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Abstract For the specialty of cascade reservoirs optimization and the premature conver-
gence of GA, several improvement strategies are presented in this paper. Firstly, solution
space generation method is found application to generate feasible initial population. Sec-
ondly, chaos optimization is adopted to optimize initial population. Thirdly, new selective
operators, trigonometric selective operators, are proposed to overcome the fitness require-
ment of non-negative and to maintain the diversity of population. Fourthly, adaptive
probabilities of crossing and mutation are adopted in order to improve the convergence
speed of GA. Besides, elitist strategy is used to ensure that the best individual can be
remained in each generation. Furthermore, the performance of these proposed improvement
strategies was checked against the historical improvement strategies by simulating optimal
operation of Three Gorges cascade reservoirs premised on historical hourly inflows, and the
comparison yields indications of superior performance. In these proposed improvement
strategies, trigonometric selective operators are feasible and effective for optimizing opera-
tion of cascade reservoirs. These new selective operators could help GA to find a more
excellent solution in the same algebra, and the performance of convergence speed is
advanced. Adaptive probabilities of crossing and mutation have better performance than
other improvement strategies, such as annealing chaotic mutation and simulated annealing of
large probability of mutation, because this method realizes the twin goals of maintaining
diversity in the population and advancing the convergence speed of GA.
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1 Introduction

Water resources system optimization is an important task in water resources management,
various researches involving physical model and mathematical model have been devel-
oped by pundits. Loucks et al. (1981) proposed stochastic programming to address
uncertainties in water resources management. Barros et al. (2003) prevented nonlinear
programming (NLP) to optimize large-scale hydropower system operations. He et al.
(2010) developed downscaling method to slove disaggregation model of daily rainfall
and concluded that the approach could be used to downscale daily rainfall series to
hourly. Jing and Chen (2011) combined semi-distributed land use-based runoff process
and WATFLOOD model to understand the interactions between climate and hydrological
processes in subarctic wetlands. Suo et al. (2011) proposed an inventory-theory-based
interval-parameter two-stage stochastic programming (IB-ITSP) model through integrat-
ing inventory theory into an interval-parameter two-stage stochastic optimization frame-
work. This method addresses system uncertainties with complex presentation and reflects
transferring batch and period in decision making problems. As one of the water resources
system optimization, the revenue of reservoir can be improved by carrying out optimal
operation without additional investment. Therefore optimal operation of reservoir has
always been a key issue, and various optimization techniques that have been suggested
and developed include gradient-based search, linear programming (LP), NLP, dynamic
programming (DP), etc. (Yeh 1985; Simonovic 1992; ReVelle 1997; Pursimo et al. 1998;
Chau and Albermani 2003; Labadie 2004). The traditional approaches have gained much
popularity and certain success. However, DP faces the “curse of dimensionality” and
these optimization techniques can only be applied for small and simplified problems,
such as optimal operation of a single reservoir(Yang and Chen 1989; Chang et al. 1990).
Recently, many modern intelligent heuristic approaches such as Genetic Algorithm (GA),
Simulated Annealing (SA), Artificial Neural Network (ANN), Chaotic Optimization
Algorithm and combinations of these above methods have been developed for optimizing
multi-reservoir system operation (Naccarino et al. 1988; Yan et al. 1993; Arce et al.
2002). Among them GA is an adaptive heuristic search algorithm based on the evolu-
tionary ideas of natural selection and genetic. Its basic concept is to simulate process in
natural system necessary for evolution, specifically those that follow the principles first
laid down by Charles Darwin of survival of the fittest (Holland 1975). As such it
represents an intelligent exploitation of a random search within a defined search space
to solve complexities problems. Oliveira and Loucks (1997) employed GA to derive
multi-reservoir operation operating policies and concluded that the approach can be
applied to example reservoir systems used for water supply and hydropower. Chang
and Chen (1998) used two types of GA, real-coded and binary-coded, to optimize a flood
control reservoir, and demonstrated that real-code one had produced superior results
compared to the other method. Louati et al. (2011) applied a GA for optimization of a
complex reservoir system with multiple objectives.

However, with the increase of the larger problem scale of water resources system
optimization, especially for the problem with many nonlinear constraints such as cascade
reservoirs regulation, GA is most frequently faced with the problems of premature
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convergence and local optimal deficiency. In order to overcome these shortcomings, numer-
ous researchers have developed various improvement strategies. Goldberg et al. (1989a)
defined a messy genetic algorithm (MGA), which could solve more difficult problems than
had been possible to date with other GAs by processing variable-length strings. Srinivas and
Patnaik (1994) proposed an adaptive genetic algorithm (AGAa) with adaptive probabilities
of crossover and mutation. This efficient approach realized the twin goals of improving
convergence speed and maintaining diversity in the population of GA. Furthermore, various
improved GAs has been applied in water resources system optimization. Chang et al. (2005)
developed GA with real-value coding and this improved GA had better performance of
convergence speed is proved. Cheng et al. (2008) presented a hybrid method that combined
a genetic algorithm with chaos optimization algorithm. In this new method chaos was
adopted to optimize the initialization in order to improve species quality, and standard
mutation operator was replaced by annealing chaotic mutation operation to avoid the search
being trapped in local optimum. Chen et al. (2010) applied an adaptive genetic algorithm
(AGAb) with a double dynamic mutation operator to implement eco-friendly operation of
cascade reservoirs in the Southwest of China. And it was shown that the new mutation
operator advances search accuracy. As can be seen from the literatures, these improved GA
have shown excellent performance. However, the improvement of GA about solving
prematurity in the selection process has not involved in till now. GAs are affected by the
selection process, premature convergence of GA would be avoided well through improving
selection method. Meanwhile, several different improvements have been applied in crossing
mutation operation. It is significant task to find an advanced one to optimize cascade
reservoirs operation.

