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Abstract Researchers have studied to forecast the streamflow in order to develop the water
usage policy. They have used not only traditional methods, but also computer aided methods.
Some black-box models, like Adaptive Neuro Fuzzy Inference Systems (ANFIS), became
very popular for the hydrologic engineering, because of their rapidity and less variation
requirements. Wavelet Transform has become a useful tool for the analysis of the variations
in time series. In this study, a hybrid model, Wavelet-Neuro Fuzzy (WNF), has been used to
forecast the streamflow data of 5 Flow Observation Stations (FOS), which belong to Sakarya
Basin in Turkey. In order to evaluate the accuracy performance of the model, Auto Regressive
Integrated Moving Average (ARIMA) model has been used with the same data sets. The
comparison has been made by Root Mean Squared Errors (RMSE) of the models. Results
showed that hybrid WNF model forecasts the streamflow more accurately than ARIMA
model.
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1 Introduction

Forecasting of river flows is very important part of water resources management as planning
and operating the future water policy. There are a number of researchers investigating the
streamflow forecast (Sanikhani and Kisi 2012; Kisi 2010; Shiri and Kisi 2010; Adamowski
and Sun 2010). Forecasting with high accuracy is advantageous for water disciplines such as
agriculture and hydropower generation.

Hydrological processes are under too many dynamic effects. It is hard, if not
impossible, to consider all these dynamic effects in analytical studies. Sometimes,
researchers use some black-box models to approach to hydrological problems. Data
based modeling, for hydrological process, has been used widely in recent years
because of its rapidity and less variation requirements. Artificial Intelligence was
mostly considered for hydrological modeling of late years (Baratti et al. 2003;
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Chang and Chen 2001; Chang et al. 2004; Chen et al. 2006; Dawson and Wilby
1998; Dorum et al. 2010; El-Shafie et al. 2007; Grimes et al. 2003; Hasebe and
Nagayama 2002; Kisi et al. 2006; Luk et al. 2000; Toprak and Cigizoglu 2008; Yarar
et al. 2009). Chen et al. (2006) used the adaptive neuro-fuzzy inference system
(ANFIS) for constructing a flood forecast model. The precipitation and flow data sets
of the Choshui River in central Taiwan were analyzed to identify the useful input
variables and then the forecasting model can be self-constructed through ANFIS. For
the purpose of comparison, the commonly used back-propagation neural network
(BPNN) was also examined. The forecast results demonstrate that ANFIS is superior
to the BPNN, and ANFIS can effectively and reliably construct an accurate flood
forecast model. El-Shafie et al. (2007) studied to forecast the inflow for the Nile
River at Aswan High Dam (AHD) on monthly basis using ANFIS and compared to
ANN. It was found that ANFIS model can be beneficial in water management of
Lake Nasser reservoir at AHD. Kisi et al. (2006) studied to estimate suspended
sediment concentration from streamflow with fuzzy logic model and they compared
with rating-curve models. The results showed that the fuzzy model was able to
produce much better results than rating-curve models. Toprak and Cigizoglu (2008)
used three artificial neural network methods, i.e. feed forward back propagation, the
radial basis function neural network, and the generalized regression neural network to
compute the longitudinal dispersion coefficient for the evaluation of its behavior in
predicting dispersion characteristics in natural streams. Yarar et al. (2009) studied to
estimate level changes of Lake Beysehir using adaptive neuro-fuzzy inference system,
artificial neural networks (ANN) and a seasonal autoregressive integrated moving
average (SARIMA) models. They obtained the best results with ANFIS model by
comparing the mean squared errors (MSE) and decisive coefficients (R2).

Wavelet Transform has become a useful tool for the analysis of the variations in time series.
Especially, hybrid models have recently been applied to the hydrological modeling (Smith
et al. 1998; Lane 2007; Adamowski and Sun 2010; Shiri and Kisi 2010; Kisi and Shiri 2011;
Sang 2012; Wei et al. 2012). Smith et al. (1998) used wavelet transform for quantifying
streamflow variability and their results suggest that river flows may be electively classified into
distinct hydroclimatic categories using wavelet transform. Lane (2007) studied wavelet-based
approaches to rainfall-runoff model. Wei et al. (2012) used a wavelet-neural network (WNN)
hybrid modeling approach for the prediction of river discharge using monthly time series data.
Comparison of results from the WNN models with ANN models indicated that WNN models
performed a more accurate prediction.

