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Abstract The conjunctive use of surface and subsurface water is one of the most
effective ways to increase water supply reliability with minimal cost and environmen-
tal impact. This study presents a novel stepwise optimization model for optimizing
the conjunctive use of surface and subsurface water resource management. At each
time step, the proposed model decomposes the nonlinear conjunctive use problem
into a linear surface water allocation sub-problem and a nonlinear groundwater
simulation sub-problem. Instead of using a nonlinear algorithm to solve the entire
problem, this decomposition approach integrates a linear algorithm with greater
computational efficiency. Specifically, this study proposes a hybrid approach con-
sisting of Genetic Algorithm (GA), Artificial Neural Network (ANN), and Linear
Programming (LP) to solve the decomposed two-level problem. The top level uses
GA to determine the optimal pumping rates and link the lower level sub-problem,
while LP determines the optimal surface water allocation, and ANN performs
the groundwater simulation. Because the optimization computation requires many
groundwater simulations, the ANN instead of traditional numerical simulation
greatly reduces the computational burden. The high computing performance of both
LP and ANN significantly increase the computational efficiency of entire model.
This study examines four case studies to determine the supply efficiencies under
different operation models. Unlike the high interaction between climate conditions
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and surface water resource, groundwater resources are more stable than the surface
water resources for water supply. First, results indicate that adding an groundwater
system whose supply productivity is just 8.67 % of the entire water requirement with
a surface water supply first (SWSF) policy can significantly decrease the shortage
index (SI) from 2.93 to 1.54. Second, the proposed model provides a more efficient
conjunctive use policy than the SWSF policy, achieving further decrease from 1.54
to 1.13 or 0.79, depending on the groundwater rule curves. Finally, because of the
usage of the hybrid framework, GA, LP, and ANN, the computational efficiency
of proposed model is higher than other models with a purebred architecture or
traditional groundwater numerical simulations. Therefore, the proposed model can
be used to solve complicated large field problems. The proposed model is a valuable
tool for conjunctive use operation planning.

Keywords Conjunctive use management · Genetic algorithm · Artificial neural
network · Linear program and hybrid architecture

1 Introduction

Due to increasing water demands and global warming, water shortages are occurring
more frequently. Expanding human populations and economic development have
increased the water demand (Chang et al. 2009; Braga et al. 1985; Rosegrant and
Cai 2002; Jenkins et al. 2004; Pulido-Velazquez et al. 2006). Global warming also
causes extreme climate conditions, such as droughts and floods, which are occurring
more often than in previous decades (Tung et al. 2006). These extreme climate
conditions greatly influence water resource stability. The two conditions mentioned
above increase the shortage risk of water supply in general. Because of the high
interaction between climate conditions and surface water resources, groundwater is
more stable than surface water. Thus, the highly efficient conjunctive use of surface
and subsurface water is a good way to reduce the water shortage risk with minimal
environmental impact for an area with plentiful groundwater aquifer (Mishra and
Desai 2006). Therefore, developing a conjunctive use management model (CUMM)
to manage the surface and subsurface water efficiently and simultaneously has
become an important issue (Vedula et al. 2005; Pulido-Velazquez et al. 2006).

Traditionally, the simulation-optimization method is one of the most widely
used approaches for water resource management planning (Yeh 1985; Dhar and
Datta 2008). The simulation-optimization method simulates the water resource
using a numerical simulation model. This simulation model is then embedded in an
optimization algorithm to determine the optimal operation policy of water supply.
However, this simulation-optimization method for developing a CUMM requires
the construction of numerical simulation models for both a multi-reservoir system
and a groundwater system. Because the behaviors of reservoirs are linear, the
implementation of the simulation model for the multi-reservoir system can be formed
as a set of linear equations.

Although the model implementation for the multi-reservoir system is simple,
the implementation for the groundwater system especially for unconfined aquifer
is more complicated. Gorelick (1983) determined that the groundwater simulation
approaches used in groundwater management models can be classified as embedded
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or response matrix methods, depending on how the management model performs
groundwater modeling. The embedded method uses a full function numerical model
for groundwater simulation to represent the relationship between the pumping rates
and groundwater head. Wang and Zheng (1998) embedded MODFLOW, one of the
most commonly used models for groundwater flow simulation, in an optimal ground-
water management model. Chang et al. (1992, 2009) and Hsiao and Chang (2002) also
embedded ISOQUAD, a finite element model for groundwater simulation proposed
by Pinder and Frind (1972), in their optimal management model. This embedded
method describes the groundwater system with less simplification than the response
matrix method, and can be directly applied to confined or unconfined aquifers. The
embedded method computes the state variables, hydraulic heads, for all numerical
grids and provides detail description of the groundwater system. However, it also
requires a large amount of computational resources. A management model generally
requires only the information at the monitoring locations, and not all the numerical
grids. From the management model perspective, the embedded method uses a great
amount of computational resources to compute information that are not required.
Therefore, the embedded method is not a computationally efficient approach for
conjunctive use management problems.

The response matrix method simplifies the groundwater simulation as a linear
matrix equation and computes only the information required for a management
model. Psilovikos (2006) used the response matrix method to simulate the ground-
water system for a confined aquifer. The advantage of the response matrix method
is its high computational efficiency compared to the embedded method. However,
due to its linear assumption, the response matrix method is not directly applicable
to nonlinear systems, such as unconfined aquifers. However, unconfined aquifers
are normally the top layers of groundwater system and provide much more water
resources than confined aquifers.

Based on the discussion above, the embedded method and response matrix
approach both have their limitations for conjunctive use management problems
with unconfined aquifers. An Artificial Neural Network (ANN) is a computationally
efficient alternative for addressing the problem. Rogers and Dowla (1994) integrated
ANN and the Nonlinear Programming (NLP) into a groundwater remediation
model. They used an ANN model to represent the groundwater system behaviors,
including groundwater flow and pollutant transport. Based on previous research,
Rogers et al. (1995) applied a combination of an ANN with the Genetic Algorithm
(GA). The GA avoids the convergence problem of NLP induced by initial solutions.
Coppola et al. (2003) proposed an ANN model for field groundwater simulation.
Chang et al. (2005) applied an ANN model in a real-time reservoir operation.
Chu and Chang (2009) combined the recursive ANN with Constrained Differential
Dynamic Programming (CDDP) for a groundwater resource planning problem. They
used the ANN model in the planning model instead of using ISOQUAD, effectively
reducing the computational time by up to 94.5 %.