In order to overcome these flaws, the new selective operators, trigonometric selective
operators, are proposed in the paper. These proposed selective operators achieve keeping
diversity of population by overcoming fitness requirement of non-negative to solve
prematurity in the selection process of GA. Moreover a hybrid architecture jointed five
improvement strategies is presented. Firstly, solution space generation method is applied
to generate feasible initial population. Secondly, chaos optimization is used to optimize
initial population. Thirdly, trigonometric selective operators are applied to overcome
fitness requirement of non-negative. Fourthly, adaptive probabilities of crossing and
mutation are adopted in order to improve convergence speed of GA. The probabilities
of crossing and mutation vary depending on fitness value of the solutions. Finally, elitist
strategy is used to ensure that the best individual can not be destroyed in each genera-
tion. The main characteristic of this hybrid architecture is to fully apply these five
improvement strategies respective advantages. This research takes Three Gorges cascade
reservoirs as case study, and checks the performance of those improvement strategies
against the historical improvement strategies.

2 Mathematical Model for Cascade Reservoirs Daily Scheduling

Cascade reservoirs consist of several reservoirs located in serial at the same river basin.
Thus cascade reservoirs have hydraulically coupling features. Even though a reservoir
system is designed for multiple purposes, these multiple objectives can be combined into a
single objective function by weighting factor approach. Therefore this paper focuses on
optimal operation of Three Gorges cascade reservoirs, and the single objective is to
maximize generation output over 24 h periods according to historical hourly inflows of
Three Gorges reservoir.
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In mathematical model for cascade reservoirs daily scheduling, the objective function is
got by the addition of each objective function of single reservoir, which forms the cascade
reservoirs. It can be repressed as

max
X
i¼1

m X
t¼1

T

Ni;t QLi;t ;Hi;t

� �( )
∀t ¼ 1; 2;…; 12&∀i ¼ 1; 2;…;m ð1Þ

Subject to the following constraints:

& Water balance equation

V i;tþ1 ¼ V i;t þ I i;t−QLi;t−QSi;t

� �
Δt ð2Þ

& Reservoir water level limits

Zmini;t ≤Zi;t ≤Zmax i;t ð3Þ

Zi;0 ¼ Zi
0
; Zi;T ¼ Zi

0 0 ð4Þ
& Reservoir discharge limits

Qmin i;t ≤Qi;t ≤Qmax i;t ð5Þ
& Hydropower station power generation limits

Nmin i;t ≤Ni;t ≤Nmaxi;t ð6Þ
& Hydraulically coupling constraints

I i;t ¼ a� Qi−1;t þ b ð7Þ

where

i the sequence number of reservoirs. Reservoirs are sequentially
numbered from upstream to downstream by their position in cascade
reservoirs.

m the number of cascade reservoirs.
T the schedule period, T=24 h.
Hi,t the generating head of ith reservoir in period t, m. It presents water level

difference between upstream and downstream. In which, the upstream
water level is mean water level, and the downstream water level is
obtained by Qi,t and downstream water level-discharge curve.

Vi,t volume of reservoir storages of ith reservoir at the beginning of period t,m3.
Vi,t+1 volume of reservoir storages of ith reservoir at the end of period t, m3.
Ii,t, QLi;t,QSi;t inflow, power discharge and surplus discharge of ith reservoir in period t,m3/s.
Zmin i;t,Zi,t,Zmax i;t minimum water level, operating water level and maximum water

level of ith reservoir in period t, m.
Zi,0, Zi,T the initial and final water level of ith reservoir, m.
Zi

′, Zi
′′ the given initial and given final water level of ith reservoir to control

the water consumption in the whole schedule period, m.
Qmin i;t,Qi,t,Qmaxi;t minimum discharge volume, discharge volume and maximum discharge

volume of ith reservoir in period t, m3/s. And Qi;t ¼ QLi;t þ QSi;t .
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Nmin i;t ,Ni,t,Nmax i;t
firm power, operating power and installed capacity of ith

hydropower station, 104 kW.
Qi−1,t outflow of (i-1)th reservoir (namely, upstream reservoir in the case

of ith reservoir), m3/s.
a, b the coefficients to be obtained via measured data.

In period t, there is a hydraulically coupling constraint in cascade reservoirs optimal
operation. In traditional research (Mei and Zhu 2002; Tang et al. 2008) the lags between two
dams, time taken by the flow to reach the downstream reservoir, is considered by

I i;t ¼ qi;t þ Qi−1;t−τ i ð8Þ
Where, qi,t denotes local flow inflow of ith reservoir in period t;Qi−1;t−τ i is discharge volume

of (i-1)th reservoir in period t-τi, in which τi measured the time taken by the flow from (i-1)th

reservoir (namely, upstream reservoir) to ith reservoir (namely, downstream reservoir).
However, τi is not a constant, and its change value closely relates to Qi-1,t and river

conditions. Moreover, the variation can not be calculated by specific mathematical equa-
tions. Thus, correlation analysis is used for calibrating the measured data between cascade
reservoirs, and an equation of linear regression (Eq. 7) is adopted for dealing with the
calculation of the temporal-spatial variation of flow in this research. The Eq. 7 describing
temporal-spatial variation of flow between cascade reservoirs, it was applied in joint
optimization dispatching of Sanmenxia and Xiaolangdi reservoirs in China (Yang and Liu
2001). This equation of linear regression solves close hydraulic coupling between cascade
reservoirs and improves the precision of the simulation.