In this study, it is aimed to investigate the accuracy performance of the combined wavelet-
neuro fuzzy models for forecasting the streamflow data, and it is compared with the accuracy
performance of a time series model which is called Auto Regressive Integrated Moving
Average (ARIMA).

2 Model Description

2.1 Wavelet Analysis

The Wavelet Series is just a sampled version of Continuous Wavelet Transform (CWT) and its
computation may consume significant amount of time and resources, depending on the
resolution required. ψ(t) is the mother wavelet or the basis function (Eq. 1). The Continuous
Wavelet Transform (CWT) is provided by Eq. (2), where f(t) is the signal to be analyzed. All
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the wavelet functions used in the transformation are derived from the mother wavelet through
translation (shifting) and scaling (dilation or compression).

ψa;b tð Þ ¼ 1ffiffiffiffiffiffi
aj jp ψ

t−b
a

� �
ð1Þ

XWT a; bð Þ ¼ 1ffiffiffiffiffiffi
aj jp
Z

f tð Þ:ψ� t−b
a

� �
dt ð2Þ

where ψa,b(t) is the successive wavelet, a is the frequence factor, b is the time factor and ψ* is
the complex conjugate functions of ψ(t).

The Discrete Wavelet Transform (DWT), which is based on sub-band coding, is found to
yield a fast computation of Wavelet Transform. It is easy to implement and reduces the
computation time and resources required. Discrete wavelet transform of f (t) can be written as;

XWT j; kð Þ ¼ 1ffiffiffiffiffiffiffi
a0j j−j

p
Z

f tð Þ:ψ� t

a− j0
−kb0

 !
dt ð3Þ

The most common choice for the parameters a0 and b0 is 2 and 1 time steps,
respectively. This power of two logarithmic scaling of the time and scale is known as
dyadic grid arrangement and is the simplest and the most efficient case for practical
purposes (Mallat 1989).

DWT operates two sets of function viewed as high-pass and low-pass filters. The original
time series is passed through high-pass and low-pass filters and separated at different scales.
The time series is decomposed into one comprising its trend (the approximation) and one
comprising the high frequencies and the fast events (the detail) (Kisi 2009).

2.2 Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Adaptive neuro-fuzzy inference system (ANFIS), first introduced by Jang (1993), is a univer-
sal approximation methodology and, as such, is capable of approximating any real continuous
function on a compact set to any degree of accuracy (Jang et al. 1997). ANFIS is functionally
equivalent to fuzzy inference systems. Specifically, the ANFIS system of interest here is
functionally equivalent to the Sugeno first-order fuzzy model (Jang et al. 1997; Drake
2000). To explain the computations involved, we consider a simple fuzzy inference system
with two inputs x and y, and one output z. A typical rule set for the first order Sugeno-fuzzy
model that includes two fuzzy If-Then rules can be expressed as;

Rule 1: If x is A1 and y is B1, then

f 1 ¼ p1xþ q1yþ r1 ð4Þ
Rule 2: If x is A2 and y is B2, then

f 2 ¼ p2xþ q2yþ r2 ð5Þ

Figure 1 shows the Sugeno fuzzy reasoning system for this Sugeno-fuzzy model, while
Fig. 2 shows the corresponding equivalent ANFIS architecture. Nodes at the same layer have
similar function for this ANFIS structure. The output of the ith node in layer l is specified as
Ol,i. These 5 layers comprising the ANFIS structure are briefly described below:
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Layer 1: Every node i in this layer is an adaptive node, whose output is defined as follows;

Ol;i ¼ μAi xð Þ; for i ¼ 1; 2or
Ol;i ¼ μBi−2 xð Þ; for i ¼ 3; 4

ð6Þ

Where x (or y) is the input to the ith node and Ai (or Bi_2) is a fuzzy label. The
membership functions for A and B can be any membership functions parameterized
appropriately; for instance:

μA xð Þ ¼ 1

1þ x−ci
ai

� �2� �bi ð7Þ

where {ai, bi, ci} is the parameter set. As the values of these parameters change, the
bell-shaped function varies accordingly, thus exhibiting various forms of member-
ship functions on linguistic label Ai. In fact, any continuous and piecewise differ-
entiable functions, such as commonly used triangular-shaped membership func-
tions, are also qualified candidates for node functions in this layer (Jang 1993).