For the optimization algorithm of solving surface water allocation problems, LP is
the most popular choice because of the linearity of reservoir systems (Labadie 2004;
Wei and Hsu 2008). In the optimization of groundwater management or conjunctive
use problems, because of the nonlinearity of groundwater systems, algorithms which
have ability to deal with the nonlinearity such as NLP are required (Rogers and
Dowla 1994). Without the derivation of optimization formulation, GA also becomes
an attractive alternative (Rogers et al. 1995; Wang et al. 2011).
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The behaviors of multi-reservoir system and groundwater system in the CUMM
are linear and nonlinear, respectively. Therefore, the CUMM optimization algorithm
used must deal with mixed linear and nonlinear problems. These problems are
complicated and difficult to solve using single algorithms. Thus, this study proposes a
decomposition method to decompose the problem into several sub-problems based
on problem characteristics such as integer, linear, nonlinear or time-variant charac-
teristics. A hybrid architecture of optimal algorithms can then solve the set of sub-
problems and each algorithm for solving different sub-problems can be chosen based
on the characteristics of sub-problem itself. For example, LP is usually the best choice
for linear sub-problems because of its high searching efficiency and low computa-
tional burden. Watkins and McKinney (1998) applied two decomposition methods,
generalized Benders decomposition (GBD) and outer approximation (OA), to a
mixed-integer nonlinear programming (MINLP) problem. They decomposed the
MINLP problem into a mixed-integer linear programming (MILP) sub-problem and
a nonlinear programming (NLP) sub-problem. Hsiao and Chang (2002) and Chang
et al. (2009) also used decomposition methods in their groundwater management
models. They proposed optimal groundwater management models to minimize the
total costs, including fixed costs for well network design and operational costs for
groundwater pumping. The models in both studies simultaneously determined the
optimal design of well networks and the associated time-variant pumping quantities.
Because the determination of a network design contains integer characteristics and
the determination of pumping quantities contains time-variant characteristics, the
entire problem becomes a mixed integer and time-variant problem. They decom-
posed the entire problem into an integer sub-problem, which is a network design
problem, and another time-variant sub-problem, which is a pumping quantity deter-
mination problem. Based on the sub-problem characteristics, the algorithms for both
sub-problems respectively are GA, a good choice for integer programming problems,
and CDDP (Chang et al. 1992), which a dynamic programming-based algorithm and
also the most powerful algorithm for time-variant problems. These studies show
that the decomposition method can successfully decompose the complicated water
resource management problem into several sub-problems. The proposed hybrid
architecture, unlike a purebred architecture, can combine the advantages of multiple
algorithms for solving these sub-problems.

This study proposes a stepwise optimization CUMM for unconfined aquifer. The
proposed model uses the decomposition method to decompose the entire opti-
mization problem into a linear sub-problem (a surface water system), and another
nonlinear sub-problem (an unconfined aquifer system). The proposed model uses
LP and GA to solve these two sub-problems. This study uses a recursive ANN model
to simulate the behavior of unconfined aquifer.

2 Methodology

This section describes the methodology of developing the proposed CUMM.
Section 2.1. demonstrate the model architecture of CUMM. Section 2.2. uses the
recursive ANN model to simulate the behavior of an unconfined aquifer. Section 2.3.
further describes some basic operating concepts, including the rule curve operating
method, the index value theory, the index balance method (IBM), and the mathe-
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matical formulation for CUMM. Section 2.4. presents a hybrid architecture including
ANN, LP, and GA, which is then used to determine the supply strategies for CUMM.

2.1 Model Architecture

Figure 1 shows the model architecture of the proposed CUMM. In Fig. 1, the model
architecture contains three elements, include GA, LP and ANN. The ANN instead
of numerical modeling for unconfined aquifers is trained to simulate an unconfined
groundwater system (Eq. 12) and the construction of ANN is further described in
Section 2.2. The combination of GA and LP is the optimization solver of CUMM
which determine the optimal pumping rates for well networks and release quan-
tities for reservoirs. Because the behavior of reservoir system and the behavior of
unconfined aquifers respectively are linear and nonlinear, a decomposition method
is applied to decompose the CUMM into two sub-problems, linear and nonlinear
parts. GA and LP are respectively used to solve the different parts. The combination
of two algorithms can remain the high computational efficiency of LP for the linear
part and the robust, flexibility and nonlinear ability of GA for the nonlinear part.

2.2 Groundwater ANN Model Development

The governing equation for unconfined aquifer is a nonlinear equation which
describes the temporal and spatial variations of groundwater levels. In traditional
groundwater numerical simulation, only the groundwater levels of the first time step
are directly assigned as the initial condition. The groundwater levels of later time
steps are recursively calculated based on the previous time step. This subsection pro-
poses a recursive ANN model to replace the usage of traditional numerical models.
Due to the recursive procedure of the time variation problem mentioned above, the
recursive ANN model also simulates as the recursive procedure mentioned above.

Figure 2 shows a structural diagram of the recursive ANN model. The structure
can be divided into two stages: a training stage (Fig. 2a), and a prediction stage
(Fig. 2b). The training stage has a structure similar to other ANN models. The input
nodes of the structure contain state variables and decision variables of the t-th time
step. The output nodes only contain state variables of the next time step. In CUMM,

Genetic Algorithm
(Decision variable of primary sub-problem: pumping rates)

Artificial Neural Network
(groundwater transfer function)

Linear Programming
(Decision variable of secondary
sub-problem: reservoir supply

amounts)

Fig. 1 The model architecture for CUMM
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Output layer
(5 nodes)

Hidden layer
 (20 nodes)

Input layer
 (10 nodes)

...

t=t+1

...