Suppose inflow of upstream reservoir sequence It, t=1,2,…T has been obtained by
historical hourly upstream reservoir inflows or hydrological forecasting. Therefore, this
optimal operation is a complex problem that includes linear and nonlinear, equality and
inequality constraints.

3 Genetic Algorithm for Optimal Operation of Cascade Reservoirs
and its Improvement Strategy

GA can be considered to consist of the following steps (Burn and Yulianti 2001):

(1) Make the string coding of parameter.
(2) Generate the initial population of strings.
(3) Evaluate the fitness of each string.
(4) Select excellent strings from the current population to mate.
(5) Perform crossover and mutation for the selected strings.
(6) Repeat steps 3–5 for the required iteration number of generation.

In addition, the individual coding of cascade reservoirs consists of single reservoir coding
from upstream to downstream. In GA, many improvement strategies have been proposed to
solve problems of premature convergence and to adapt the particularity of cascade reservoirs
optimization problem. In these improvement strategies, solution space generation method,
chaos optimization, adaptive probabilities of crossing and mutation, annealing chaotic
mutation, and simulated annealing big mutation, have shown excellent performance, thus
the premature convergence in crossing and mutation operation is improved (Srinivas and
Patnaik 1994; Zalzala and Fleming 1997; Cheng et al. 2008). However, the premature
convergence in selecting operation still exists.
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3.1 Initial Population and Individual Coding

Individual coding not only decides the performance of solution space, but also affects the
crossover and mutation operations indirectly. The distribution properties of initial population
affect convergence performance of GA seriously, and poor initial population may result in
slow convergence or even not converge (Zalzala and Fleming 1997).

3.1.1 Individual Coding

Individual coding has evolved from binary coding conversion to real-value coding (floating-
point coding, decimal coding) (Chang and Chen 1998; Chang et al. 2005). Binary strings are
easy to operate on, but discretization of the decision variable apace is required. Thus it often
brings redundant issues and long string, causing low search efficiency of algorithm. How-
ever, real-value coding operates directly on the phenotype of the solution and advances GA’s
search capabilities. Generally, for optimizing cascade reservoirs operation, real-value coded
GA obtains superior results than binary-coded one, in terms of high mean objective function
values. There are some advantages of real-value coding compared with binary coding.

(1) It is easy to express decision variables whose range changes large.
(2) Real-value coding is suitable for high precision operations. It is superior to binary

coding, in terms of handling complex constraints of decision variable.
(3) Real-value coding improves computational complexity and advances the efficiency of

the algorithm.

The real-value coding of cascade reservoirs is (Ki,0,Ki,1,…,Ki,T,Ki+1,0,Ki+1,1,…,
Ki+1,T,…,Km,0,Km,1,…,Km,T). Reservoir water level and real-coding can be expressed as follows

& The real-value coding

Ki;t ¼ int int
Zmax i;t−Zmin i;t

popdt

 !
þ 1

 !
� rnd

 
ð9Þ

& Reservoir water level

Zi;t ¼ Zmini;t þ Ki;t � popdt ð10Þ

where, popdt represents accuracy controlling parameter; and int, rnd denote an integral
function and a random function. Water levels are chosen as the variable parameter to
optimize, because objective function (generation output: Ni,t) is related to water levels.
There are two reasons to support this view. On the one hand, Hi,t is related to water levels;
on the other hand, QLi;t is related to water levels, according to Eq. 2 and that Vi,t, Vi,t+1 are all
related to water levels.

In the light of constraint Eq. 4, the initial real-value coding of a single reservoir (Ki,0) and
the end real-value coding of a single reservoir (Ki,T) can be represent as

Ki;0 ¼ int
Zi;0−Zmini;0

popdt

 !
&Ki;T ¼ int

Zi;T−Zmini;T

popdt

 !
ð11Þ

In order to avoid the change of Z0 and ZT by integral function operation, the encode
Eq. 10 is just used for middle water level.
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After making the string coding of parameter, it is significant to calculate fitness before
doing genetic evolution manipulation. Cascade reservoirs fitness function is the sum of
individual reservoir, and the single reservoir fitness can be expressed as

f ¼
X
i¼1

m X
j¼1

T

N Ki; j;Ki; j−1
� �

−α
t0
T0

β*
X
i¼1

T

Ai;t þ
X
i¼1

T

Bi;t

 ! !
ð12Þ

where, ∑
j¼1

T

N Ki; j;Ki; j−1
� �

is the sum of individual power generate output, 104 kW;

α denotes penalty coefficient; β represents balance coefficient between power generate
output and flow; t0 represents current evolution generation; T0 defines maximum evolution
generation; and Ai,t, Bi,t are flow penalty function and power generate output penalty
function according to Eqs. 5–6 respectively, moreover they can be considered as

Ai;t ¼
Qi;t−Qmini;t

��� ��� if : Qi;t < Qmini;t

Qi;t−Qmaxi;t

��� ��� if : Qi;t < Qmaxi;t

0 if : Qmini;t ≤Qi;t ≤Qmaxi;t

8>><
>>: ð13Þ

Bi;t ¼ Ni;t−Nmini;t

�� �� if : Ni;t < Nmini;t
0 if : Nmini;t ≤Ni;t

�
ð14Þ

3.1.2 Initial Population

There are two methods for generating initial population, the one is a randomly generated
method, and the other one is the solution space generation method. It is very difficult to
search a feasible solution by using randomly generated method, because the coding of
cascade reservoirs is a duplication of a single reservoir coding. And the distribution property
of initial population seriously affects convergence performance of algorithm. Thus, the
solution space generation method is superior to randomly generated method in terms of
optimizing cascade reservoirs operation.