Fig. 1 Two inputs of first-order Sugeno fuzzy model with two rules

Fig. 2 Equivalent ANFIS architecture
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Parameters in this layer are referred to as premise parameters. The outputs of this
layer are the membership values of the premise part.

Layer 2: Each node in this layer, labeled Π, is a stable node which multiplies incoming
signals and sends the product out. For example,

O2;i ¼ wi ¼ μAi xð Þ � μBi yð Þ; i ¼ 1; 2: ð8Þ

The output of each node represents the firing strength of a rule.
Layer 3: Each node in layer 3, denoted as N, is a stable node. The ith node in this layer

calculates the proportion of the ith rule’s firing strength to the sum of firing strength
of all rules.

O3;i ¼ wi ¼ wi

w1 þ w2
; i ¼ 1; 2: ð9Þ

The outputs of this layer are called normalized firing strengths.
Layer 4: Each node in this layer is an adaptive node, whose node function is defined as

follows:

O4;i ¼ wi f i ¼ wi pixþ qiyþ rið Þ ð10Þ

where wi is the output of layer 3, and {pi,qi,ri} is the parameter set. Parameters of
this layer are referred to as consequence or output parameters.

Layer 5: As the last layer, layer 5 includes a stable and single node, labeled asΣ, which sums
up all signals to calculate the total output:

O5;i ¼ Σ
i
wi f i ¼

Σ
i
wi f i
Σ
i
wi

ð11Þ

The above equations describe an adaptive network which is functionally equivalent to a
Sugeno first-order fuzzy inference system. The learning rule specifies how the premise
parameters (layer 1) and consequent parameters (layer 4) should be updated to minimize a
prescribed error measure, E. The error measure is a mathematical expression that measures the
difference between the network’s actual output and the desired output, such as the squared
error. The steepest descent method is used as the basic learning rule of the adaptive network. In
this method, the gradient is derived by repeated application of the chain rule. Calculation of the
gradient in a network structure requires use of the ordered derivative, denoted as ∂+, as
opposed to the ordinary partial derivative ∂. This technique is called the back propagation
rule (Jang 1993; Drake 2000). The core of this learning rule involves how recursively to obtain
a gradient vector in which each element is defined as the derivative of an error measure with
respect to a parameter (Haykin 1998). The update formula for the generic parameter α using
the steepest descent method is:

Δα ¼ − η
∂E
∂α

ð12Þ

where η is the learning rate.
While the back propagation learning rule can be used to identify the parameters in

an adaptive network, this method is often slow to converge. The hybrid learning
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algorithm (Jang 1993), which combines back propagation and the least squares
method, can be used to rapidly train and adapt the equivalent fuzzy inference system.
It can be seen from Fig. 2 that if the premise parameters are fixed, the overall output

Fig. 3 Basins of Turkey

Fig. 4 Sakarya basin
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can be given as a linear combination of the consequent parameters. The output f can
be written as:

f ¼ w1

w1 þ w2
f 1 þ

w2

w1 þ w2
f 2

¼ w1 p1xþ q1yþ r1ð Þ þ w2 p2xþ q2 yþ r2ð Þ

¼ w1x
� �

p1 þ w1y
� �

q1 þ w1

� �
r1 þ w2x

� �
p2 þ w2y

� �
q2 þ w2

� �
r2 ð13Þ

which is linear in the consequent parameters p1, q1, r1, p2, q2, and r2. Consequently,
we define the following parameter sets:

S set of total parameters
S1 set of premise (nonlinear) parameters
S2 set of consequent (linear) parameters.

Table 1 Characteristics of modeling data sets

FOS name (Station number) Flow unit Max. Min. Mean Input data Corelation with streamflow
data (Qt)

Porsuk (1203) m3 60.00 1.10 8.09 D1t-1 0.08

D1t-2 0.11

D2t-1 0.33

D2t-2 0.19

D3t-1 0.42

D3t-2 0.12

At-1 0.82

At-2 0.54

Kocasu (1222) m3 96.00 0.20 18.88 D3t-1 0.55

D3t-2 0.28

At-1 0.73

At-2 0.41

Sakarya (1221) m3 27.40 0.10 6.99 D2t-1 0.29

D2t-2 0.12

D3t-1 0.39

D3t-2 0.15

A1t-1 0.78

At-2 0.56

At-3 0.35

Aladağ (1233) m3 85.90 0.00 14.05 D2t-2 -0.23

D3t-1 0.55

D3t-2 0.27

At-1 0.60

At-2 0.25

Mudurnu (1237) m3 40.00 0.80 8.37 D3t-1 0.53

D3t-2 0.29

At-1 0.74

At-2 0.38
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Given some values of S1, P training data are substituted into Eq. (13) leading to the matrix
equation:

Aθ ¼ y ð14Þ

Fig. 5 Observed and estimated Streamflow data for Wavelet Neuro Fuzzy model

560 A. Yarar



where θ is an unknown vector whose elements are parameters in S2, the set of consequent
(linear) parameters.

