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Abstract For calibrating the conceptual hydrological models (CHM), the traditional calibra-
tion method with a single objective cannot properly measure all the behaviors of the hydro-
logical system. To obtain a successful parameters calibration, in this paper, we propose a multi-
objective cultural self-adaptive electromagnetism-like mechanism (MOCSEM) algorithm,
which is first implemented in solving the parameters calibration problem of CHM. In this
algorithm, a self-adaptive parameter is applied in local search operation for adjusting the
values of parameters dynamically. Meanwhile, cultural algorithm (CA) is adopted to keep a
good diversity and uniformity of Pareto-optimal solutions (POS). MOCSEM is tested, firstly,
by several benchmark test problems. After achieving satisfactory performance on the test
problems, a case study is implemented for parameter calibration of a CHM by comparing the
properties of POS obtained by the MOCSEM and other methods. Finally, when the optimi-
zation problem quickly becomes a decision-making problem because of the multiple objec-
tives in CHM, fuzzy technique for order preference by similarity to an ideal solution method
has been used to rank the POS and select the optimal scheme. The results show that the
MOCSEM algorithm can provide high-accuracy parameters of CHM on various decision-
making scenarios.

Keywords Parameters calibration . Conceptual hydrological models . Multi-objective cultural
self-adaptive electromagnetism-likemechanism . Decision-making problem

1 Introduction

There are a lot of parameters in the conceptual hydrological models (CHM), and parameters
value will influence the forecast effect directly. Manual parameters calibration of CHM

Water Resour Manage (2014) 28:767–783
DOI 10.1007/s11269-014-0514-5

J. Zhou : S. Ouyang (*) : X. Wang : L. Ye
School of Hydropower and Information Engineering, Huazhong University of Science and Technology,
Wuhan 430074, People’s Republic of China
e-mail: Shuo_Ouyang@126.com

H. Wang
China Institute of Water Resources & Hydropower Research, Beijing 100044, People’s Republic of China



requires great experience and time of the operator. The development of computer skills during
the last decades has contributed to implementation of the automatic calibration (Dakhlaoui
et al. 2012). Most parameters of CHM have clear physics meaning, which, in principle, can
directly determinate the values of parameters. However, due to the lack of measurement and
experiment of all facts in the process of rainfall-runoff formation, in reality, we can merely
deduce the parameter value by system identification methods. The definition of the value still
faces great difficulties because of the huge amount of parameters while little information. In
practice, we usually work it out by concept analysis, which means we can get the preliminary
range of the values according to measurement and physics meaning, then input them and gain
the output through model calculation, compare the output progress with the measurement and
optimize it to decide the optimal value of the parameters under specific condition.

Traditional calibration of CHMmainly is done by considering single objective. The optimal
methods include the Rosenbrock’s method (Rosenbrock 1960), shuffled complex evolution
(SCE-UA) algorithm (Wang et al. 2013), genetic algorithm (GA) (Sahay 2012), particle swarm
optimization (PSO) (Afshar et al. 2013), and so on. However, the engineering practice shows
that the traditional calibration scheme is hard to reflect the dynamic behavior characteristics of
the hydrologic system because the parameter optimization calibration only considers one
aspect of the features of hydrological process (Vrugt et al. 2003a). Therefore, it is necessary
to develop the multi-objective model calibration of CHM so that different aspects of the
system characteristics can take a full consideration. Multi-objective optimization method will
produce a series of optimization schemes, which will not only allow an analysis of the trade-
offs among the different objective functions but also enable hydrologists to better understand
the limitations of current hydrologic model structure.

In recent years, researchers have begun to apply multi-objective evolutionary algorithms to
multi-objective model calibration problems and achieved various degrees of success. Yapo
et al. (1998) demonstrated that the multi-objective calibration approach is practical and
relatively simple to implement and can help to better understand the different aspects of
CHM, see also Cheng et al. (2002); Deckers et al. (2010); Dumedah et al. (2010); Dumedah
(2012); Boyle et al. (2013). However, the optimization problem quickly becomes a decision-
making problem because the multi-objective functions have been incorporated in CHM, and
the users of hydrological model calibration have to face the task of selecting a set of suitable
model parameters from the numerous Pareto-optimal sets (Khu and Madsen 2005).

In this paper, we propose a multi-objective cultural self-adaptive electromagnetism-like
Mechanism (MOCSEM), which is an improvement over the Electromagnetism-like Mecha-
nism (EM) algorithm. EM algorithm is proposed by Birbil and Fang (2003) and has been
proven to be a flexible and effective global optimization algorithm for solving various
optimization problems successfully (Chang et al. 2009; Wei et al. 2012). The method is first
implemented in solving CHM problem. In MOCSEM, a self-adaptive parameter is applied in
local search operation for adjusting the values of parameters dynamically to help the proposed
method escape from local Pareto optimal front. In addition, cultural algorithm (CA) is adopted
to keep a good diversity and uniformity of Pareto-optimal solutions (POS). MOCSEM is
tested, firstly, by several benchmark test problems and compared with some previous research.
After that, a case study is implemented for parameter calibration of a CHM by comparing the
properties of POS obtained by MOCSEM method and those of the state-of-art algorithm
SPEA2 (Zitzler et al. 2001), MOSCEM-UA (Vrugt et al. 2003a), and MOSCDE (Guo et al.
2013). Finally, the Fuzzy Technique for Order Preference by Similarity to an Ideal Solution
(fuzzy TOPSIS) method has been used to rank the POS and select the optimal scheme.

This paper is organized as follows: Section 2 we briefly describe the CA scheme, detail the
procedure of MOCSEM and fuzzy TOPSIS method. Section 3 introduces the multi-objective

768 J. Zhou et al.



parameter calibration; in Section 4, the performance of the MOCSEM is first tested, and
the computational results of a practical CHM problem are shown; while conclusions are made
in Section 5.