Chaos is a universal phenomenon in natural world. Chaos means “a state of disorder”, but
it has some special properties such as ergodicity, inherent stochastic and it acquires all kinds
of states in a self-rule in a certain range. The species quality of initial population can be
improved by chaos optimization of the initialization (Cheng et al. 2008).

The chaotic sequence can usually be produced by the following well-known logistic map
(May 1976).

xkþ1
i ¼ 4⋅xki ⋅ 1−x

k
i

� �
∀xki ∈ 0; 1½ �&∀i ¼ 1; 2;…;m ð15Þ

where, variable x represents a chaos vector. Via this logistic map, a large difference will be
caused by even a small difference in the initial value of chaos variable in its long-time behavior.

Therefore, chaos optimization of the initialization consists of the following

Step 1. Reflect to chaos variable:

xi ¼ Ki−ai
bi−ai

∀t ¼ 1; 2;…; T&∀i ¼ 1; 2;…;m ð16Þ
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in which, Ki represents real-value coding of ith reservoir, and Ki=(Ki,0,Ki,1,…,Ki,T);
and bi, ai are the bounds for real-value coding of ith reservoir water lever.

Step 2. Complete iteration Eq. 12.
Step 3. Calculate fitness value f and f k+1. If fi,t

k ≤ f i,tk+1 then xik=xik+1(∀i=1,2,…,m) and f k=f k+1.
Step 4. Repeat steps 2–3 for taking adequate iteration number, (i.e. 400–500).

3.2 Genetic Evolution Manipulation

3.2.1 Selection Operation

Selection operation is one of the important aspects in the GA process. It involves randomly
choosing members of the population to enter a mating pool. The selection is often based on
proportion fitness or ranking fitness in GA. There are several methods for selection: Roulette
Wheel Selection (RWS) method, Tournament method and Ranking selection. Among them,
RWS is most commonly used (Al Jadaan et al. 2008). This method determines the reserving
possibility of descendants by the size of fitness, and is based on the proportion selection. It
requires that the value of fitness is higher than zero. However, the optimal operation of
cascade reservoirs can not meet this requirement, because of the penalty caused by con-
straints. Therefore, how to improve RWS method so that it could overcome the fitness
requirements of non-negative is a work worthy of further study.

The Selective Operators Based on Trigonometric Function Trigonometric selective opera-
tors are actually methods, which does nonlinear transformation on fitness. And fitness is
transformed into trigonometric function pj(pj ∈ [0,1]). Those four trigonometric selective
operators can be presented as follow

& Sine selective operator

pj ¼ sin
p
2
� f j− f min

f max− f min

� 	
ð17Þ

& Cosine selective operator

pj ¼ cos
p
2
� f j− f max

f max− f min

� 	
ð18Þ

& Tangent selective operator

pj ¼ tan
p
4
� f j− f min

f max− f min

� 	
ð19Þ

& Cotangent selective operator

pj ¼ cot
p
2
þ p

4
� f max− f j

f max− f min

� 	
ð20Þ

The selection operator is carefully formulated to ensure that better individuals of
population have a greater probability of being selected for mating. Take Sine selective
operator for instance, it can meet this requirement: xj and xj′ are individuals in the same
population. If the fitness meets fj < fj′, then obviously there will be 0 ≤ θ j < θ j0 ≤ p

2 , as
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we can see from Eq. 16. Thus we define 0 ≤ pj < pj′ ≤ 1, because the Sine function is

monotone increasing in 0; π2

h i
.

Trigonometric selective operators proposed are based on the individuals’ fitness, and
adapt for the solution with negative individual fitness. Therefore they can be adopted to
improve RWS, in order to develop GA solving cascade reservoirs optimal operation.

Sine-RWS is established by RWS combining with Sine selective operator. In addition,
other selective operators can be similar developed as it.

3.2.2 Implementation Steps of Sine-RWS

Step 1. Replace fj (fitness function) by pj as follows

pj ¼ sin
p
2
� f j− f min

f max− f min

� 	
ð21Þ

Step 2. Calculate cumulative value and the cumulative proportion of pj.
Step 3. Select cumulative proportion of pj by a uniform random number ([0, 1]) during

each round of the selection process.

Obviously, high-fitness individual is easy to be retained in the selection process, because
Sine function of high-fitness individual is larger than the low-fitness one.

3.2.3 Elitist Strategy

The best individual is expected to be preserved in each generation to advance exploration of
the global solutions. Therefore, elitist strategy is widely used in GA to improve global
optimal convergence speed. In this research, the top 5 % of individuals are preserved in each
generation. So they would not be destroyed in the operation of crossover and mutation.
Besides, the basis for the determination of excellent individuals is the value of fitness, and
higher fitness means more excellent.