The set S2 of consequent parameters can be identified with the standard least-squares
estimator (LSE):

θ� ¼ ATA
	 
−1

ATy ð15Þ

where AT is the transpose of A and (ATA)−1AT is the pseudo-inverse of A if ATA is
nonsingular. The recursive least-square estimator (RLS) could also be used to calcu-
late θ* (Jang 1993).

3 Study Area and Model Application

3.1 Study Area

Turkey is separated into 25 river basins in terms of hydrological studies (Fig. 3). Sakarya
Basin, numbered 12 (with coordinates 38° 38′–41° 09′ North, 29° 20′–33° 09″ East), is located
in west of The Middle Anatolia and east of The Inner Aegean and The Marmara in Turkey
(Fig. 4). Average temperature is 14.5 °C and average rainfall is 524.7 mm in the basin. The
area covered by the basin is 58,160 km2 and about 2.88 % of it is agricultural land, 19.6 % is
grassland, 28.7 % is forest, 2.0 % is wasteland, 1.6 % is settlement and 1.5 % is water surface.
Main river of the basin is Sakarya River. And the main arms of the river are Porsuk, Ankara,
Kirmir and Mudurnu Rivers. The biggest lake of the basin is Lake Sapanca. There are a

Table 2 Time series models

Stations Models BIC

Porsuk SARIMA (0,1,2)(0,1,1)12 3.09

Kocasu SARIMA (0,1,1)(0,1,2)12 4.69

Sakarya SARIMA (0,1,1)(0,1,2)12 1.98

Aladağ SARIMA (0,1,2)(0,1,1)12 4.91

Mudurnu SARIMA (0,1,2)(0,1,1)12 2.88

Table 3 The parameters and the equations of SARIMA

Parameters equations

Porsuk θ1 ¼ 0:351 θ2 ¼ 0:347 Θ1 ¼ 0:848

ZT ¼ ZT−1 þ ZT−12−ZT−13 þ εT−0:351εT−1−0:347εT−2−0:848εT−12 þ 0:298εT−13 þ 0:294εT−14
Kocasu θ ¼ 0:444 Θ1 ¼ 0:913 Θ2 ¼ −0:023

ZT ¼ ZT−1 þ ZT−12−ZT−13 þ εT−0:444εT−1−0:913εT−12 þ 0:405εT−13 þ 0:023εT−24−0:01εT−25
Sakarya θ ¼ 0:681 Θ1 ¼ 0:784 Θ2 ¼ 0:084

ZT ¼ ZT−1 þ ZT−12−ZT−13 þ εT−0:681εT−1−0:784εT−12 þ 0:534εT−13−0:084εT−24−0:057εT−25
Aladağ θ1 ¼ 0:673 θ2 ¼ 0:305 Θ1 ¼ 0:924

ZT ¼ ZT−1 þ ZT−12−ZT−13 þ εT−0:6731εT−1−0:305εT−2−0:924εT−12 þ 0:622εT−13 þ 0:282εT−14
Mudurnu θ1 ¼ 0:458 θ2 ¼ 0:378 Θ1 ¼ 0:916

ZT ¼ ZT−1 þ ZT−12−ZT−13 þ εT−0:458εT−1−0:378εT−2−0:916εT−12 þ 0:419εT−13 þ 0:346εT−14
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number of dams and there are a lot of Flow Observation Stations (FOS), which are operated by
General Directorate of Electrical Power Resources Survey and Development Administration
(EIE), in the basin. 5 FOS were selected for modeling. Monthly streamflow data between 1964

Fig. 6 Observed and estimated Streamflow data for Seasonal ARIMA model
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and 2000 years (EIE, 2000), belonging to each FOS, were used. Selected FOSs and their data
characterized are given in Table 1.