(a) (b)
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Fig. 2 Recursive ANN structure diagram a Training stage; b Prediction stage

the state variables mean the groundwater levels for each observation well, �h (t) and
�h (t + 1), and the decision variables mean the pumping rates for each pumping well,
�P (t). The training stage normally collects data pairs between input nodes and output

nodes from field data observations or numerical model generation. The prediction
stage modifies the structure of the recursive ANN model (Fig. 2b). Similar to the
recursive procedure mentioned above, the results calculated from output nodes are
recursively assigned to the input nodes for the next step simulation, except for the
first time step.

Figure 3 illustrates the creation procedure of the recursive ANN model. This
procedure can be divided into two parts: data creation for ANN model training
and verification and ANN model training and verification. The first part contains
two steps: data creation by groundwater numerical model and data preprocessing
for ANN. The first step uses the numerical groundwater model, MODFLOW 96, to
generate data for ANN training and verification. Figure 4 depicts the groundwater
system structure. Five pumping wells, well #A to #E, and five observation wells, wells
#1 to #5, and five observation wells, wells #1 to #5, were installed on a homogeneous
and isotropic unconfined aquifer whose area is 17 × 17 (km2) (shown as Table 1).
The aquifer thickness was 110 (m). The aquifer was divided into 170 × 170 cells
whose area was 100 × 100 m2 each. The left side and right side of the aquifer were
assigned as the Dirichlet boundary conditions, which were respectively assigned as
100 and 80 (m). The other two sides were assigned as no flow boundary condition
(Fig. 4). The length of simulation time step was 10 (days) and the entire simulation
period was 365 time steps (10 years total). Table 1 shows the hydrogeological and
other simulation parameters.

The training data set was generated by repeating MODFLOW simulations with
different pumping rates. A random number generator was used to create ten series
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ANN training data and verification data creation

Data creation by groundwater numerical model 

Groundwater numerical model construction

Pumping rates randomly generation for each  
wells

Groundwater numerical model simulation

Data preprocessing for ANN

Data collection

Groundwater levesl for 
each oberservation wells

Pumping rates for each 
pumping wells

Data normalization

ANN groundwater simulation model training and verification

ANN model training

ANN verificationfail

ANN groundwater simulation model 
construction completing

success

ANN structure or parameter 
modification

Fig. 3 Flowchart of training and verification of groundwater ANN simulation model

of time varying pumping rates with 365 time steps for the five pumping wells, and ten
matrixes labeled as P365×5 were created to store the pumping rates. After repeating
MODFLOW simulations, the groundwater levels, including the initial time step and
other 365 time steps observed from the five observation wells, were stored in another
ten matrixes labeled as h366×5.

The data preprocessing step can be divided into two sub-steps, including data
collection and data normalization (Fig. 3). The data collection sub-step collects
training data and verification data from the matrixes, P365×5 and h366×5. In the data
normalization sub-step, a linear transformation transfers the variable values varied
between 1 to -1 is applied. Both the aquifer thickness (110 m) and maximum pumping
rate (0.5 cms) are used to normalize h366×5 and P365×5, as Eq. 1 shows.

⎧
⎪⎪⎨

⎪⎪⎩

Pi
N,365×5 = Pi

365×5 × 2
0.5 (cms)

− 1

hi
N,366×5 = hi

366×5 × 2
110 (m)

− 1
, for i = 1, ..., 10 (1)
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Fig. 4 Map of groundwater system

The ANN groundwater simulation model training and verification stage uses the
MATLAB Neural Network toolbox to construct the proposed ANN model. Table 2
lists the ANN parameters used in this study. The proposed model uses a three-
layer backward propagation network (BPN), including an input layer, a hidden
layer, and an output layer. The number of nodes in the hidden layer is 20 and
the transfer function of hidden layer and output layer are respectively tan-sigmoid
transfer function (Eq. 2), and linear transfer function (Eq. 3). The assignment for

Table 1 Table of aquifer
properties and simulation
parameters

Parameter Value

Simulation parameter
Simulation area 17 × 17 (km2)

Cell area 100 × 100 (m2)

Number of cells 170 × 170
Length of simulation time step 10 (days)
Entire simulation period 3, 650 (days)

= 10 years
= 365 time steps

Maximum pumping rate 0.26 × 106 (m3/ten days)
= 0.5 (cms)

Aquifer property
Aquifer thickness 110 (m)

Specific yield, (sy) 0.2
Porosity, (n) 0.2
Horizontal hydraulic conductivity, 0.0001 (m/s)

(Kh)
Vertical hydraulic conductivity, 0.0001 (m/s)

(Kv)
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Table 2 Table of ANN
parameters

Parameter Value

Node number for input layer 10
Node number for hidden layer 20
Node number for output layer 5
Hidden layer transfer function tan-sigmoid transfer function
Output layer transfer function Linear transfer function
Training algorithm BFGS
RMSE criteria for training 10−7

the number of output layer is based on the size of the observation wells. To avoid
the affect of over fitting, a try-and-error approach is used to determine the proper
number of hidden nodes. The number of hidden nodes increases gradually when
the ability of the ANN model with fewer hidden nodes can not deal with the
complexity and nonlinearity of data. Until the model errors for both the training set
and the validation set can satisfy the model criteria, the current number of hidden
nodes is the proper number. The BFGS method, a qusai-Newton method, is the
training algorithm. The ANN convergence criterion is that the root mean-square
error (RMSE) must be smaller than 10−7.

f (x) = ex − e−x

ex + e−x
(2)

f (x) = x (3)

After finishing the training stage, model verification involving another set of data
pairs is necessary to verify model reliability. The ANN model structure after the
training stage becomes the prediction stage (Fig. 2b). Therefore, by applying the
initial groundwater levels and other sets of pumping rates, the RMSE between the
simulated levels and the observation levels is an index of model reliability.

Two types of time series for pumping created by an uniform random number,
type A, and a step function, type B, are used to train and verify the robustness and
ability. The type A was generated by the uniform random number generator which
varied from 0 to 0.5 (cms). The type B was generated by the step function generator
which pumps 0.3 (cms) for 18 continuous time steps and stops for the next 18 time
steps. Each verification cases simulate 3,650 time steps (100 years). The verification
results in Table 3 indicate that the relative root-mean-square error (relative RMSE)
of a 100-year simulation is less than 3.0 %. These result confirm the reliability of the

Table 3 ANN model verification error

Verification of case #A Verification of case #B

RMSE (m) Related RMSE RMSE (m) Related RMSE
(%) (%)

Well #1 0.44 0.56 1.47 1.84
Well #2 0.47 0.67 1.98 2.75
Well #3 1.31 1.93 1.24 1.79
Well #4 0.44 0.56 1.53 1.92
Well #5 0.46 0.65 1.93 2.68
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proposed ANN model and indicate that the ANN groundwater simulation model is
well trained.