However, the elitist strategy reduces the diversity of the population by concentrating on
some “super” individuals (Yong and Leung 2011). While, GA needs to maintain the
diversity in order to find the multiple optimal solutions. Thus in the operation of crossover
and mutation, the goal of maintaining the population diversity needs to realize.

3.2.4 The Operation of Crossover and Mutation

As can be seen from the literatures (Simonovic 1992; Chen et al. 2010), crossover operation
reflects global search capabilities of GA, and mutation operation represents local search
capabilities. For optimizing cascade reservoirs operation, multi-point crossover process and
multi-point mutation process can be adopted, taking a single reservoir as a unit to do a
single-point crossover or mutation operation. Crossover operation is a way to form two new
individuals by exchanging some genes of each chromosome. This study adopts a restricted
single-point crossover operation for each reservoir. And the crossover breakpoint takes place
in rnd [1, T-2]. In which rnd [1, T-2] represents a random number belong to [1, T-2]. In this
restricted single-point crossover operation, it is taken into account that the crossover
operation should reserve too much excellent genes of each individual and should produce
new individuals effectively. Moreover, the special encoding to set initial level and final level
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constantly is also considered in restricted single-point crossover operation. Mutation oper-
ation is an assistant method to restore genetic material. It involves the modification of the
value of individual. There are two patterns of mutation operation, the one is uniform
mutation, and the other is non-uniform mutation. It is bad for searching a key area in
uniform mode. So this study adopts non-uniform mutation pattern, that is to say, using
random disturbance to original gene. And it can be described as

K
0
i;t ¼

Ki;t þ f t0;Kmax i;t−Ki;t

� �
if : rnd 0; 1ð Þ ¼ 0

Ki;t− f t0;Ki;t−Kmin i;t

� �
if : rnd 0; 1ð Þ ¼ 1

�
ð22Þ

f t0; yð Þ ¼ y*ð1−r 1−t0=T0ð Þ*BÞ ð23Þ

where Ki,t and Ki,t
′ denote individual encodings before and after the operation of mutation

happening in “t”(t=rnd [1, T-2]). B represents system parameter, which determining depen-
dence degree of random disturbance on maximum evolution generation (T0).

Several improvements of crossover and mutation operation have been applied for reser-
voirs optimal operation (Simonovic 1992; Cheng et al. 2008; Li et al. 2010). The following
discusses their principles, advantages and disadvantages. And the one has superior perfor-
mance in optimizing cascade reservoirs operation will be introduced.

Adaptive Probabilities of Crossover and Mutation The significance of Pc (crossover prob-
ability) and Pm (mutation probability) for controlling GA performance has long been
acknowledged in literatures (Jong 1985; Goldberg 1989b). The higher value of Pc, the
greater is the chance of damaging genetic pattern. As Pc decreases, however, the search can
become slow. The choice of Pm is critical to GA performance, and large value of Pm

transform GA into a purely random search algorithm. However, it is difficult to produce a
new individual by small value of Pm. Traditional GA usually uses a constant Pc and Pm

(Chang et al. 2005). It is a very tedious work to define the value of Pc and Pm by repeated
experiments, for different optimization issues. And it is also a hard work to find the best
value of Pc and Pm for each question. Srinivas and Patnaik (1994) proposed adaptive
probabilities of crossover and mutation depending on the fitness value of individual.

Pc ¼
k1 f max− f 0ð Þ
f max− f avg

if : f ≥ f avg

k2 if : f < f avg

8<
: ð24Þ

Pm ¼
k3 f max− fð Þ
f max− f avg

if : f ≥ f avg

k4 if : f < f avg

8<
: ð25Þ

where, fmax is the highest value of fitness in the population, 104 kW; favg represents average
value of fitness in the population, 104 kW; f ′ denote higher fitness one in two crossover
individuals, 104 kW; f is fitness value of mutation individual, 104 kW; and k1, k2, k3, k4 are
adaptive parameters.

But this improvement is ineffective in early evolution, because Pc=0 and Pm=0 when the
individual’s fitness value is the highest one. The developed adaptive Pc and Pm are not only

4218 K. Yang et al.



depending on fitness value of individual, but also depending on dispersion degree of
population. They can be expressed as

Pc ¼ Pc1−
Pc1−Pc2ð Þ f 0− f avg

� �
f max− f avg

if : f avg ≤ f 0

Pc1 if : f 0 < f avg

8><
>: ð26Þ

Pm ¼ Pm1−
Pm1−Pm2ð Þ f max− fð Þ
f max− f avg

if : f avg ≤ f

Pm1 if : f < f avg

8<
: ð27Þ

in which, Pc1=0.9, Pc2=0.6, Pm1=0.1, Pm2=0.001.
This adaptive improvement not only obtains through having lower values of Pc and Pm

for high fitness individuals and higher values of Pc and Pm for low fitness individuals, but
also achieves to give the individual of the maximum fitness a nonzero Pc and a nonzero Pm.
This developed adaptive Pc and Pm depend on fitness value of individual and the dispersion
degree of population. Thus this improvement achieves the twin goals of maintaining
diversity in the population and sustaining the convergence capacity of the GA. And it
reduces the influence of “super” individuals concentrated by elitist strategy.

Simulated Annealing of Large Probability of Mutation The generating offspring of this
improved algorithm is under control of the process in simulated annealing. And this
improvement Pc and Pm decrease with annealing temperature dropping.