2 Methodology

2.1 Framework of Cultural Algorithm (CA)

Cultural algorithm (CA), proposed by Reynolds in 1994, is a computational model inspired by
the principle of cultural evolution that exceeds the rate of biological evolution based upon a
process of dual inheritance (Reynolds 1994). The cultural evolution consists of three major
processes: individuals’ evolution in the population space, macro-evolutionary in the belief
space and the communication between the population space and belief space. In CA, population
space consists of a set of individuals, one of which corresponds to a solution of the problem, and
it can be optimized by using any population-based algorithm, such as genetic algorithms
(Reynolds 1994), differential evolution (Qin et al. 2010), particle swarm optimization (Zhang
et al. 2012). As the evolutionary process unfolds, the belief space is a collectively information
library where the knowledge acquired from individuals is stored. To communicate knowledge
throughout the two spaces, a communication channel is established. In belief space, the function
update() is the function to refine population experience by classifying the belief space. The
belief space is established by using the function accept() to collect the population experience
from the top individuals of the population space. In turn, the cultural knowledge controls the
evolution of the population by a function influence() to improve the algorithm’s searching
efficiency. The function objective() is used to evaluate the fitness of every individual and the
function select() selects the individuals for next generation evolved by function generate(). The
framework of cultural algorithm is illustrated by (Qin et al. 2010).

2.2 Electromagnetism-Like Mechanism (EM) Algorithm

EM algorithm is a population-based stochastic algorithm which is quite simple, strong robust,
significantly fast and effective. EM originates from the electromagnetism theory of physics by
considering each sample point as a charged particle spread around the solution space (Tsou and
Kao 2008). The fundamental procedures of EM include initialization of population, local
search, calculation of total force, and movement of particles. The basic strategy of EM is
detailed by Birbil and Fang (2003).

2.3 MOCSEM

As mentioned earlier, EM is primordially proposed for solving a single objective optimization
problem. Thus, EM needs to make some modifications of its operations for dealing with multi-
objective problems (MOP). Hence, in MOCSEM, we mainly focus on the preservation of
POS, the modification of EM’s operations and avoiding premature convergence effectively to
try to achieve a successful application in dealing with MOP.

2.3.1 Knowledge Structures Defined in Belief Space

In Cultural Algorithm framework, There are at least five basic categories of cultural knowledge
such as situational, normative, history or temporal, domain and topographic knowledge
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(Saleem 2001). In MOCSEM, we redefine three knowledge structures (Situational Knowledge,
Normative Knowledge and History Knowledge). These knowledge structures are introduced
as follows:

(1) Situational Knowledge
Situational knowledge is composed of outstanding individuals along the population

evolution process. These individuals are nearest to the true Pareto optimal front of multi-
objective optimization. The structure of the redesigned situational knowledge is
[P1,…,Pi,…,PNQ]. Pi is an outstanding Pareto solution; i is the index of the generation,
and NQ is the size of situational knowledge.

Because of the limitation of computation source, the size NQ of situational knowledge
is usually a constant. Crowding distance, which was introduced by Deb et al. (2002) is
often used to calculate the sharing fitness of POS. Moreover, the following updating
strategy is implemented to maintain the size of situational knowledge while keeping POS
spreading uniformly: (1) if situational knowledge is empty, Pi will be joined in situational
knowledge directly; (2) if Pi is not dominated by any individual in situational knowledge,
the individuals dominated by Pi are deleted, and Pi will be joined in situational knowl-
edge; (3) if the number of POS is greater than NQ, the cut operation is executed to reject
redundant individuals according to the crowding distance.

(2) Normative Knowledge
Normative knowledge saves the feasible region of decision variables on each dimen-

sion where POS have been found. The structure of normative knowledge is
[L1,…,Li,…,LNQ; U1,…,Ui,…,UNQ]. Lj and Uj are the minimum and maximum values
on the i-th dimension of the individuals. When the boundary is acquired from situational
knowledge, normative knowledge needs to be reformed as the situational knowledge has
changed. The upper and lower limits of individuals in new situational knowledge are
introduced as new normative knowledge. When the original variables’ boundaries are
replaced by normative knowledge, the searching direction may be directed toward the
optimization direction. The strategy can be shown as follow:

X i
k ¼ Lk ; if X i

k≺Lk
Uk ; if X i

k≻Uk
k ¼ 1; 2;⋯;Dð Þ

�
ð1Þ

Where D is the dimensionality of decision variable X i; X i
k denotes the k-th of the X i;

Uk and Lk are the upper and lower bound of X i
k, respectively.

(3) History Knowledge
This knowledge source is used to monitor searching process of evolution algorithm

and keep the distribution characteristics of decision variables. The structure of history
knowledge is [S1,…,Si,…,SNQ]. Si is a convergence performance metric, which evaluates
convergence of current POS to a reference set. We calculate Sk as follow:

Sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NQ

X
i¼1

NQ X i
k−X k

Uk−Lk

 !2
vuut ð2Þ

Where X k is the average value of the k-th dimension variables. For updating the
history knowledge, Sk of k-th dimensions in situational knowledge is recalculated when
situational knowledge and normative knowledge are evolved.
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2.3.2 Modification of EM Operators

(1) Local search

The procedure of local search is going to move the points of solutions toward the local
minimums that are near them. The method used in this procedure is very simple. In this paper,
a novel self-adaptive mechanism is added to the local search operation, which improves the
accuracy of solution and avoids the premature convergence. The modification of this step
revises the evolution step of EM, as follow:

X i
k ¼ X i

k þ λ⋅decaypara gð Þ⋅ max Uk − Lkð Þð Þ if rndðÞ > 0:5
X i

k−λ⋅decaypara gð Þ⋅ max Uk − Lkð Þð Þ otherwise

�
ð3Þ

Where δ is local search parameter; λ is a uniform distributed random parameter; rnd() is a
uniform random number between [0, 1]; decaypara(g) is the g-th self-adaptive function; g is
the index of the generation:

decaypara gð Þ ¼ δ ⋅exp − α⋅count ⋅g=Gð Þ if count > r
δ ⋅exp − g=Gð Þ otherwise

�
ð4Þ

Where G denotes the total evolution number; α is the self-adaptive parameter; count and r
are the number and threshold value of stagnation, respectively.