On a computer with Intel(R) Xeon(R) CPU E5620 @2.40GHz, the computational
burden of the groundwater simulation with 25, 000 time steps for the MODFLOW
model with 170 × 170 grids consumes about 131 seconds. However, the computa-
tional burden of the simulation with the same time steps for the groundwater ANN
model just requires two seconds. The ANN model is about 65 times faster than the
MODFLOW model. The high computational efficiency of the ANN model make the
proposed conjunctive-use model attractive in a operation with large number of time
steps.

2.3 Formulation of Conjunctive-Use Management Model (CUMM)

This section describes three operational concepts: Rule Curve Operating Method
(Section 2.3.1), Index Value Theory (Section 2.3.2) and Index Balancing Method
(Section 2.3.3). The Rule Curve Operating Method is traditionally used to determine
the total supply quantity based on current reservoir storage. The Index Value Theory
linearly demonstrates the status of reservoir storage. The Index Balancing Method
is used to allocate the supply quantities between different reservoirs in a multi-
reservoir system. Because this study develops a CUMM, it applies the Rule Curve
Operating Method and Index Value Theory to groundwater systems and extends
the Index Balancing Method to allocate the supply quantities between surface water
system and groundwater system. Section 2.3.4 describes the formulation of the
proposed CUMM.

2.3.1 Rule Curve Operating Method

The rule curve operating method is one of the most widely used approaches in
practice because engineers can easily operate the reservoirs basing on the predefined
rule curves. These rule curves vertically divide the entire reservoir volume into
several layers. Each layer associates a discounting ratio, which varies from 0 to 1,
and the ratio for upper layer is normally larger than the ratio for lower layer. The
ratio is calculated based on the sum of reservoir storage and inflow quantity (Eq. 4).

Dt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ 1 D�t i f ν2 > Vt + IFt ≥ ν1

γ 2 D�t i f ν3 > Vt + IFt ≥ ν2

...

γ Nr D�t i f νNr+1 > Vt + IFt ≥ νNr

(4)

In Eq. 4, Vt is the reservoir storage at the t-th time step, IFt is the reservoir inflow
quantity at the same time step, νi is the volume of the reservoir storage below the
bottom of the i-th layer, γ i is the discounting ratio associated with the i-th layer, Nr

is the number of the rule curves, D�t is the original water demand, and Dt is the
discounted water demand and also is the supply quantity for the current time step.
The discounting ratios for upper layers are normally equal to 1.0 and those for lower
layers are less than 1.0. The reason for the discounting ratio assignment is that the
reservoir can fully satisfy the water demand when the reservoir storage is plentiful.
Otherwise, the reservoir should save water to go through the entire draught period.
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The upper layers and the lower layers can respectively be called the full supply layer
(FSL) and partial supply layer (PSL).

The rule curve operating method also can be applied to a multi-reservoir system.
The equation of discounting ratio determining should be modified as Eq. 5. The
storage quantities, inflow quantities, and reservoir volumes of each reservoir are
summed to form the equivalent reservoir values for the entire system.

Dt =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ 1 D�t i f
∑Ns

j=1 ν2
j >

∑Ns
j=1

(
Vt

j + IFt
j

)
≥ ∑Ns

j=1 ν1
j

γ 2 D�t i f
∑Ns

j=1 ν3
j >

∑Ns
j=1

(
Vt

j + IFt
j

)
≥ ∑Ns

j=1 ν2
j

...

γ Nr D�t i f
∑Ns

j=1 ν
Nr+1
j >

∑Ns
j=1

(
Vt

j + IFt
j

)
≥ ∑Ns

j=1 ν
Nr
j

(5)

2.3.2 Index Value Theory

The index value for a reservoir is linearly normalized by the volume of the reservoir
storage and its associating rule curves (Eq. 6). In Eq. 6, It

SW, j means the index value
at the t-th time step for the j-th reservoir, Vt

j means the volume of the water storage
at the same time step, νi

j means the reservoir storage at the bottom of the i-th layer
and νi+1

j means the reservoir storage at the bottom of the i + 1-th layer (i.e., the top
of the i-th layer). Therefore, an index value between i and i + 1 means that the water
level occupies the i-th layer.

It
SW, j = i +

(
Vt

j − νi
j

)
/
(
νi+1

j − νi
j

)
, i = 1, ..., Nr (6)

It
GW = i + (

h̃t − μ̃i)/
(
μ̃i+1 − μ̃i), i = 1, ..., Nr (7)

The concept of the Index Value Theory can be further applied in a conjunctive
use system. The definition of the index value of a groundwater system can be also
written as Eq. 7. In Eq. 7, It

GW means the index value of groundwater system at the t-
th time step, h̃t means the average groundwater level at the same time step, μ̃i means
the average groundwater level at the bottom of the i-th layer and μ̃i+1 means the
average level at the top of the same layer. Therefore, an index value between i and
i + 1 means that the average level occupies the i-th layer.

2.3.3 Index Balancing Method

Equations 4 and 5 calculate the discounted water demand. In a multi-reservoir
system, the supply quantities for each reservoir and the pumping quantities for
groundwater aquifers must be further allocated. This study uses the index balance
method (IBM) to allocate the supply quantities in a multi-reservoir system or a
conjunctive use system.

The IBM is an operating policy in which the index values of each reservoir should
equal to the values of other reservoirs during operation. The goal of the IBM is to
avoid overuse of single reservoir in contrast to the entire water resource system,
and to guarantee that the storage of each reservoir has similar status. The IBM of
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a conjunctive use system is similar to that of a multi-reservoir system. The index
value of a surface water system and the value of a groundwater system should be the
same or nearly equal.