Crossover probability Pc ¼ 0:6−φ=T t0ð Þ ð28Þ

Mutation probability Pm ¼ 0:9ω
ffiffiffiffiffiffiffiffiffiffiffi
T t0ð Þ

p
=T 0 ð29Þ

where 8 and 5 are proportional coefficients; and T(t0) is a temperature function decreasing
by evolution.

The searching of this improved algorithm is not only globally but also locally. It adopts
large probability of mutation to get out of the local optimal solutions and applies simulated
annealing to improve the stability of large mutation probability. The key process of this
improved algorithm can be described as:

Calculate the deviation value between old fitness and the new one (in terms of offspring x′):
Δf = f (x′) − f (x). IfΔf > 0, then x′will be accepted as a new solution (individual); ifΔf < 0, then
x′ will be accepted by the probability of min{1,exp(−Δf / T(t0))}, in which T(t0) denotes the
temperature of t0

th generation.
That is to say, the offspring is inspected via simulated annealing after crossover andmutation

operation.

Annealing Chaotic Mutation Operation This improvement takes advantage of chaotic
searching to find another more excellent solution in the current neighborhood area of
optimum solution. It effectively overcomes the default that algorithm searching speed
obviously becomes slow when search is close to the global optimum (Cheng et al. 2008).
That is to say, a heuristic gene mutation operation is developed, the main process as follow

xkþ1
i ¼ 1−θð Þxk�i þ θxki ð30Þ
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where, xi
k* is a chaos vector mapping to [0,1] by the current best solution (K1

*,K2
*,…,Km

∗),
namely the best chaos variable; xk

i
is a chaos vector formulating after kth iteration; and xkþ1

i

represents an annealing chaotic mutation vector, after joining a random perturbation. In
which 0 < θ < 1, controlling by adaptiveness, and decreasing by evolution as follows:

θ ¼ 1−
k−1
k

����
����
n

ð31Þ

where n is an integer, according to the optimal objective function; and k represents iteration
number.

4 Case Study—Three Gorges Cascade

Three Gorges cascade reservoirs consist of Three Gorges reservoir (TG) and GeZhouBa
reservoir (GZB) located on the Yangtze River in China. GZB locates in downstream and
improves the navigation conditions between two dams. The Map showing the location of
Three Gorges cascade reservoirs in China is represented in Fig. 1. And the basic information
of Three Gorges cascade reservoirs is shown in Table 1.

From Eq. 7, hydraulically coupling constraints in Three Gorges cascade can be described
as

If Qsx,t <16,000 m3/s then

Igzb;t ¼ 0:996Qsx;t−262:2 ð32Þ
If Qsx,t >=16,000 m3/s then

Igzb;t ¼ 1:022Qsx;t þ 389:9 ð33Þ
in which, Qsx,t is outflow of Three Gorges in period t, m3/s; Igzb,t is inflow of GZB
corresponding to Qsx in period t, m3/s; and r represents correlation coefficient of linear
regression. From the absolute value of r, it is known that GZB inflow may be closely related
to TG outflow.

Fig. 1 Map showing the location of Three Gorge cascade reservoirs in China
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Firstly, in view of high-dimensional and nonlinear of cascade reservoirs, real-value
coding and solution space generation method are directly applied in this study. Moreover,
elitist strategy is used to ensure that the best individual can not be destroyed in each
generation. Secondly, the advantages of trigonometric selective operators and chaos opti-
mizing the initial population are analysed. Finally, “adaptive probabilities of crossover and
mutation”, “simulated annealing of large probability of mutation” and “annealing chaotic
mutation operation” about improvement strategies introduced above are discussed.

As representation of trigonometric selective operators, Sine-RWS is contrasted with
RWS. Simulate optimal operation premised on historical hourly flows is applied in order
to manifest the rationality of results. In the calculation, on the one hand real-value coding,
solution method and chaos optimization of the initialization are adopted. On the other hand
adaptive probabilities of crossover and mutation are also applied to improve convergence
speed. Besides, the size of population is 100, and popdt=0.01 m. The termination criterion of
GA optimizing reservoirs operation is requiring iteration number of generation (Burn and
Yulianti 2001). Besides, the maximum generation is chosen according to the performance of
working computer (Chang et al. 2005). Thus 300 is adopted as the maximum generation in
this research. In order to compare the performance, evolutionary generation 100, 150, 200,
250 and 300 are adopted as termination condition of genetic. Because GA is an optimization
method imitating biological evolution based on stochastic theory, this research studies ten
simulation operations for each selection operator in each evolutionary generation, and
selects the average result as the optimal scheduling for comparison.

The contrast of initial population improvement strategies and crossover and mutation
improvement strategies are studied as the same contrast mode. Three representative
hydrographs are adopted in this research. Besides, the quantification criterion of inflow is
historic statics hydrographs of Three Gorges.
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Fig. 2 The contrast of selection operation improvement strategies, case 1

Table 1 The basic information of Three Gorges cascade reservoirs

Dead water
level(m)

Normal water
level(m)

Firm
power(104 kW)

Installed
capacity(104 kW)

Minimum discharge
volume(m3/s)

TG 145 175 499 1820 5000

GZB 65.5 66.5 76.8 271.5 3200
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4.1 Case 1: The Historical Hourly Inflows of Three Gorges are Small

Case 1 represents that a small hydrograph occurs in cascade system. Figure 2 shows the contrast
of selection operation improvement strategies and Table 2 represents the contrast optimal
operation result of selection operation improvement strategies in each evolutionary generation.
Meanwhile, Fig. 3 shows the contrast of initial population improvement strategies and Table 3
represents the contrast optimal operation result of initial population improvement strategies in
each evolutionary generation. Moreover, Fig. 4 shows the contrast of crossover and mutation
improvement strategies and the Table 4 describes the contrast optimal operation result of three
crossover and mutation improvement strategies in evolutionary generation 300.