(2) Calculation of total force

In general, MOP don’t have a single solution that could optimize all objectives simulta-
neously. To solve this problem, the calculation for the charge qi of i-th particle is revised by
Tsou and Kao (2008). The technology determines qi of X i by its minimum distance to the non-
dominated front:

qi ¼ exp −D
Aprox X ið Þ− Aprox X best

� �
X
k¼1

N

Aprox X k
� �

− Aprox X best
� �� �

0
BBBB@

1
CCCCA;∀i ð5Þ

Where Aprox(Xi) is the minimum distance of Xi from belief space; Xbest is the nearest one to
the belief space, as follows:

Aprox X i
� � ¼ min

Y∈Qset
f X i
� �

− f Yð Þ�� ��� � ð6Þ

X best ¼ arg min Aprox X i
� �� �

; i ¼ 1; 2;…;N ð7Þ

Where f (X i) is the objective function value of X i. The dominance relationship
of two particles can be judging by the distance of Xi to belief space: (1) if
Aprox(X j) <Aprox(X i), X i is attracted by X j; (2) if Aprox(X j) >Aprox(X i), the
relationship change. The function for calculate total force Fi is modified to the
following equation.
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Fi ¼
X
j≠i

N X j−X i
� � qiq j

X j−X i
�� ��2 if Aprox X j

� �
< Aprox X i

� �
X i−X j
� � qiq j

X j−X i
�� ��2 if Aprox X j

� �
> Aprox X i

� �
8>>><
>>>:

9>>>=
>>>;;∀i ð8Þ

2.3.3 Procedures of MOCSEM

The flow chart of MOCSEM is shown as Fig. 1.

2.4 Fuzzy Technique for Order Preference by Similarity to an Ideal Solution (Fuzzy TOPSIS)

For selecting a set of suitable model parameters from Pareto-optimal sets, fuzzy TOPSIS
(Baykasoglu et al. 2013) method has been implemented to sort the schemes of solution set.
TOPSIS, proposed by (Hwang and Yoon 1981), is an ordering method according to proximity
of evaluation objects and idealized goal. There are two types of ideal solutions, the positive
ideal solution (or optimal solution) and negative ideal solution (or worst solution). The chosen
one of the evaluation objects should be the nearest to positive ideal solution and is far away
from negative ideal solution. To adapt the fuzzy set, Hausdorff distance (Rucklidge 1997) is
used to measure the proximity of the evaluation objects to the idealized goal. The detailed steps
of fuzzy TOPSIS are as follows:

Step1 Synthesize attribute weights eω to decision matrix eR , and structure weight
normalized matrix.

eD ¼ eω⊗eR ¼

ed11 ed12 ⋯ ed1ned21 ed21 ⋯ed2n
⋮ ⋮ ⋮ ⋮edm1 edm2 ⋯edmn

2
66664

3
77775 ; edij ¼eω jerij ð9Þ

Where erij is j-th attribute value of i-th solution; edij is the normalized
value of i-th solution on j-th attribute; eω j is weight value of i-th attribute.

Step2 Determine the fuzzy ideal solution and fuzzy negative ideal solution by using fuzzy
maximum set and fuzzy minimum set.

Fuzzy ideal solution eCþ and fuzzy negative ideal solution eC − are defined as follows:

eCþ
¼ eCþ

1 ;
eCþ
2 ;⋯; eCþ

n

� �
ð10Þ

eC−
¼ eC−

1 ;
eC−

2 ;⋯; eC−

n

	 

ð11Þ

Where eCþ
j is the fuzzy maximum set on the j-th attribute.

eCþ
¼ max

j
edijn o

ð12Þ
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Its subordinating degree function is formulated as:

μþeC xð Þ ¼ sup
x¼max x1;x2⋯xmð Þ

min μed1 j x1ð Þ;μed2 j x2ð Þ;⋯;μedmj xmð Þ
� �

ð13Þ

Where eC−
j is the fuzzy minim set on the j-th attribute.

eC−
¼ min

j
edijn o

ð14Þ
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Fig. 1 The flow chart of MOCSEM
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Its subordinating degree function is formulated as:

μþeC xð Þ ¼ sup
x¼max x1;x2⋯xmð Þ

min μed1 j x1ð Þ;μed2 j x2ð Þ;⋯;μedmj xmð Þ
� �

ð15Þ

Step3 Calculate fuzzy distance scale between eCþ and eC − .

Ai is the i-th alternative in solution set, its Hausdauff distances to eCþ and eC − , edþi
and edi − respectively, are calculated as:

edþi ¼
X
j¼1

n

dλ edij; eCþ
j

� �
¼
X
j¼1

n

∨λ∈ 0;1½ �λ∨ edLij − eCþL

j

����
����; edRij − eCþR

j

����
����

� �
ð16Þ

ed−i ¼
X
j¼1

n

dλ edij; eC−

j

	 

¼
X
j¼1

n

∨λ∈ 0;1½ �λ∨ ed−Lij − eCL

j

����
����; edRij− eC−R

j

����
����

� �
ð17Þ

Step4 The close degree di of alternatives in solution set can be obtained by follow:

di ¼ ed−ied−i þ edþi ð18Þ

Then the schemes of solution set can be descending sorted by the value of their di.