2.3.4 CUMM Formulation

The operation of the proposed CUMM is based on the predefined operation rule
curve. The discounted ratio and discounted water demand for each time step is
calculated directly using the rule curve. Although the discounted demand at each
time step can be calculated, the supply quantities for each reservoir and the pumping
quantities for groundwater system must obey the IBM and the pre-calculated dis-
counted demand (Eqs. 4 and 5). The determination of supply quantities and pumping
quantities can be formed as a stepwise optimization problem. Equation 8 through 20
show this formulation.

[
Problem #1 (Original problem for CUMM)

]

Objective function:

Z t
CU MM = min

�Xt, �Pt

Nd∑

i=1

ωSH,i SHRt
i + ωGAP

Ns∑

m=1

Ns∑

n=1

GAPt
SW,mn+ (8)

ωGAPGAPt
SY S + ωSL

⎛

⎝
Ns∑

j=1

SLt
SW, j + SLt

GW

⎞

⎠ , ωSH,i > ωGAP > ωSL

s.t.

SHRt
i = SHt

i/

(
Nd∑

k=1

Dt
k

)

, ∀i ∈ Nd (9)

Dt
i =

∀ j∈Ns∑

j=1

λijXt
j +

∀k∈Np∑

k=1

λik Pt
k + SHt

i , ∀i ∈ Nd, Xt
j ∈ �Xt, Pt

k ∈ �Pt (10)

Vt+1
j = Vt

j +
∀m∈NIF∑

m=1

λ jm IFt
m −

∀i∈Nd∑

i=1

λijXt
j − OFt

j, ∀ j ∈ Ns (11)

�ht+1 = fANN

(�ht, �Pt
)

(12)

GAPt
SW,mn = |It

sw,m − It
sw,n|, ∀m, n ∈ Ns (13)

GAPt
SY S = | Ĩt

SW − It
GW | (14)
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It
SW, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 + Vt
j−ν1

j

ν2
j −ν1

j
i f ν2

j > Vt
j ≥ ν1

j

2 + Vt
j−ν2

j

ν3
j −ν2

j
i f ν3

j > Vt
j ≥ ν2

j

...

Nr − 1 + Vt
j−ν

Nr
j

ν
Nr+1
j −ν

Nr
j

i f ν
Nr+1
j > Vt

j ≥ ν
Nr
j

, ∀ j ∈ Ns (15)

It
GW =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + (
h̃t − μ̃1

)
/
(
μ̃2 − μ̃1

)
i f μ̃2 > h̃t ≥ μ̃1

2 + (
h̃t − μ̃2

)
/
(
μ̃3 − μ̃2

)
i f μ̃3 > h̃t ≥ μ̃2

...

Nr + (
h̃t − μ̃Nr

)
/
(
μ̃Nr+1 − μ̃Nr

)
i f μ̃Nr+1 > h̃t ≥ μ̃Nr

(16)

SLt
SW, j = V j,max − Vt

j

V j,max − V j,min
, ∀ j ∈ Ns (17)

SLt
GW = h̃max − h̃t

h̃max − h̃min
(18)

V j,min ≤ Vt
j ≤ V j,max, ∀ j ∈ Ns (19)

h̃min ≤ h̃t ≤ h̃max (20)

where �Xt and �Pt respectively represent the water supply quantities and ground-
water pumping quantities at the t-th time step and also are the decision variables
for [Problem #1]. The terms Nd, Ns, Np, NIF , and Nr are the number of water
demands, reservoirs, pumping wells, inflow nodes and rule curve levels, respectively.
The lengths of �Xt and �Pt are Ns and Np, respectively. SHRt

i is the ratio of the
water shortage to water demand for the i-th demand node (Eq. 9). GAPt

SW,mn means
the index value discrepancy between the m-th and the n-th reservoirs (Eq. 13).
GAPt

SY S means index value discrepancy between the surface water system and the
groundwater system (Eq. 14). SLt

SW, j means the ratio of spare volume to system
capacity for the j-th reservoir (Eq. 17). SLt

GW means ratio of spare volume to system
capacity for groundwater system (Eq. 18). Dt

i means the discounted water demand
for the i-th demand node and is already pre-determined based on Eq. 4 or 5. SHt

i
means water shortage for the i-th demand, while Vt

j means water storage of the

j-th reservoir. The terms �ht and h̃t respectively means the groundwater levels of
different observation points and the average groundwater level, while IFt

m and OFt
j

respectively mean the inflow quantity for the m-th inflow node and the overflow
quantity for the j-th reservoir. It

SW, j and Ĩt
SW respectively mean the index value

of the j-th reservoir and the average index value for entire surface water system.
It

GW means the index value for groundwater water system. νm
j and μ̃m respectively

mean the volume of the m-th level of rule curve for the j-th reservoir and that for
groundwater system. V j,min and V j,max are the minimum and maximum volumes of
the j-th reservoir, respectively, while h̃min and h̃max are the minimum and maximum
average groundwater levels. The term λij means the active index between the i-th
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node and the j-th node. If the i-th node and the j-th node are connected, the value of
λij is 1; otherwise, the value is 0.

Equation 8 is an objective function that sums shortage rates for each demand
(SHRt

j), the summation of discrepancy of index value (GAPt
SW,mn and GAPt

SY S)
and the summation of the ratio of spare volume to system capacity (SLt

SW, j and
SLt

GW). Three weight values, ωSH, j, ωGAP and ωSL, represent the priority between
different sub-objectives. The shortage rate of each demand is further defined by Eq. 9
in which the water shortage, SHt

j, is defined through Eq. 10, a mass balance equation
for each demand. In this study, the priority of the summation of shortage rates is
higher than the other two sub-objectives. The second sub-objective, which minimizes
the summation of discrepancy of index value, tries to balance the index value among
reservoirs or different systems. GAPt

SW,mn and GAPt
SY S, respectively are defined in

Eqs. 13 and 14, are the discrepancy of index value between different reservoirs or
different systems. The third term of objective function, minimizing the summation of
the ratio of spare volume to system capacity, tries to keep more water resource in the
supply system and also be further formed as Eqs. 17 and 18.