3.2 Model Application

3.2.1 Wavelet-Neuro Fuzzy (WNF) Model

Monthly mean streamflow data were used for modeling. Input data sets were obtained using
DWT for ANFIS modeling. Original time series data was decomposed three level sub-time
series by DWT and Approximation of the time series was also obtained. Their correlations
with original time series were investigated. Therefore, data sets were selected for each FOS.
Streamflow data was used for the output of the model. Table 1 shows the data characterization
for each FOS. In this table Qt denotes streamflow at time t, D1, D2, and D3 denote sub-time
series under each level (level 1, 2 and 3), A denotes approximation series, and t-1, t-2 denote
previous month’s data. Hybrid modeling process consists of two parts. One of the parts is
training and the other one is testing. The model was implemented by using MATLAB
computer programming.

442 monthly data were used for modeling. 250 monthly data were selected for training
process which consists of sub-time series D, and approximation series A as input layer and
monthly streamflow data Q as output layer. Training process was performed with different
epoch number.

In the testing procedure, the 192 monthly data which were having same character with the
training process were utilized in the ANFIS models obtained from the training procedure. The
best model depends on the epoch number which was determined by calculating the Root Mean
Squared Errors (RMSE) of the models. The agreements between the observed streamflow
values and the estimated values using the hybrid model WNF are shown in Fig. 5.

Further evaluation on the performance of the model can be done by comparing with a
different model’s performance. A Time Series model Auto Regressive Integrated Moving
Average (ARIMA) was selected for comparing the models’ performances.

3.2.2 Time Series Model

Inspection of the streamflow time series and its autocorrelation function (ACF) and partial
autocorrelation function (PACF) indicates that the data is seasonal with a period of 12 months.
Therefore, a seasonal autoregressive integrated moving average SARIMA (p, d, q) (P, D, Q)12
model may be used to analyze streamflow data. The parameters of the above model—p, d, and
q—are non-negative integers that refer to the order of the autoregressive, integrated, and

Table 4 Model results

RMSE R2

WANFIS SARIMA WANFIS SARIMA

Porsuk 1.37 2.48 0.89 0.69

Kocasu 5.58 10.08 0.88 0.61

Sakarya 0.89 1.93 0.89 0.60

Aladağ 4.44 10.14 0.94 0.62

Mudurnu 2.86 4.05 0.82 0.65
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moving average parts of the model, respectively. The parameters of the model were determined
from the ACF and PACF graphs and from the seasonal differences which were used to make
the series steady. Using a Bayesian Information Criterion (BIC) and in conjunction with
different values of q, Q, and D, best fitted SARIMA models were determined for each station.
SARIMAmodels are given in Table 2, the parameters and the equations of SARIMA are given
in Table 3. The estimated streamflow obtained with SARIMA models and the observed data
which is the same with WNF model are presented in Fig. 6.

The performances of two models may also be evaluated by comparing the correlation
coefficients (R2) and the root mean squared error (RMSE) computed from the observed and
estimated data. These two measures for each of the models are presented in Table 4. It is
observed that WNF model gave low values of the RMSE and, according to the estimated and
observed graphs, the WNF model shows more accurate values than the time series model.

4 Conclusion

The performance of Wavelet Neuro Fuzzy model for estimating the streamflow data was investi-
gated in this study. For this aim, 5 flow observation stations’ data in Sakarya Basin, which is one of
the most important basins of Turkey, were used. Monthly mean streamflow data were decomposed
subseries and their correlations with following months’ data were analyzed. Subseries which have
higher correlation value than the others were selected as the input data set for WNF model.
Monthly streamflow data were used for the output data set. Using graphs, obtained from estimated
and observed streamflow data, RMSE andR2 values, the best models were determined. To evaluate
the performance of the WNF model, seasonal ARIMA model were set by using streamflow data.
The best structure of the SARIMA models were determined from the autocorrelation and partial
autocorrelation functions of the data and Bayesian Information Criterion.

Depending on the models results, while RMSE ranges between 0.89 and 5.58 in WNF
model for the stations, it ranges between 1.93 and 10.08 in SARIMA model. R2 takes a value
between 0.82 and 0.94 in WNF, on the other hand, its value is in range between 0.60 and 0.63
in SARIMA model.

According to the RMSE and R2 values and the graphs, it is obvious that WNF model is
superior than SARIMA model, because SARIMA model estimated negative (−) data which is
contrary to reality.

