
GIS-Based Spatial Monte Carlo Analysis for Integrated
Flood Management with Two Dimensional
Flood Simulation

Honghai Qi & Pu Qi & M. S. Altinakar

Received: 13 March 2012 /Accepted: 15 May 2013 /
Published online: 2 July 2013
# Springer Science+Business Media Dordrecht 2013

Abstract Spatial Monte Carlo Analysis (SMCA) is a newly developedMulti-Criteria Decision
Making (MCDM) technique based on Spatial Compromise Programming (SCP) and Monte
Carlo Simulation (MCS) technique. In contrast to other conventional MCDM techniques,
SMCA has the ability to address uneven spatial distribution of criteria values in the evaluation
and ranking of alternatives under various uncertainties. Using this technique, a new flood
management tool has been developed within the framework of widely used GIS software
ArcGIS. This tool has a user friendly interface which allows construction of user defined
criteria, running of SCP computations under uncertain impacting factors and visualization of
results. This tool has also the ability to interact with and use of classified Remote Sensing (RS)
image layers, and other GIS feature layers like census block boundaries for flood damage
calculation and loss of life estimation. The 100-year flood management strategy for Oconee
River near the City ofMilledgeville, Georgia, USA is chosen as a case study to demonstrate the
capabilities of the software. The test result indicates that this new SMCA tool provides a very
versatile environment for spatial comparison of various flood mitigation alternatives by taking
into account various uncertainties, which will greatly enhance the quality of the decision
making process. This tool can also be easily modified and implemented for solving a large
variety of problems related to natural resources planning and management.
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1 Introduction

River flooding is one of themost common natural hazards in the world, which can cause serious
loss in terms of lives, buildings, and infrastructures (Qi et al. 2010). As a consequence, the need
for flood risk assessment has become critical (Wang et al. 2011). Flooding is a complex
phenomenon which can be affected by changes coupled to terrestrial, socio-economic and
climate systems (Kundzewicz et al. 2010). Population-At-Risk (PAR), the degree of awareness
of this population, presence and degree of protection measures, existence of early warning
systems and the time of release of the warning are all related factors. Under these conditions,
flood management strategies such as structural and non-structural flood protection measures
can then be treated as a spatial problem (Simonovic 2002; Qi and Altinakar 2011a). Structural
measures include dykes, diversion channels, reservoirs, and non-structural measures include
flood warning, and mass evacuation, etc. (Yazdi et al. 2012). Representation of these flood
mitigation alternatives and objectives in space provides a better insight into the characteristics
of the problem and aid decision making.

Conventional flood management decision making tools do not consider the spatial variabil-
ity of the criteria values, which are used to evaluate potential alternatives. The criteria values,
which they use, represent average or total impacts incurred across the entire region being
considered. In identifying the best solution from a set of potential flood mitigation alternatives
using conventional tools, only the region as a whole is considered. By doing so, the local
variation in impacts resulting from the implementation of various flood protection alternatives
is ignored. Consequently, the alternative identified as the best for an entire region by a
conventional tool is rarely the best for all locations within that region (Simonovic 2002).
Spatial Compromise Programming “Simonovic 2009” is cited in text but not given in the
reference list. Please provide details in the list or delete the citation from the text.(SCP), one of
themathematical programming techniques ofMulti-Criteria DecisionMaking (MCDM), which
takes into account spatial variability of alternatives and decision makers’ preferences, consti-
tutes a promising new tool for flood management decision making (Ernst et al. 2008).

Flood management decision making must take uncertainties into account (Di et al. 2010).
The first type of uncertainty arises from the natural variability (inherent randomness) of the
variables entering into analysis, and can be spatial or temporal. The second type of uncertainty,
the epistemic uncertainty, encompasses the knowledge uncertainty due to lack of sufficient
knowledge in modeling the physical processes and the parameters involved, as well as the
decision model uncertainty. When the probability distribution functions describing these un-
certainties are defined, the Monte Carlo method, based on stochastic sampling, is used to obtain
the expected value of flood damage, and its standard deviation. In predicting the consequences
of a flood caused by the failure of a control structure, such as a dam break or levee breach, the
expected value of loss of life should also be calculated in addition to the expected value of the
flood damage (Graham 1999 and Dise 2002).