3 Study Area and Hydrologic Model

To implement a multi-objective parameters calibration of CHM, there are many
selections of: a multi-objective algorithm to search the parameter space; a decision-
making method to choose a scheme from solution set; a CHM; a period of historical
data against which to calibrate CHM; multiple objective functions used to represent
different characteristics of the runoff hydrograph and multiple evaluation indexes
introduced to measure the merits of schemes. The multi-objective algorithm and
decision-making optimization method are detailed in the previous section, and the
other selections will appear in the following sections.

3.1 Selections of Study Area and the Data Used

Leaf River, a principal tributary of Pascagoula River, is located at 42°7′35″N and
89°24′11″W (42.126350, −89.402976). Pascagoula River is a river, about 80 miles
long, in southeastern Mississippi in the United States, which flows into Mississippi
Sound of Gulf of Mexico. Leaf River basin, draining an area of about 1,944 km2,
belongs to the typical wet basin. A long series of hydrological data about 11 years
(30 September 1952 to 30 September 1962), which are investigated intensively in
previous studies (Vrugt et al. 2003a, b; Blasone et al. 2008), are used for model
parameter calibration. To eliminate the influence of initial condition, we set a 65-day
warm-up period before the model calibration.
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3.2 Selections of Conceptual Hydrological Model

The hydrological model (HYMOD), a five-parameter conceptual rainfall-runoff model, is used
to illustrate the advantage of MOCSEM algorithm for multi-objective parameter calibration. In
a catchment, the five parameters of HYMOD include maximum storage capacity Cmax, degree
of spatial variability of soil moisture capacity bexp, factor distributing the flow between the two
series of reservoirs Alpha, and residence times of the linear quick and slow response reservoirs
Rq and Rs, respectively. This five parameters is the decision variable of multi-objective
parameters calibration. HYMOD consists of a simple rainfall excess model and two series
of linear reservoirs: three identical reservoirs for quick flow response and a single reservoir for
slow flow response. This model, described in detail by Moore (1985), and recently used by
Guo et al. (2013).

3.3 Selections of the Objective Functions

In general terms, to simulate the hydrological behavior of the catchment as closely as
possible, different characteristics of the runoff hydrograph should be considered in a
multi-objective framework. The following objective functions, mean squared logarith-
mic error (MSLE) (Hogue et al. 2000; Guo et al. 2013) and mean fourth-power error
(M4E) (de Vos and Rientjes 2008), are selected during the optimization process for
HYMOD model:

MSLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

X
t¼1

T

logQt;sim− logQt;obs

� �2vuut ð19Þ

M4E ¼ 1

T

X
t¼1

T

Qt;sim−Qt;obs

� �4 ð20Þ

Q ¼ HYMOD Cmax; bexp;Alpha;Rq;Rs

� � ð21Þ

Where T is the number of the samples; Qt,sim and Qt,obs are the simulated and observed
runoff value of t-th sample, respectively; the range of Cmax, bexp, Alpha, Rq and Rs are
[1.0,500.0], [0.1,2.0], [0.1,0.99], [0, 0.1], [0.1,0.99].

Because of the logarithmic transformation, MSLE function emphasizes fitting of low flows.
M4E function pays more emphasizes on high flows events. It means trade-offs exist between
MSLE and M4E. Therefore, MSLE and M4E are adopted as the objective functions for the
multi-objective parameter optimization of a hydrological model.

3.4 Selections of the Multiple Evaluation Indexes

In this respect, selections of multiple evaluation indexes are intended to measure the
solution quality. In order to obtain an optimal scheme, it is significative to formulate
the multiple evaluation indexes that reflect different characteristics of Leaf River. The
following four evaluation indexes (MSLE, M4E, coefficient of determination (R2) and
qualified rate (QR)) are used here for this study. MSLE and M4E are appeared in the
previous section.
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R2, another index of how well parameters calibration using MOCSEM, is computed as:

R2 ¼ 1−
Dos

Dom
¼ 1−

X
t

T

Qt;obs−Qt;sim

� �2
X
t

T

Qt;obs−Qave
t;obs

	 
2 ð22Þ

Dos is the deviations of observations from forecasted runoff values; Dom means the
deviations of observations from their mean values.

QR, the fourth index, is formulated as follow:

QR ¼ M

T
� 100% ð23Þ

M said the number of the eligible sample, whose relative error of runoff is less than 20 %.

4 Result and Decision Analysis

4.1 Numerical Simulation

4.1.1 Test Functions and Performance Measures

In this paper, the optimization performance of MOCSEM is measured by adopting four well
known test functions (denotes as ZDT2, ZDT3, ZDT4 and ZDT6) of the Zitzler–Deb–Thiele
(ZDT) series. It is different to the main properties of their true optimal Pareto fronts, and the
true fronts of these functions are known. These advantages for testing the optimization ability
of MOCSEM are expatiated by Deb et al. (2002).