The WNF model, investigated in this study, provided us reliable results to estimate the
streamflow data. This tool can be used to identify the optimal policies such as protection from
floods, management of the available water resources.

References

Adamowski J, Sun K (2010) Development of a coupled wavelet transform and network method for flow
forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91

Baratti R, Cannas B, Fanni A, Pintus M, Sechi GM, Toreno N (2003) River flow forecast for reservoir
management through neural networks. Neurocomputing 55(3–4):421–437

Chang FJ, Chen YC (2001) A counterpropagation fuzzy-neural network modeling approach to real time stream
flow prediction. J Hydrol 245:153–164

Chang LC, Chang FJ, Chiang YM (2004) A two-step-ahead recurrent neural network for stream-flow forecast-
ing. Hydrol Process 18(1):81–92

Chen SH, Lin YH, Chang LC, Chang FJ (2006) The strategy of building a flood forecast model by neuro-fuzzy
network. Hydrol Process 20:1525–1540

564 A. Yarar



Dawson CW, Wilby RL (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol Sci
43(1):47–67

Dorum A, Yarar A, Sevimli MF, Onüçyildiz M (2010) Modelling the rainfall–runoff data of susurluk basin.
Expert Syst Appl 37:6587–6593

Drake JT (2000) Communications phase synchronization using the adaptive network fuzzy inference system.
Ph.D. Thesis, New Mexico State University, Las Cruces, New Mexico, USA

El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile River at
Aswan High Dam. Water Resour Manag 21(3):533–556

Grimes DIF, Coppola E, Verdecchia M, Visconti G (2003) A neural network approach to real-time rainfall
estimation for Africa using satellite data. J Hydrometeorol 4:1119–1133

Hasebe M, Nagayama Y (2002) Reservoir operation using the neural network and fuzzy systems for dam control
and operation support. Adv Eng Softw 33(5):245–260

Haykin S (1998) Neural networks—a comprehensive foundation, 2nd edn. Prentice-Hall, Upper Saddle River, pp
26–32

Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cyberm 23(3):
665–685

Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning
and machine intelligence. Prentice-Hall, Upper Saddle River

Kisi O (2009) Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J Hydrol
Eng ASCE 14(8):773–782

Kisi O (2010) Wavelet regression model for short-term streamflow forecasting. J Hydrol 389:344–353
Kisi O, Shiri J (2011) Precipitation forecasting using wavelet genetic programming and wavelet-neuro-fuzzy

conjunction models. Water Resour Manag 25(13):3135–3152
Kisi O, Karahan ME, Şen Z (2006) River suspended sediment modelling using a fuzzy logic approach. Hydrol

Process 20:4351–4362
Lane SN (2007) Assessment of rainfall-runoff models based upon wavelet analysis. Hydrol Process 21:586–607
Luk KC, Ball JE, Sharma A (2000) A study of optimal model lag and spatial inputs to artificial neural network

for rainfall forecasting. J Hydrol 227:56–65
Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans

Pattern Anal Mach Intell 11(7):674–693
Sang YF (2012) A practical guide to discrete wavelet decomposition of hydrological time series. Water Resour

Manag 26(11):3345–3365
Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy

approaches. Water Resour Manag 26(6):1715–1729
Shiri J, Kisi O (2010) Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy

conjunction model. J Hydrol 394:486–493
Smith LC, Turcotte DL, Isacks B (1998) Stream flow characterization and feature detection using a discrete

wavelet transform. Hydrol Process 12:233–249
Toprak ZF, Cigizoglu HK (2008) Predicting longitudinal dispersion coefficient in natural streams by artificial

intelligence methods. Hydrol Process 22:4106–4129
Wei S, Song J, Khan NI (2012) Simulating and predicting river discharge time series using a wavelet-neural

network hybrid modelling approach. Hydrol Process 26:281–296
Yarar A, Onucyıldız M, Copty NK (2009) Modelling level changes in lakes using neuro-fuzzy and artificial

neural networks. J Hydrol 365:329–334

A Hybrid Wavelet and Neuro-Fuzzy Model 565


	A Hybrid Wavelet and Neuro-Fuzzy Model for Forecasting the Monthly Streamflow Data
	Abstract
	Introduction
	Model Description
	Wavelet Analysis
	Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

	Study Area and Model Application
	Study Area
	Model Application
	Wavelet-Neuro Fuzzy (WNF) Model
	Time Series Model


	Conclusion
	References