Developed by National Center for Computational Hydroscience and Engineering, the
University of Mississippi, USA, CCHE2D-FLOOD model uses a robust, shock capturing
explicit scheme, which allows the presence of mixed flow regimes in the computational
domain (e.g. supercritical flows, subcritical flows, transcritical flows, overland flows, and
overtopping flows), and can resolve surge-type flow discontinuities. The solution scheme

3632 H. Qi et al.



automatically handles wetting and drying nodes. The 2D CCHE-FLOOD can import GIS
topographic data (e.g. USGS DEM, ASCII Raster, regular XYZ format, etc.) to prepare the
mesh, and to assign the bed elevations to the nodes. The result file can be imported into a
GIS program for post-processing. CCHE2D-FLOOD has been extensively tested against
various analytical, experimental and field data. Currently studies are underway for
parallelization of the code for faster online simulation.

The main objective of the research described in this paper is to develop a Spatial Monte
Carlo Analysis (SMCA) tool in widely used GIS software package ArcGIS version 9.2.
Flexible definition of criteria can be realized through the interface of the program from the
computational results of a 2D flood analysis model, including linear, nonlinear combinations
or even conditional format. Some crucial criteria that are usually implemented for evaluating
flood hazard, such as loss of life and flood damage can be constructed within the framework
of the tool by interacting with other GIS feature layers like census block layer and remote
sensing images like LANDSAT or LiDAR image. The expected results were obtained using
the SMCA method, where various uncertainty factors were considered. This tool takes
advantage of the fast raster computation in ArcGIS so that various combinations of criteria
and alternatives can be evaluated in a short time. The visualization of the results and
statistical analysis are also provided to aid better decision making.

A case study of the 100-year flood management strategies on the Oconee River near
Milledgeville, Georgia, USA is used to test the capabilities of the program. The computa-
tional results from a set of potential flood protection alternatives were evaluated and ranked
using the software and the final map clearly shows spatial variability of each alternative. The
versatile environment for construction of different criteria and use of other GIS
features/raster layers demonstrate that the software can provide the user with a useful tool
for flood management decision making. Since the SMCA technique is a general tool
developed for evaluation of different alternatives, this tool can be easily modified and
implemented to solve a large variety of problems related to natural hazards management.

2 Methodology

2.1 Concepts of Spatial MCDM and Introduction to SMCATool

Spatial multicriteria decision problems typically involve a set of geographically-defined
alternatives (events) from which a choice of one or more alternatives is made with respect to
a given set of evaluation criteria (Jankowski 1995). Spatial multicriteria analysis is vastly
different from conventional MCDM techniques due to inclusion of an explicit geographic
component. In contrast to conventional MCDM analysis, spatial multicriteria analysis re-
quires information on criterion values and the geographical locations of alternatives in
addition to the decision makers’ preferences with respect to a set of evaluation criteria.
The MCDM component consists of a collection of value or preference structure modeling
techniques and associated multicriteria decision models. The value or preference modeling
techniques may include criterion weighting techniques as well as the methodology for
generating the hierarchical value structure of evaluation criteria (Malczewski 1999). MCDM
models implicitly support decision makers in solving semi-structured decision problems.
Multicriteria spatial models allow consideration of a number of evaluation criteria (attributes
and/or objectives). This implies that usually a multitude of alternative solutions could be
recommended for formal analysis by the decision maker. Spatial MCDM approaches allow
for flexible integration of the attribute/spatial data and decision maker preferences. Thus the
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spatial modeling techniques become more realistic, more flexible, and more acceptable to
the user. Spatial MCDM models provide a control mechanism for decision makers, and
allow them to introduce qualitative and subjective information during the evaluation and
solution processes.

In contrast to other conventional MCDM techniques, such as SCP, one of the mathemat-
ical programming techniques, takes into account the spatial variability of alternatives and
decision makers’ preferences. SCP can be efficiently used to generate, evaluate, and rank a
set of potential flood protection alternatives (Tkach 1997). The distance metric values are
used to identify solutions that are close to the ideal solution at each location inside the
domain of interest. This calculation is performed as in Eq. (1):

Lj;x;y ¼
Xn

i¼1

wi
p

f þi;x;y − f i; j;x;y
f þi;x;y − f −i;x;y

�����

�����

p" #1=p

ð1Þ

where i=1,…, n criteria; j=1,…, m alternatives; x=1,…, a rows in the study area; y=1,…,
b columns in the image. For each cell location (x, y): Lj,x,y is the distance metric value;
fi,x,y
+ /fi,x,y

− is the best/worst value of the ith criteria; fi,j,x,y is the value of the ith criteria for
alternative j. wi are weights indicating decision maker preferences; p is a parameter (1≤
p≤∞). According to the above equation, the smaller the distance metric value, the better the
corresponding alternative. Weights wi are used to reflect the decision maker’s preferences
concerning the relative importance of each criterion. The parameter p is for adjusting the
importance of the maximal deviation from the ideal point. For p=1 all deviations are
weighted equally; for p=2 each deviation is weighted in proportion to its magnitude. For
the value p=∞, the min-max criterion is achieved (Simonovic 2002).