4.2 Case 2: The Historical Hourly Inflows of Three Gorges are Medium

Case 2 represents that a medium hydrograph occurs in cascade system. Figure 5 represents
the contrast of selection operation improvement strategies and Table 5 shows the contrast
optimal operation result of selection operation improvement strategies in each evolutionary
generation. Meanwhile, Fig. 6 shows the contrast of initial population improvement strate-
gies and Table 6 represents the contrast optimal operation result of initial population
improvement strategies in each evolutionary generation. Besides, Fig. 7 shows the contrast
of crossover and mutation improvement strategies and the Table 7 describes the contrast
optimal operation result of three crossover and mutation improvement strategies in evolu-
tionary generation 300.

4.3 Case 3: The Historical Hourly Inflows of Three Gorges are Large

Case 3 represents that a large hydrograph occurs in cascade system. Figure 8 shows the
contrast of selection operation improvement strategies and Table 8 represents the contrast
optimal operation result of selection operation improvement strategies in each evolutionary
generation; Meanwhile, Fig. 9 shows the contrast of initial population improvement strate-
gies and Table 9 represents the contrast optimal operation result of initial population
improvement strategies in each evolutionary generation; In addition, Fig. 10 shows the
contrast of crossover and mutation improvement strategies and the Table 10 describes the
contrast optimal operation result of three crossover and mutation improvement strategies in
evolutionary generation 300.
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Fig. 3 The contrast of initial population improvement strategies, case 1
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Figures 2, 5 and 8 show Sine-RWS has a better performance in the same evolutionary
generation than RWS. From “the difference” represented in Tables 2, 5 and 8, it is obviously
that the stability of GA is improved. Only in low evolutionary generation, Sine-RWS
sometimes has a worse stability. However, GA often adopts high evolutionary generation
as the requiring iteration number of generation for optimizing cascade reservoirs operation.
That is to say, the improved selection operator accelerates convergence speed and the
stability of GA optimizing cascade reservoirs operation. The reason of producing a better
performance is contributed to using trigonometric selective operators to do nonlinear
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Fig. 4 The contrast of crossover and mutation improvement strategies, case 1

Table 4 The contrast optimal operation result of three crossover and mutation improvement strategies in
evolutionary generation 300, case 1

Generation power output of cascade system (Unit 104 kW)

Improvement Adaptive Annealing chaotic Simulate annealing of large mutation probability

Average value 17709.7 17703.3 17685.8

Maximum value 17718.5 17714.8 17719.1

Minimum value 17705.6 17696.2 17647.5

The difference 12.9 18.6 71.6

“The difference” denotes the difference value between maximum value and minimum value
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Fig. 5 The contrast of selection operation improvement strategies, case 2
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transformation on fitness. This nonlinear transformation is equal to adding noise in fitness,
thus the fitting degree of fitness needs further study.

The above studies show that trigonometric selective operators are feasible and effective to
overcome the fitness requirement of non-negative. They are superior in maintaining diver-
sity in the population and improving the problem of slow convergence speed, and they are
suitable to optimizing cascade reservoirs operation.

Figures 3, 6 and 9 and Tables 3, 6 and 9 demonstrate that chaos optimization of the
initialization obviously improves stability and convergence speed of GA. The chaos has
special characteristic such as ergodicity, regularity, and it has such sensitivity that a tiny
change of initial condition can lead to a big change of the system. Chaos accelerates
convergence speed of GA, undoubtedly. For cascade reservoirs optimal operation, the
distribution property of initial population seriously affects convergence performance of
GA, thus it is significant to adopt chaos optimization of the initialization.

From Figs. 4, 7 and 10, it is remarkable that adaptiveness (“adaptive probabilities of
crossover and mutation”) is the best improvement for crossover and mutation operation. To
maintain diversity in the population, in adaptive improvement strategy, Pc and Pm increase as
fitness value of population got to become equal or got to local optimization value. However,
Pc and Pm decrease as fitness value of population became disperse. Meanwhile, the higher
fitness individuals are corresponding to larger Pc and Pm, and lower fitness individuals are
corresponding to smaller Pc and Pm. The adaptive improvement strategy keeps diversity in
the population and advances convergence speed by taking advantage of fitness value of
individuals and dispersion degree of population. However, annealing chaotic (“annealing
chaotic mutation operation”) just takes advantage of chaotic searching to find another more
excellent solution in the current neighborhood area of optimum solution. Simulated
annealing of large mutation probability (“simulated annealing of large probability of muta-
tion”) adopts large probability of mutation to get out of the local optimal solutions and uses
simulated annealing to improve the stability of large mutation probability. Fitness value of
individuals is considered in annealing chaotic and simulated annealing of large mutation
probability improvement strategies. But dispersion degree of population is still not taken into
account. That is why adaptive improvement strategy has a better performance than others.
Tables 2, 5 and 8 also show that adaptiveness is the best improvement for crossover and
mutation operation. It helps to find the best solution and to have a better stability of GA.
However, even though simulated annealing is used to improve the stability of large mutation
probability, but the effect is still not perfect, because the difference between maximum value
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Fig. 6 The contrast of initial population improvement strategies, case 2
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and minimum value in evolutionary generation 300 is still large (Tables 4, 7 and 10).
Besides, the performance of annealing chaotic mutation operation is also not perfect.

