite precipitation product with the
results of BMA-combined stream flow, we find that in the calibration period, the BMA
combination in cases 2 and 3 improve the precision of the stream flow in terms of the highest
NSCE, smaller BIAS, and the smallest RMSE, whereas the BMA combinations in case 1 do
not improve the precision of the stream flow owing to the weak stream flow simulation
capability of PERSIAN. In the validation period, the BMA combinations in cases 2 and 3
improve the precision of the stream flow in terms of the highest NSCE and smaller BIAS and
RMSE, whereas the BMA combinations in case 1 are similar to the result in the calibration
period.

Table 2 shows the statistical measures of the three real-time satellite precipitation products
simulated uncertainty boundary and BMA combination-calculated uncertainty boundary dur-
ing the calibration and validation periods. The comparison results are similar to the precision
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analysis of the stream flow. In case 1, the BMA combination-calculated 95 % confidence
interval has low CR as well as large B and D for both the daily and monthly time scales, which
denotes that the calculated confidence interval has weakly capability to capture the observed
hydrograph. The daily CR, B and D values of the case 1 BMA combination-calculated 95 %
confidence interval are 31.48 % (14.87 %), 1.31 mm (1.13 mm) and 1.24 mm (1.62 mm) for
the calibration (validation) period, respectively. In cases 2 and 3, the CR, B, and D values all
exhibited significant improvement for both the daily and monthly time scales. The daily CR, B
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Fig. 4 XAJ model simulated runoff and calculated 95 % confidence interval based on the three real-time satellite
precipitation data as input in case 1: a daily CP time series, b daily VP time series and c monthly time series
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and D values of the case 2 BMA combination-calculated 95 % confidence interval are
65.33 % (64.87 %), 2.55 mm (2.87 mm) and 1.05 mm (1.33 mm) for the calibration
(validation) period, respectively. And the daily CR, B and D values of the case 3 BMA
combination-calculated 95 % confidence interval are 72.90 % (75.55 %), 2.12 mm
(2.21 mm) and 0.86 mm (1.06 mm) for the calibration (validation) period, respectively.
Moreover, a comparison of the statistical measures of each satellite precipitation-
simulated 95 % confidence intervals with the results of BMA-combined 95 % confidence
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Fig. 5 XAJ model simulated runoff and calculated 95 % confidence interval based on the three real-time satellite
precipitation data as input in case 2: a daily CP time series, b daily VP time series and c monthly time series
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intervals denotes that the BMA combination can generate more skillful and reliable
uncertainty boundaries than that of each satellite precipitation simulation. However, what
should be noted is that the enhanced performance in the higher CR comes at the cost of a
significant increase in B.

Tables 1 and 2 also display that the primarily MW-based products 3B42RT and CMORPH
exhibited relatively better stream flow simulation performance than that of the primarily IR-
based product PERSIAN in Mishui basin.
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Fig. 6 XAJ model simulated runoff and calculated 95 % confidence interval based on the three real-time satellite
precipitation data as input in case 3: a daily CP time series, b daily VP time series and c monthly time series
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4.3 Comparison of the Simulation Results

Figure 7 shows the comparison of the performance statistics of the BMA-combined three real-
time satellite precipitation product simulations with the rain gauge data and 3B42V7 simula-
tions as well as the selected indexes, including the NSCE, BIAS, and CR. By introducing a
precipitation error multiplier (case 2) and a precipitation error model (case 3), recalibrated
model parameters, and BMA-combined satellite precipitation product-based simulations, the
precision of the simulated stream flow and the reliability of the uncertainty boundary exhibited
significant improvement. At the daily time scale, the NSCE, BIAS, and CR values of
simulations of cases 2 and case 3 are comparable with the results of 3B42V7 simulation.
However, the precision of the satellite precipitation data-simulated stream flow is still weaker

Table 1 Statistical measures of the three real-time satellite precipitation products simulated streamflow at three
different cases

Inputs Case 1 Case 2 Case 3

NSCE BIAS
(%)

RMSE
(mm)

NSCE BIAS
(%)

RMSE
(mm)

NSCE BIAS
(%)

RMSE
(mm)

CP 3B42RT 0.11 -58.89 0.96 0.45 1.52 0.75 0.53 -3.90 0.70

PERSIANN -0.33 -80.21 1.17 0.39 -1.61 0.80 0.48 -0.58 0.74

CMORPH 0.24 -48.66 0.89 0.40 14.13 0.79 0.54 5.26 0.69

BMA (d) 0.16 -56.42 0.93 0.50 4.78 0.72 0.58 0.29 0.66

BMA (m) -0.29 -56.42 47.83 0.64 4.78 25.20 0.74 0.29 21.32

VP 3B42RT 0.20 -65.68 1.28 0.53 1.32 0.98 0.54 -12.19 0.98

PERSIANN -0.12 -83.01 1.52 0.35 10.64 1.16 0.37 -6.50 1.36

CMORPH 0.17 -70.88 1.30 0.53 -6.42 0.99 0.52 -12.60 0.99

BMA (d) 0.17 -69.75 1.31 0.53 1.71 0.98 0.54 -10.48 0.98

BMA (m) -0.30 -69.75 65.78 0.75 1.71 28.99 0.73 -10.48 29.90

Table 2 Statistical measures of the three real-time satellite precipitation products calculated uncertainty bound-
ary at three different cases

Inputs Case 1 Case 2 Case 1

CR% B (mm) D (mm) CR% B (mm) D (mm) CR% B (mm) D (mm)