Generally, there are two types of measures in multi-objective optimization: con-
vergence measure and diversity measure, for verifying the performance of multi-
objective optimization algorithms. This paper applies two widely used measures:
Convergence metric CM and Diversity metric DM (Deb et al. 2002), and their
expressions are as follows:

CM ¼
Xn

i¼1
Di

.
n ð24Þ

DM ¼
d f þ dl þ

Xn−1

i¼1
di − davej j

d f þ dl þ n − 1ð Þdave ð25Þ

where n is the number of POS, Di is the minimum Euclidean distance between the i-th
optimal solution and its corresponding point in true Pareto optimal front, di is the
Euclidean distance between the i-th and the i+1-th solution, and dave is the average
distance of all di, df and dl are the Euclidean distance between upper and lower
boundary solutions and its corresponding boundary points in true Pareto optimal front.
From the description mentioned above, the desired value for CM is zero, which
means obtained POS coincide with true Pareto optimal front perfectly. Meanwhile, the
obtained POS will distribute equidistantly if the value of DM is zero.
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Fig. 2 Pareto frontiers for ZDT2, ZDT3, ZDT4 and ZDT6

Table 1 Statistics of results on CM and DM

Measures Test functions NSGA-II SPEA2 ADEA MOSCDE MOCSEM

CM ZDT 2 0.072391 0.167620 0.002203 0.000280 0

0.031689 0.000815 0.000297 0.000045 0

ZDT 3 0.114500 0.018409 0.002741 0.000468 0.000154

0.007940 0 0.000120 0.000042 0

ZDT 4 0.513053 4.9271 0.100100 0.000094 0.000084

0.118460 2.703 0.446200 0.000007 0

ZDT6 0.296564 0.232551 0.000624 0.000082 0

0.013135 0.004945 0.000060 0.000006 0

DM ZDT 2 0.430776 0.339450 0.329151 0.097607 0.034171

0.004721 0.001755 0.032408 0.008595 0.000413

ZDT 3 0.738540 0.469100 0.525770 0.125722 0.330506

0.019706 0.005265 0.043030 0.010446 0.002243

ZDT 4 0.702612 0.823900 0.436300 0.091203 0.044314

0.064648 0.002883 0.110000 0.012373 0.000107

ZDT 6 0.668025 1.04422 0.361100 0.073717 0.054237

0.009923 0.158106 0.036100 0.007271 0.000115
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4.1.2 Experimental Results and Comparison

To solve the four test functions, main parameters of MOCSEM are set as follows in this paper:
the population size N=100, the size of belief space NQ=50, the maximum number of
generation G is selected as 2000, the maximum iteration number for local search operation
Lmax is set as 10, threshold value of stagnation r is set as 5, the local area parameter δ=0.1 and
the self-adaptive parameter α is selected as 0.8955. Moreover, trying to prove the optimizing
performance of the proposed MOCSEM, the experimental results of these four test functions
obtained by NSGA-II (Deb et al. 2002), SPEA2 (Zitzler et al. 2001), ADEA (Qian and Li
2008) and MOSCDE (Guo et al. 2013).

Figure 2 and Table 1 show the optimal solutions and its technical indexes, the CM and DM,
obtained by MOCSEM. Meanwhile, the true Pareto optimal fronts of four ZDT test functions
are also displayed in these figures to check the properties of the proposed method. Moreover,
the mean and variance values of the technical indexes, which are acquired averaged over 10
runs by MOCSEM and other comparative algorithms, are displayed in Table 1. Among, the
mean and variance values are shown in upper and lower rows respectively, and the value
which is smaller than 10−6 will be denoted as 0.

From Fig. 2, we can see that the results acquired by MOCSEM are excellent for the four test
problems. Because the results attain the true Pareto optimal front accurately. While the
convergence and distribution performance of results converges well to the true Pareto frontiers
and distributes uniformly.

From Table 1, MOCSEM can achieve better performance than other comparative methods
for these ZDT test problems except ZDT3. About ZDT3, the result of MOCSEM is better than

Fig. 3 The set of non-dominated solutions generated byMOCSEM,MOSCDE, SPEA2 andMOSCEM-UAmethods
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NSGA-II, SPEA2 and ADEA, but the result of MOSCDE is equally good on this problem.
Besides, NSGA-II and SPEA2 may have some difficulties in dealing with ZDT2 and ZDT6
while MOCSEM has much better convergence performance for these two test problems.

All in all, MOCSEM can obtain excellent convergence performance and diversity property
compared to other comparative methods.

4.2 Application to Multi-Objective Parameter Optimization of HYMOD

4.2.1 Parameter Settings of the Algorithms

MOCSEM is implemented to solve the multi-objective parameters calibration problems
of CHM, and parameters settings of MOCSEM are as follows: D=5, Ny=2, N=100,
the size of belief space NQ=30, G is selected as 1000, LocalNum is set as 100, r is
set as 5, δ=0.29 and α is selected as 0.8955. To verify the effectiveness of
MOCSEM, the famous SPEA2, MOSCEM-UA and MOSCDE method is implemented
with solving the same case. The parameter settings of the remnant algorithms are
done according to Guo et al. (2013).

Table 2 Four evaluation indexes value of calibration solutions obtained by MOCSEM