Equations 11 and 12, which are the continuity equations of reservoirs and
groundwater system, present the behavior of reservoirs and groundwater system. The
implementation of Eq. 12 repuires a recursive ANN model instead of a traditional
numerical model or a response matrix, as introduced in Section 2.2. Equations 19
and 20 respectively are constraint functions for reservoirs and the groundwater
system. These constraint functions require that the reservoir levels or groundwater
levels must vary in predefined ranges.

Since the unconfined groundwater transfer function, Eq. 12, is a nonlinear
constraint, the optimal problem, [Problem #1], becomes a complicated nonlinear
optimization problem. However, this problem can be reformulated as a linear sub-
problem and another nonlinear sub-problem by exploring the problem structure. The
original problem is denoted as [Problem #1], and the decomposed problem is denoted
as [Problem #2].

[
Problem #2 (Decomposed problem for CUMM)

]

Objective function of primary sub-problem

Z t
CU MM = min

�Pt

[
J�

( �Pt
)

+ ωGAPGAPt
SY S + ωSLSLt

GW

]
(21)

s.t.

Equations 12, 14, 16, 18 and 20

Objective function of secondary sub-problem

J�
( �Pt

)
= min

�Xt

Nd∑

i=1

ωSH,i SHRt
i + ωGAP

Ns∑

m=1

Ns∑

n=1

GAPt
SW,mn + ωSL

Ns∑

j=1

SLt
SW, j (22)

s.t.

Equations 9, 10, 11, 13, 15, 17 and 19
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[Problem #2] contains a primary sub-problem and a secondary sub-problem.
The primary sub-problem, which determines the pumping quantities ( �Pt) on an
unconfined aquifer system, is still a nonlinear problem. However, the secondary sub-
problem, which just deals with the surface water system under the pre-determined
pumping quantities ( �Pt), is a linear problem.

2.4 Hybrid Architecture for Solving CUMM

As described previously, this study uses a hybrid architecture to solve [Problem #2].
Figure 1 shows the model architecture of the proposed CUMM. In Fig. 1, GA and
LP are respectively used to solve the primary sub-problem and the secondary sub-
problem. The ANN described in Section 1 is also adapted to simulate the unconfined

Copy, Crossover
and Mutation

Operator

Penalty
Function

Yes

Yes

Randomly create an initial population
(GA for primary sub-problem)

Decode chromosomes (pumping rates, P)

Calculate groundwater level by using ANN

Is the groundwater level satisfied
water level constrain?

Calculate J*(P) by using LP
(Secondary sub-problem)

Calculate objective function of
Primary sub-problem

Is the GA convergent?

Hybrid algorithm stop for t-th time step

Does the simulation reach the last time step?

No

No

No

Stop

Yes

t=t+1

Fig. 5 The model flowchart for the hybrid architecture (CUMM)
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groundwater system (Eq. 12). Figure 5 shows the computation steps of the hybrid
architecture, as illustrated in detail below.

1. The initial population in GA is generated for the solution of the primary sub-
problem. Each chromosome is encoded as a binary string.

2. Decoding each binary string, chromosome, into a set of decimal value, a set of
pumping rates ( �Pt).

3. The groundwater ANN model (Eq. 12) computes the average groundwater level
(̃ht+1) for the next time step reacted by assigning the set of pumping rates
decoded from each chromosome. If the average level is not satisfied the ground-
water level constrain (Eq. 20), a penalty function will be added; otherwise, LP

further solves the secondary sub-problem to obtain the objective value, J�
( �Pt

)
,

which is also the first term of Eq. 21. Because the second and the third term
of Eq. 21 are functions of the average groundwater level, the objective function
value of secondary sub-problem for each chromosome can be determined based
on the Eqs. 12, 14, 16 and 18.

4. After calculating the fitness (the value of objective function in primary sub-
problem), examining the convergence criteria. If it is not convergent, apply
selection, crossover, and mutation operators to generate a new population of
chromosomes and return to Step 2; otherwise, stop entire process.

Using the proposed hybrid architecture has several benefits. First, solving surface
water allocation problem (the secondary sub-problem) is computationally more
efficient using LP than other algorithms, such as GA. Second, because the value
of J�( �Pt) in the objective function of the primary sub-problem is the optimal value
of the secondary sub-problem, the gradient of J�( �Pt) is difficult to be derived.
Therefore, GA is a better choice than traditional gradient-based optimal algorithms
such as NLP. Therefore, the GA-LP hybrid architecture for the entire problem,
the primary and the secondary sub-problems, not only achieves higher computa-
tional performance for the linear part, but also has ability to deal with the non-
linear part.

3 Results and Discussion

This section introduces the study cases and their associated setting in Section 3.1.
Section 3.3 then describes the operation results of the cases and compares different
cases to show the advantages of the proposed CUMM.

3.1 Cases Introduction

The length of operation time step is ten days, same as the length of simulation
time step used in the recursive ANN model. Table 4 compares four numerical cases
with the same water requirement, 15 × 106 (m3/ten days). Case #1 only uses surface
water resources to satisfy the water requirement, and thus a pure surface water
operation case (refers to SW case). The formulation of supply strategy determination
for the SW case is determined using only the secondary sub-problem in Problem #2.
Because the objective function of the secondary sub-problem is conditioned with the
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Table 4 Numerical case list table

Operation form Groundwater rule curve Model usage

Case # 1 Surface water independent operation No rule curves SWAM
(SW)

Case # 2 Decoupled conjunctive use operation No rule curves CUMM
(DCU)

Case # 3 Coupled conjunctive use operation Groundwater rule curve #1 CUMM
(CCU)

Case # 4 Coupled conjunctive use operation Groundwater rule curve #2 CUMM
(CCU)

predefined pumping quantities, �Pt, the value of �Pt is directly assigned as zero in Case
#1, a SW case.

Cases #2, #3 and #4 are conjunctive use cases. Case #2 uses both surface water and
groundwater resources in a prearranged supply priority called surface water supply
first (SWSF) policy. This case is also called a decoupling conjunctive use (refers to
DCU) case. The groundwater system supplies only during the water demand cannot
be satisfied by only using the surface water system. The determination of the supply
strategy for the surface water system in this case is equal to that in Case #1. After
determining the supply quantities of the surface water system, the pumping quantities
can be assigned as either the gap between the surface water supply quantities and the
water demand or the maximum pumping productivity constraint. The DCU model
has been widely applied in Taiwan because of its ease of implementation.