CP 3B42RT 21.99 0.83 1.24 55.02 1.90 1.02 54.74 1.36 0.88

PERSIANN 7.30 0.54 1.63 51.28 1.65 1.03 54.20 1.18 0.89

CMORPH 30.57 1.01 1.16 51.64 2.19 1.18 50.64 1.69 0.96

BMA (d) 31.48 1.31 1.24 65.33 2.55 1.05 72.90 2.12 0.86

BMA (m) 25.00 39.83 35.49 83.33 77.64 21.76 86.11 64.54 17.99

VP 3B42RT 16.51 0.92 1.51 57.39 2.20 1.25 65.05 1.53 1.00

PERSIANN 8.30 0.62 1.91 43.34 2.20 1.60 54.74 1.36 1.27

CMORPH 10.77 0.86 1.62 55.20 2.02 1.21 63.69 1.60 1.02

BMA (d) 14.87 1.13 1.62 64.87 2.87 1.33 75.55 2.21 1.06

BMA (m) 8.33 34.48 48.58 83.33 87.31 23.48 86.11 67.29 21.67
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than the rain gauge data simulation. The accuracy of the satellite precipitation products at the
daily time scale is unsatisfactory with further room for improvement. At the monthly time
scale, the NSCE, BIAS, and CR values of simulations for cases 2 and 3 are comparable with
the rain gauge data simulation, with an acceptable precision.

Figure 8 compares the actual evapotranspiration (AET), soil moisture (SM) and runoff
calculated from the three real-time satellite precipitation products with the results sim-
ulated from the rain gauge data and 3B42V7, and the figure also gives the observed
runoff value. In case 1, for the three real-time satellite precipitation products exhibit a
large underestimation of rainfall, and the model parameters were calibrated based on the
rain gauge data as input, the simulated AET, SM and runoff are both smaller than the
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product simulations with the gauge and 3B42V7 simulations
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simulations from the rain gauge data and 3B42V7. In cases 2 and 3, the biases of the
three real-time satellite precipitation products were adjusted by using a precipitation error
multiplier and a precipitation error model, respectively, and the model parameters were
recalibrated with each of the bias-adjusted satellite precipitation products as input, the
simulated AET, SM and runoff are comparable with the simulations from the rain gauge
data and 3B42V7. The bias adjustment, uncertainty analysis, and BMA combination
method facilitate the application of 3B42RT, PERSIAN, and CMORPH to practical
applications and scientific research in such areas as water balance estimation and water
resource evaluation.
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Fig. 8 Comparison of the AET, SM and runoff calculated from the three real-time satellite precipitation products
with the results simulated from the rain gauge data and 3B42V7
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5 Conclusions

Satellite precipitation products provide a new kind of input data for various hydrological
models and are very important for regional and global hydrological applications, particularly
for remote regions and developing countries. However, the uncertainty of currently available
satellite precipitation products remains unclear, particularly for the real-time pure satellite data.
Therefore, adjusting the bias of satellite precipitation products is a key step to improve their
hydrological simulation utility. Furthermore, to utilize the multi-satellite precipitation products
fully is another approach to achieve more reliable hydrological simulation. This study pre-
sented an integrated framework to first adjust the bias of the three real-time satellite precip-
itation products (i.e., 3B42RT, PERSIAN, and CMORPH) and then to perform ensemble
stream flow simulation with the XAJ model and SCEM-UA algorithm in the middle-latitude
Mishui basin in South China. The combined results from the three real-time pure satellite
precipitation products were compared with the rain gauge data simulation and the 3B42V7
simulation results to verify the effectiveness of the proposed method. The main conclusions
were drawn as follows.

The research version satellite precipitation product, i.e., 3B42V7, exhibited good perfor-
mance in stream flow simulation. The calculated 95 % confidence interval contains most of the
observed hydrograph. However, some minimum and maximum values run out of the interval
at the daily time scale. 3B42V7 can be used for hydrological forecast and water resource
estimation in ungauged and data-scarce basins. The three real-time satellite precipitation
products exhibited large negative biases in terms of rainfall intensity amount. The rainfall
biases directly translate to negative biases in the simulated streamflow. Therefore directly using
the three real-time satellite precipitation products for streamflow simulation is not meaningful.
By introducing a precipitation error multiplier and a precipitation error model to adjust the
biases and by recalibrating the model parameters, the behavior of the simulated streamflow and
calculated uncertainty boundary of the three real-time satellite precipitation products were
significantly improved. The precipitation error multiplier method is robustly simple and easy
to apply. The precipitation error model method requires the use of rain gauge data to calibrate
model parameters. Thus, the method has some limitations in practical applications. Comparing
the precision performance of the two error correction methods, the precipitation error model
method is slightly better than precipitation error multiplier method. Finally, the BMA combi-
nation of the simulations from the three real-time satellite precipitation products can generate a
significantly improved prediction and a remarkably more reliable uncertainty boundary. The
proposed methodology of bias adjustment, uncertainty analysis, and BMA combination
collectively facilitates the application of the real-time 3B42RT, PERSIANN, and CMORPH
data to hydrological prediction, water balance estimation, and water resource evaluation over
ungauged and data-scarce basins. This research is also an investigation on the hydrological
utility of use of multi-satellite precipitation product input ensembles for hydrological simula-
tion, which is potentially applicable to other regions and can integrate additional more satellite
precipitation data when the Global Precipitation Measuring mission with 9-satellite constella-
tion is anticipated in 2014.
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