Scheme MLSE M4E R2 QR Scheme MLSE M4E R2 QR

1 0.4288 403.92 0.8182 42.21 % 26 0.4609 310.90 0.8296 40.01 %

2 0.4289 399.64 0.8187 42.29 % 27 0.4629 310.72 0.8297 40.01 %

3 0.4290 390.21 0.8207 42.53 % 28 0.4695 310.55 0.8292 37.83 %

4 0.4291 383.06 0.8213 42.24 % 29 0.4716 310.52 0.8295 36.99 %

5 0.4292 375.11 0.8229 42.13 % 30 0.4756 310.26 0.8293 37.21 %

6 0.4295 369.68 0.8233 42.21 % 31 0.4794 310.09 0.8299 35.92 %

7 0.4297 363.79 0.8239 42.05 % 32 0.4834 309.90 0.8325 36.83 %

8 0.4299 360.26 0.8243 41.81 % 33 0.4837 309.36 0.8314 36.91 %

9 0.4300 355.45 0.8252 41.94 % 34 0.4843 308.53 0.8316 36.86 %

10 0.4305 349.38 0.8267 41.65 % 35 0.4853 307.51 0.8322 36.80 %

11 0.4309 343.32 0.8274 41.86 % 36 0.4859 306.90 0.8322 36.72 %

12 0.4320 335.06 0.8277 41.73 % 37 0.4867 306.21 0.8325 36.29 %

13 0.4327 329.50 0.8291 41.35 % 38 0.4875 305.65 0.8320 36.35 %

14 0.4336 325.83 0.8288 41.03 % 39 0.4884 305.05 0.8330 36.24 %

15 0.4347 322.05 0.8302 41.40 % 40 0.4906 303.93 0.8320 36.19 %

16 0.4355 320.31 0.8298 40.92 % 41 0.4918 303.48 0.8319 36.05 %

17 0.4363 318.55 0.8294 40.54 % 42 0.4931 303.02 0.8323 35.49 %

18 0.4371 316.96 0.8297 40.68 % 43 0.4945 302.64 0.8335 35.49 %

19 0.4383 315.72 0.8296 40.44 % 44 0.4960 302.34 0.8328 35.19 %

20 0.4403 314.32 0.8287 41.08 % 45 0.4980 302.10 0.8338 34.92 %

21 0.4429 313.15 0.8294 41.11 % 46 0.4996 301.87 0.8334 34.73 %

22 0.4464 312.51 0.8290 40.49 % 47 0.5027 301.71 0.8331 34.09 %

23 0.4505 311.91 0.8295 41.78 % 48 0.5036 301.64 0.8330 34.03 %

24 0.4545 311.50 0.8303 40.33 % 49 0.5050 301.59 0.8332 33.79 %

25 0.4571 311.20 0.8303 40.01 % 50 0.5069 301.58 0.8333 33.47 %
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4.2.2 Results and Discussion

In this section, MOCSEM is implemented to solve model parameters calibration problem of
HYMOD. Figure 3 displays the optimal solutions obtained by the algorithms: MOCSEM,
MOSCDE, SPEA2 and MOSCEM-UA.

From Fig. 3, the POS verifies that it is hardly to get an optimal solution for MSLE
and M4E corresponding to the lower and higher runoff respectively. When comparing
Fig. 3, it is obvious that MOCSEM can generate more uniform Pareto solutions than
SPEA2, MOSCEM-UA and MOSCDE. The ranges of the MSLE and M4E obtained
by MOCSEM are [0.4288, 0.5069] and [301.58, 403.92] which is a broader scale than
MOSCDE and other methods. In addition, we can see that although a small part of
the solutions are missed by MOSCEM-UA and SPEA2. The MSLE value of these
solutions is in the range [0.465, 0.480]. This is because the belief space is a
collectively information library where the knowledge acquired from the comprehensive
top individuals of the population space is stored. Moreover, the self-adaptive local
search is used for escaping the local minimums of the problem. In Fig. 3d, we can
infer that M4E reduces faster when the value of MSLE is increasing in the range
from 0.4288, 0.45. While, the value of MSLE mushroom within the range [0.45, 0.50]
as the value of M4E is reducing from 310 to 301.

4.3 Optimal Selection of Calibrated Parameters Schemes

Moreover, to clearly measure the solution quality of runoff forecasting and to further
verify the trade-off relationship between objective functions MSLE and M4E in
parameter calibration of HYMOD, we use fuzzy TOPSIS method in two types of
decision-making scenarios, emphasizing low flows (scenario 1) and emphasizing peak
flows (scenario 2). The above mentioned four evaluation indexes (MSLE, M4E, R2

Table 3 the predilection of experts and weights for the indexes on two decision-making scenarios

Experts
number

Expert
weight

Scenario 1 Scenario 2

MLSE M4E R2 QR MLSE M4E R2 QR

1 0.174 extreme
high

very
low

common Slightly
lower

very
low

extreme
high

common Slightly
lower

2 0.159 very
high

extreme
low

low Slightly
lower

extreme
low

very
high

low Slightly
lower

3 0.145 extreme
high

very
low

low low very
low

extreme
high

low low

4 0.174 very
high

very
low

common Slightly
lower

very
low

very
high

common Slightly
lower

5 0.203 extreme
high

extreme
low

lower low extreme
low

extreme
high

lower low

6 0.145 extreme
high

extreme
low

Slightly
lower

lower extreme
low

extreme
high

Slightly
lower

lower

Specialist weight 0.649 0.067 0.144 0.140 0.085 0.637 0.141 0.137

Objective weight 0.273 0.243 0.243 0.241 0.273 0.243 0.243 0.241

Comprehensive
weight

0.461 0.155 0.1935 0.1905 0.179 0.44 0.192 0.189
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and QR) of calibration solutions obtained by MOCSEM are calculated here and
displayed in the Table 2 for this study. According to two different decisions, various
attributes predilections of the experts are determined to evaluate the importance of
each attribute. Table 3 illuminates the predilection of five specialists for the four
evaluation indexes and specifies the specialist weights, objective weights and com-
prehensive weights of this four indexes on the two decision-making scenarios. Then
the schemes in Table 2 are graded and sorted using fuzzy TOPSIS method. The
sequences are shown in Table 4, and the chosen two schemes are marked by bold in
Table 2. The parameters values (Cmax, bexp, Alpha, Rq, Rs) of this two schemes,
scheme 11 and scheme 45, are (215.4852, 0.2559, 0.7819, 0.0024, 0.4586) and
(210.7721, 0.2235, 0.9900, 0.0000, 0.4700) respectively.