The above comparisons show that the proposed new selection operators are feasible and
effective to improve the performance of GA. From the comparisons, we can draw the
conclusion that the respective advantages of five improvement strategies (solution space
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Fig. 7 The contrast of crossover and mutation improvement strategies, case 2

Table 7 The contrast optimal operation result of three crossover and mutation improvement strategies in
evolutionary generation 300, case 2

Generation power output of cascade system (Unit 104 kW)

Improvement Adaptive Annealing chaotic Simulate annealing of large mutation probability

Average value 36171.8 35261.6 34214.4

Maximum value 36557.8 36264.6 36427.7

Minimum value 35916.9 34556.7 29842.3

The difference 640.9 1707.9 6585.4

“The difference” denotes the difference value between maximum value and minimum value
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Fig. 8 The contrast of selection operation improvement strategies, case 3
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generation method, chaos optimization of initial population, trigonometric selective opera-
tors, adaptive probabilities of crossing and mutation, and elitist strategy) can be found
application effectively. Therefore, the hybrid architecture jointed these improvement strate-
gies has excellent performance, and it is suitable to optimizing cascade reservoirs operation.

5 Conclusions and Future Work

5.1 Conclusions

a. Optimal operation of cascade reservoirs can improve the efficiency of water resource
utilization and benefit. In this research, the hydraulically coupling constraint in cascade
reservoirs is described well in mathematical model for cascade reservoirs daily sched-
uling. And the solution methodology of optimizing cascade reservoirs operation, an
improved adaptive genetic algorithm, is proposed. The simulating optimal operation of
Three Gorges demonstrates that the proposed method is feasible and effective to
optimizing cascade reservoirs operation. In terms of water resources point, the proposed
method finds effective storage and discharge status changing process of cascade reser-
voirs. Water utility efficiency of cascade reservoirs is promoted.

b. GA overcomes the “curse of dimensionality”, that is to say, GA is more suitable for
solving optimal operation of cascade reservoirs. There are a lot of improvement
strategies on GA for cascade reservoirs optimal operation: (1) Generating initial popu-
lation concerned: real-value coding and solution space generation method can ensure
the convergence of GA to optimize cascade reservoirs operation, and chaos optimization
of the initialization can improve the stability and the convergence of GA by the fine
structure of chaos. (2) Selection operation highly depends on non-negative value of
fitness. However various constraints of optimizing cascade reservoirs operation usually
give rise to negative fitness. Thus traditional selection operator has its limitation for GA
optimizing cascade reservoirs operation and causes GA premature. Trigonometric
selective operators are superior in maintaining diversity in the population and improving
the problem of slow convergence speed by doing nonlinear transformation on fitness.
And they are feasible and effective for optimizing cascade reservoirs operation. (3)
There are lots of improvement strategies for crossover and mutation, and the most
excellent one is “adaptive probabilities of crossover and mutation”, which takes advan-
tage of fitness value of individuals and dispersion degree of population. However, the
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performance of “annealing chaotic mutation operation” and “simulated annealing of
large probability of mutation” are not as excellent as adaptive one, because they just take
advantage of fitness value. And “simulated annealing of large probability of mutation”
has a poor stability.

5.2 Future Work

a. The new selective operators, trigonometric selective operators, actually are methods
doing a nonlinear transformation of fitness function. After transformation, the value of
fitness is changeable, that is to say the noise is added in fitness value. However, the
proposed new operators could improve the problem of slow convergence speed and they
are more feasible and effective in maintaining diversity in the population than traditional
selective operators. Therefore the noise added in fitness value needs research further.

b. Optimal operation of cascade reservoirs is a complex problem. Firstly, the natural water
inflow, it itself indeterminate and must be forecast. So the uncertainty and risk of
cascade reservoirs optimal operation needs research further. Secondly, the close hydrau-
lic coupling between cascade reservoirs makes it more difficult. Hydraulically coupling
constraints vary over daily scheduling period. In the case of daily optimal operation, the
last scheduling period discharge volume of upstream reservoir affects the next day’s first
scheduling period inflow of downstream reservoir. However, it can not be represented
by specific mathematical equations in a daily optimal operation model, it needs research
further.

47000

47500

48000

48500

49000

49500

0 50 100 150 200 250 300 350

Evolutional generation

Po
w

er
 g

en
er

at
io

n 
ou

tp
ut

(1
04 kW

)

Adaptive

Annealing chaotic

Simulate annealing of large mutation probability

Fig. 10 The contrast of crossover and mutation improvement strategies, case 3

Table 10 The contrast optimal operation result of three crossover and mutation improvement strategies in
evolutionary generation 300, case 3

Generation power output of cascade system (Unit 104 kW)

Improvement Adaptive Annealing chaotic Simulate annealing of large mutation probability

Average value 49310.7 48551.2 48061.08

Maximum value 50196 49464.8 48544.8

Minimum value 48644.1 47570.4 46314.8

The difference 1551.9 1894.4 2230

“The difference” denotes the difference value between maximum value and minimum value
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