Cases #3 and #4 use both surface water and groundwater resources with the pro-
posed CUMM. Contrast to the Case #2, the supply priority which is not predefined
before model operating is determined by the CUMM. Different operation rule curves
of the groundwater resource which define the priority of resource usage are applied
in Cases #3 and #4. Both of them are coupled conjunctive use (refers to CCU) cases.

Fig. 6 System diagram of
surface water system (SW
case)
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min storage
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• Case #1:

The surface water system contains two reservoirs, reservoir A and reservoir B,
with maximum storages of 70 × 106 and 50 × 106 (m3), respectively. These two
reservoirs supply water a water demand node with a parallel connection. Figure 6
is a system diagram. The Fig. 7 shows the variations of inflow quantities for two
reservoirs. The average inflow quantities for the two reservoirs are 8.4 × 106 and
4.95 × 106 (m3/ten days), respectively. The average inflow quantity of entire surface
system, 13.35 × 106 (m3/ten days) is a little smaller than the water requirement
quantity, 15 × 106 (m3/ten days). Figures 8 and 9 show the operation rule curve
diagrams of reservoirs A and B, respectively. In this case, the discounting ratios for
each layers are assigned as 1.0 and each layers are FSLs.

• Case #2, #3, #4:

The other three cases are all conjunctive use operation cases. The two-reservoir
surface water system mentioned above and an additional five-well groundwater
system construct the entire supply system (Fig. 10). This study uses a recursive ANN
model as the simulation model for the five-well groundwater system, as described
in Section 2.2. The reservoir assignment of the surface water system, including
maximum capacities, inflow quantities, and operation rule curves, is the same in
all four cases, from Cases #1 to #4. In the groundwater system, the maximum
pumping rate of each well is 0.26 × 106 (m3/ten days). Therefore, the maximum
supply productivity of the entire groundwater system is 1.30 × 106 (m3/ten days).

Because Cases #3 and #4 are both CCU cases, their supply priorities are de-
termined by comparing the gap of SI between surface and groundwater system,
which is related to the assigned operation rule curves for both systems. Groundwater
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Fig. 11 Operation rule cuve #1 of groundwater system

operation rule curves #1 and #2 (Figs. 11 and 12, respectively) are applied to Cases
#3 and #4. The third layer, whose index value varies from 3.0 to 4.0, in Fig. 11 is
thinner than the layer in Fig. 12. On the contrary, the first layer, whose index value
varies from 1.0 to 2.0, in Fig. 11 is thicker than the layer in Fig. 12. Figure 13 plots
the relationship between the average groundwater level and the groundwater index
value for both rule curves #1 and #2. For example, if the groundwater level is 85
(m), the index values based on different rule curves are 2.0 and 3.67, and if the
groundwater level is 75 (m), the index values are 1.33 and 3. Therefore, the index
value based on the rule curve #1 is always smaller than the value based on the rule
curve #2 for the same groundwater level. The lower index values mean the lower
priority of groundwater usage in rule curve #1.
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Fig. 13 The relationship diagram between groundwater level and index value for rule curve #1 and #2

3.2 Model Parameters for Genetic Algorithm

Table 5 lists the model parameters for GA. The GA population contains 50 chro-
mosomes. The mutation rate and crossover rate respectively are 0.01 and 0.8. The
proposed model based on two stopping criteria. The first one is the model will be
stopped while the model generations is exceeded the maximum generation. The
second one is the model will be stopped while the optimal fitness of each generation
is continuously fixed without improvement in a specific length of generations. The
maximum generation of the proposed model is 200 and the number of non-improved
generation is 20.

3.3 Case Results

Table 6 lists the simulation results of four cases.

• Case #1:

In Case #1 (SW), because the average supply amount of surface water system,
13.55 × 106 (m3/ten days), is 90.33 % of the water requirement quantity, 15 × 106

(m3/ten days), the average supply amount is almost equal to the average inflow
quantity mentioned above. The shortage index (SI) of Case #1 is 2.93 and the number
of supply shortage time steps (labels as SSTSN) is 135.

Table 5 Table of GA
parameters

Parameter Value

Size of GA population 50
Mutation rate 0.01
Crossover rate 0.8
Maximum generation 200
Number of non-improved generations 20

for stopping criteria
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Table 6 Table of simulation results

Case type Case #1 Case #2

SW DCU

Shortage index (SI) 2.93 1.54
Number of supply shortage time step (SSTSN) 135 125
Average requirement quantity (m3/ten days) 15.00 15.00
Average supply amount of surface water system 13.55 (90.33 %) 13.55 (90.33 %)

(m3/ten days)
Maximum supply productivity of groundwater system 0 (0 %) 1.30 (8.67 %)

(m3/ten days)
Average supply amount of groundwater system 0 (0 %) 0.48 (3.20 %)

(m3/ten days)
Average production efficiency of groundwater system 0 % 36.87 %
Average supply amount of the conjunctive use system 13.55 (90.33 %) 14.03 (93.53 %)

(m3/ten days)

Case type Case #3 Case #4

CCU CCU

Shortage index (SI) 1.13 0.79
Number of supply shortage time step (SSTSN) 111 89
Average requirement quantity (m3/ten days) 15.00 15.00
Average supply amount of surface water system 13.48 (89.87 %) 13.53 (90.20 %)

(m3/ten days)
Maximum supply productivity of groundwater system 1.30 (8.67 %) 1.30 (8.67 %)

(m3/ten days)
Average supply amount of groundwater system 0.68 (4.53 %) 0.89 (5.93 %)

(m3/ten days)
Average production efficiency of groundwater system 52.31 % 68.46 %
Average supply amount of the conjunctive use system 14.16 (94.40 %) 14.420 (96.13 %)

(m3/ten days)

• Case #2:

In Case #2 (DCU), the average supply amount of surface water system is also
13.55 × 106 (m3/ten days) and the operation behavior is the same as that of Case
#1. The groundwater system is worked within the water demand cannot be satisfied
by using only the surface water system. The average supply amount of groundwater
system is 0.48 × 106 (m3/ten days), which is just 3.20 % of the entire requirement.
Because of the additional groundwater resource, the SI of Case #2 decreases from
2.93 to 1.54 and the SSTSN decreases from 135 to 125. Although the supply ratio
of groundwater system is just 3.20 %, the additional groundwater resource still can
significantly decrease the SI in a DCU case.