From Table 4, in scenario 1, the evaluation will be more focused on MSLE, the
rank of schemes is generally following the change trend of MSLE. On another hand,
the evaluation optimization is emphasizing M4E to consider peak flows in scenario 2.
The pros and cons of sorting result for schemes are based on the value of M4E.
Except the inclination, the choice of schemes is also influenced by three other
properties. This two scenarios are the extreme situations, and the weights of four
decision index will be changed to adapt to different forecast premises. Besides, to

Table 4 Sequencing optimization
result of scheme set Decision-making scenarios Sequences

Scenario 1 111312151096714……….

31404642444150494748

Scenario 2 454643504923474844……….

10987654321
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Fig. 4 Calibration results of two extreme Pareto solutions for a 300-day portion of the calibration period (21
May 1960 to 16 March 1961)
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specifically display the performance of runoff forecasting of the chosen schemes on
objective functions MSLE and M4E in parameter calibration of HYMOD model, the
calibration results associated with the two solutions are plotted in Fig. 4 for a 300-day
portion of the calibration period (21 May 1960 to 16 March 1961) which contain low
flows period and peak flows period. The Dev value is the difference between runoffs
of scheme 11 minus runoffs of scheme 45.

The above results indicate that expert’s subjective preferences and objective decision-
making information can be embodied in the parameters scheme as well. The parameters
schemes calibrated by purposed method can provide a feasible set of model parameters to
policymakers for different operating situations of CHM.

5 Conclusions

Parameters calibration of hydrological model is one of the most important works in the field of
hydrology. To obtain a successful parameters calibration, in this paper, we propose a multi-
objective cultural self-adaptive electromagnetism-like Mechanism (MOCSEM) algorithm,
which is first implemented in solving the parameters calibration problem of the conceptual
hydrological model (CHM). In this algorithm, a self-adaptive parameter is applied in the local
search operation for adjusting the values of parameters dynamically. Meanwhile, considering
the complicated constraints and objectives of CHM problem, cultural algorithm (CA) is
adopted to keep a good diversity and uniformity of POS. MOCSEM is tested, firstly, by
several benchmark test problems and the results show that MOCSEM algorithm outperforms
other algorithms proposed in previous research. After that, a case study is implemented for
parameters calibration of a CHM by comparing the convergence properties and diversification
of POS obtained by MOCSEM, SPEA2, MOSCEM-UA and MOSCDE method. Finally,
when the optimization problem quickly becomes a decision-making problem because of the
multiple objectives in CHM, fuzzy technique for order preference by similarity to an ideal
solution (fuzzy TOPSIS) method has been used to rank the POS and select the optimal scheme
on decision-making scenarios. It is found that MOCSEM algorithm can provide high-accuracy
parameters of CHM on various decision-making scenarios.

Acknowledgments This work is supported by the National Natural Science Foundation of China (No. 51239004)
and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20100142110012).
Special thanks are given to the anonymous reviewers and editors for their constructive comments.

References

Afshar A, Shojaei N, Sagharjooghifarahani M (2013) Multiobjective calibration of reservoir water quality
modeling using multiobjective particle swarm optimization (MOPSO). Water Resour Manag 27(7):1931–
1947. doi:10.1007/s11269-013-0263-x

Baykasoglu A, Kaplanoglu V, Durmusoglu ZDU, Sahin C (2013) Integrating fuzzy DEMATEL and fuzzy
hierarchical TOPSIS methods for truck selection. Expert Syst Appl 40(3):899–907

Birbil SI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):
263–282. doi:10.1023/a:1022452626305

Blasone R-S, Vrugt JA, Madsen H, Rosbjerg D, Robinson BA, Zyvoloski GA (2008) Generalized likelihood
uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour
31(4):630–648. doi:10.1016/j.advwatres.2007.12.003

Boyle DP, Gupta HV, Sorooshian S (2013) Multicriteria Calibration of Hydrologic Models. In: Calibration of
Watershed Models. American Geophysical Union, pp 185–196. doi:10.1002/9781118665671.ch14

782 J. Zhou et al.

http://dx.doi.org/10.1007/s11269-013-0263-x
http://dx.doi.org/10.1023/a:1022452626305
http://dx.doi.org/10.1016/j.advwatres.2007.12.003


Chang PC, Chen SH, Fan CY (2009) A hybrid electromagnetism-like algorithm for single machine scheduling
problem. Expert Syst Appl 36(2):1259–1267. doi:10.1016/j.eswa.2007.11.050

Cheng CT, Ou CP, Chau KW (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multi-
objective rainfall–runoff model calibration. J Hydrol 268(1–4):72–86. doi:10.1016/S0022-1694(02)00122-1

Dakhlaoui H, Bargaoui Z, Bárdossy A (2012) Toward a more efficient Calibration Schema for HBV rainfall–
runoff model. J Hydrol 444–445(0):161–179. doi:10.1016/j.jhydrol.2012.04.015

de Vos NJ, Rientjes THM (2008) Multiobjective training of artificial neural networks for rainfall-runoff
modeling. Water Resour Res 44(8), W08434. doi:10.1029/2007wr006734

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans Evol Comput 6(2):182–197. doi:10.1109/4235.996017

Deckers DLEH, Booij MJ, Rientjes THM, Krol MS (2010) Catchment variability and parameter estimation in
multi-objective regionalisation of a rainfall–runoff model. Water Resour Manag 24(14):3961–3985

Dumedah G (2012) Formulation of the evolutionary-based data assimilation, and its implementation in hydro-
logical forecasting. Water Resour Manag 26(13):3853–3870. doi:10.1007/s11269-012-0107-0

Dumedah G, Berg A, Wineberg M, Collier R (2010) Selecting model parameter sets from a trade-off surface
generated from the non-dominated sorting genetic algorithm-II. Water Resour Manag 24(15):4469–4489.
doi:10.1007/s11269-010-9668-y

Guo J, Zhou J, Zou Q, Liu Y, Song L (2013) A novel multi-objective shuffled complex differential evolution
algorithm with application to hydrological model parameter optimization. Water Resour Manag 27(8):2923–
2946. doi:10.1007/s11269-013-0324-1

Hogue TS, Sorooshian S, Gupta H, Holz A, Braatz D (2000) A multistep automatic calibration scheme for river
forecasting models. J Hydrometeorol 1(6):524–542. doi:10.1175/1525-7541(2000)001<0524:amacsf>2.0.co;2

Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications a state-of-the-art
survey. Springer, Berlin Heidelberg, pp 12–23

Khu ST, Madsen H (2005) Multiobjective calibration with Pareto preference ordering: an application to rainfall-
runoff model calibration. Water Resour Res 41(3), W03004. doi:10.1029/2004wr003041

Moore RJ (1985) The probability-distributed principle and runoff production at point and basin scales. Hydrol
Sci J 30:273–297

Qian WY, Li A (2008) Adaptive differential evolution algorithm for multiobjective optimization problems. Appl
Math Comput 201(1–2):431–440

Qin H, Zhou JZ, Lu YL, Li YH, Zhang YC (2010) Multi-objective cultured differential evolution for generating
optimal trade-offs in reservoir flood control operation. Water Resour Manag 24(11):2611–2632. doi:10.
1007/s11269-009-9570-7

Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the third annual conference on
evolutionary programming:131–136.

Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3(3):
175–184. doi:10.1093/comjnl/3.3.175

Rucklidge WJ (1997) Efficiently locating objects using the Hausdorff distance. Int J Comput Vis 24(3):251–270
Sahay R (2012) Erratum to: predicting transient storage model parameters of rivers by genetic algorithm. Water

Resour Manag 26(13):3687. doi:10.1007/s11269-012-0123-0
Saleem SM (2001) Knowledge-based solution to dynamic optimization problems using cultural algorithms.

Wayne State University
Tsou CS, Kao CH (2008) Multi-objective inventory control using electromagnetism-like meta-heuristic. Int J

Prod Res 46(14):3859–3874. doi:10.1080/00207540601182278
Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003a) Effective and efficient algorithm for

multiobjective optimization of hydrologic models. Water Resour Res 39(8):1214. doi:10.1029/2002wr001746
Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003b) A shuffled complex evolution metropolis algorithm for

optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201.
doi:10.1029/2002wr001642

Wang F, Saavedra Valeriano O, Sun X (2013) Near real-time optimization of multi-reservoir during flood season
in the Fengman Basin of China. Water Resour Manag 27(12):4315–4335. doi:10.1007/s11269-013-0410-4

Wei N-C, Lin H-K, Wu P (2012) An electromagnetism-like mechanism for solving cell formation problems. Sci
Res Essays 7(9):1022–1034. doi:10.5897/SRE11.967

Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol
204(1–4):83–97. doi:10.1016/S0022-1694(97)00107-8

Zhang R, Zhou JZ, Wang YQ (2012) Multi-objective optimization of hydrothermal energy system considering
economic and environmental aspects. Int J Electr Power Energy Syst 42(1):384–395

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the Strength Pareto Evolutionary Algorithm.
Eidgenössische Technische Hochschule Zürich (ETH). doi:citeulike-article-id:2815762. doi: 10.3929/ethz-
a-004284029

Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making 783

http://dx.doi.org/10.1016/j.eswa.2007.11.050
http://dx.doi.org/10.1016/S0022-1694(02)00122-1
http://dx.doi.org/10.1016/j.jhydrol.2012.04.015
http://dx.doi.org/10.1029/2007wr006734
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/s11269-012-0107-0
http://dx.doi.org/10.1007/s11269-010-9668-y
http://dx.doi.org/10.1007/s11269-013-0324-1
http://dx.doi.org/10.1175/1525-7541(2000)001%3C0524:amacsf%3E2.0.co;2
http://dx.doi.org/10.1029/2004wr003041
http://dx.doi.org/10.1007/s11269-009-9570-7
http://dx.doi.org/10.1007/s11269-009-9570-7
http://dx.doi.org/10.1093/comjnl/3.3.175
http://dx.doi.org/10.1007/s11269-012-0123-0
http://dx.doi.org/10.1080/00207540601182278
http://dx.doi.org/10.1029/2002wr001746
http://dx.doi.org/10.1029/2002wr001642
http://dx.doi.org/10.1007/s11269-013-0410-4
http://dx.doi.org/10.5897/SRE11.967
http://dx.doi.org/10.1016/S0022-1694(97)00107-8
http://dx.doi.org/10.3929/ethz-a-004284029
http://dx.doi.org/10.3929/ethz-a-004284029

	Multi-Objective...
	Abstract
	Introduction
	Methodology
	Framework of Cultural Algorithm (CA)
	Electromagnetism-Like Mechanism (EM) Algorithm
	MOCSEM
	Knowledge Structures Defined in Belief Space
	Modification of EM Operators
	Procedures of MOCSEM

	Fuzzy Technique for Order Preference by Similarity to an Ideal Solution (Fuzzy TOPSIS)

	Study Area and Hydrologic Model
	Selections of Study Area and the Data Used
	Selections of Conceptual Hydrological Model
	Selections of the Objective Functions
	Selections of the Multiple Evaluation Indexes

	Result and Decision Analysis
	Numerical Simulation
	Test Functions and Performance Measures
	Experimental Results and Comparison

	Application to Multi-Objective Parameter Optimization of HYMOD
	Parameter Settings of the Algorithms
	Results and Discussion

	Optimal Selection of Calibrated Parameters Schemes

	Conclusions
	References