A comparison between Cases #1 and #2 indicates that a small but stable water
resource also can significantly relax the deficit status of water supply shortage. Com-
paring the average pumping quantity, 0.48 × 106 (m3/ten days), and the maximum
productivity constrain, 1.30 × 106 (m3/ten days), the production efficiency of the
groundwater system in Case #2 is just 36.87 %. Because the production efficiency
caused by the SWSF policy is still low, the production efficiency of this groundwater
system remains great potential to improve with various conjunctive use policies.
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• Case #3 and #4:

In Cases #3 and #4, both CCU cases, the operation priority between two systems is
determined by the assignment of rule curves for surface water system and groundwa-
ter system. In both cases, the average supply amounts of surface water respectively
are 13.48 × 106 (m3/ten days), which is 89.87 % of the entire water requirement,
and 13.53 × 106 (m3/ten days), 90.20 %. The amounts of groundwater respectively
are 0.68 × 106 (m3/ten days), 4.53 %, and 0.89 × 106 (m3/ten days), 5.93 %. The SI
values respectively are 1.13 and 0.79, while the SSTSNs are 111 and 89.

A comparison of the DCU case, Case #2A comparison of the DCU case, Cases #3
and #4, shows that the average supply ratios of groundwater system increase from
3.20 % to 4.53 % and to 5.93 %. The production efficiencies also increase from
36.87 % to 52.31 % and to 68.46 %. The SIs further decrease from 1.54 to 1.13 and
to 0.79. These results indicate that the proposed conjunctive use policy can increase
the production efficiency of the groundwater system and also decrease the system SI
to relax the shortage status of water supply.

The improvement of productivity efficiency for the groundwater systems between
Cases #2 and Case #4 is more significant than that between Case #2 and Case #3. The
reason of the difference on improvement is that the different height of operation
rule curves of groundwater system (Figs. 11 and 12). Figure 14 compares SW and
GW index values for the operation results of Case #3 and #4, while Fig. 15 shows
the associated groundwater level. Because of the effect of the operation rule curves
(Fig. 13), the slope of GW level and index value for rule curve #1 is steeper than the
slope for rule curve #2 when the index values vary from 3.0 to 4.0 (the third layer of
the rule curve). Besides, because the IBM is the supply principle to allocate quantities
between groundwater system and surface water system, the groundwater usage in
Case #3 has lower priority and shorter pumping period than in Case #4. Counting the
number of time steps whose GW index value is higher than the associated SW index
value from Fig. 14, the number of Case #3, which is 187 within 365 time steps, is less
than that of Case #4, which is 247.
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Figure 16 demonstrates the convergency of GA of Case #3 for the 15-th time
step. In the figure, the red line demonstrates the variation of the optimal fitnesses
in each generations and the blue points demonstrates the fitness values for each
chromosomes. The model converges at the 59-th generation while the optimal
fitnesses remain 1.1228 from the 40-th to the 59-th generation. For the convergency
of GA, the optimal fitness is stable indicate that the proposed model has had high
possibility to find the optimal solution.
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4 Conclusion

The CUMM, the proposed stepwise optimal model for conjunctive use management,
has been developed in this study and a hybrid architecture, the combination of LP,
GA and a recursive ANN, is also proposed in CUMM. In the hybrid architecture, LP
is applied to determine the optimal amounts of supply quantities for each reservoir,
GA is applied to connect a surface water system and a groundwater system and is
also used to determine the optimal amounts of pumping quantities for each wells,
and the recursive ANN is trained to represent the behaviors of an unconfined
aquifer. The hybrid architecture used in the CUMM has several advantages. First,
for groundwater simulation, the usage of the recursive ANN can remain both the
high computational efficiency of the response matrix method and the nonlinear
simulation ability of the embedded method for unconfined aquifers. In simulations
of unconfined aquifers with large number of time steps, the recurse ANN is 65 times
faster than the MODFLOW model and, besides, the error of the ANN related to
the MODFLOW model remains small. Therefore, the high computational efficiency
and the nonlinear simulation ability make the proposed model have the potential
to apply on a real case planning for unconfined aquifer. Second, for supply policy
determination, the optimal algorithm combination in the hybrid architecture, LP
and GA, can remain the high computational efficiency of LP for solving the linear
sub-problem and the robust, flexibility and nonlinear ability of GA for solving the
nonlinear sub-problem. Based on not only the high computational efficiency of the
recursive ANN groundwater simulation but also the advantages of the hybrid optimal
algorithms, the proposed hybrid architecture can be further extending to a field case.

The usage of the operation rule curves for multi-reservoir systems is the most
widely-used approach to determine the priority between different reservoirs and
allocate reservoir supply quantities. In this study, the operation rule curves were
further applied to determine the priority between multi-reservoir and groundwater
systems. Compared with the DCU case, the proposed CCU model, CUMM, could
improve the SI from 1.54 to 1.13 or 0.79. The different improvement efficiencies
depend on the definition of the groundwater operation rule curves. The thicker
the upper layer of groundwater system, the lower the SI for the CCU model. The
comparison of different rule curves shows that the different thickness of the upper
layer defined by rule curves significantly affected water usage priority between
reservoir system and groundwater system. Comparing Case #3 and #4 shows that the
average production efficiency for groundwater system significantly increased from
52.31 % to 68.46 %.

The operation rule curves for traditional reservoir operation typically vary with
seasons. Because water resources are more plentiful during flood seasons, the heights
of the operation rule curves are lower, increasing the usage priority of reservoir
storage. Because the heights of the operation rule curves for groundwater system
remain static over seasons, the variation of the groundwater rule curves allows the
CUMM to further improve the system SI in future study.

Finally, this study uses the operation rule curve theory as a new type of framework
for conjunctive use management. Because the operation rule curve theory is widely
used for practical reservoir management, the framework is easy to understand for
not only academic researchers, but also engineers, who are responsible for practical
water management.
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