A Geographic Information System (GIS) has recently been successfully used for decision
making in flood management (Kourgialas and Karatzas 2011). Input data of various criteria
from each alternative is done by converting computational results to raster layers within the
GIS framework. The calculation of Eq. (1) is performed using a raster calculator function in
ArcGIS™ software environment and the results are thereby provided by raster images. The
advantage of working in a GIS environment is that numerous other GIS feature layers can be
brought in as overlays to achieve the loss of life computation and flood damage calculation.
The rest of the paper will introduce the methodology in detail and show how to implement
SMCA tool within the framework of widely used GIS software ArcGIS.

2.2 Modules of SMCATool

2.2.1 Loss of Life Estimation with Census Block Boundary

History shows that floods in a large populated area are capable of causing catastrophic life
losses. According to Graham (1999), loss of life resulting from flooding is highly influenced
by 3 factors: 1) The number of people occupying the floodplain, also called people at risk
(PAR); 2) The amount of warning time that is provided to the people exposed to dangerous
flooding and 3) The severity of the flooding. Risk and uncertainty analysis are needed to
estimate the fatality rate for different areas of the floodplain.

In order to determine the PAR value, the census block data, which is usually a vector polygon
layer (for example, in Topologically Integrated Geographic Encoding and Referencing, or
TIGER format) are used in the GIS environment. Census blocks are areas bounded on all sides
by visible features, such as streets, roads, streams, and railroad tracks, and by invisible
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boundaries, such as city, town and county limits, property lines, and short, imaginary extensions
of streets and roads. Generally, these polygons are small in area showing population variation.
After importing this layer into ArcGIS, the population density is first calculated by using the total
population of each census block and its area. Then this feature polygon layer is converted to a
raster layer which has the same cell size as the flood computation results. The cell value (usually
a 30 m by 30 m square in DEM), which represents the number of PAR living and working inside
each cell, is reclassified according to the product of population density and the cell area. This
operation would obtain a raster layer showing the PAR distribution.

The typical definition of warning time of a flood is the length of time from when the first
public warning is issued until the flood wave reaches the first person in the PAR (Aboelata et al.
2002; Poser et al. 2009). In a 2D raster layer format, this definition can be written as in Eq. (2):

Wt;x;y ¼ ATx;y−Wissue ð2Þ

In the above equation, for each cell (x, y) of the floodplain,Wt,x,y is the warning time and ATx,y
is the flood wave arrival time;Wissue is the initial time of a public warning. Since the time that the
flood event occurs is defined as time “0”, Wissue can be either positive which means warning is
given after the flood happens or negative whichmeans warning is given before the flood happens.

The flood severity definition is usually associated with the flood depth. Low, medium and
high severity can be categorized according to Graham (1999). Using the flood severity based
method for estimating life loss, the intersection of modified census block information and
inundation cell in raster format can produce a map showing the spatial distribution the loss of
life information. Raster calculation for the life loss is triggered by usingVBA script. For instance,
the syntax for retrieving the life loss of a sub category (low, medium and high intensity flood)
layer for a medium flood severity with no warning time in the domain is shown as in Eq. (3):

LossLife½ � ¼ D½ � < Hhigh

�� �
& D½ � >¼ Hlowð ÞÞ& AT½ �−Wissueð Þ < Wnwð Þ � Cs½ � � Rf ð3Þ

where [Lifeloss] [D], [AT] and [Cs] represent raster layers of loss of life, flood depth, arrival time
and census block information respectively, Hhigh/Hlow are the limits for high/low severity flood
depth,Wnw is the time limit for no warning, Rf is the corresponding fatality rate. The total loss of
life is estimated by summing the three low medium and high flood severity layers. This raster
layer can be used for further SCP criteria evaluation.

2.2.2 Flood Damage Calculation with Remote Sensing Image

Integration of the satellite and GIS datasets are often used to prepare the flood zonation mapping
(Patel and Srivastava 2013). The second criterion used in the evaluation of the alternatives is the
dollar value of damage to the flooded structures within the region of interest. Field surveys or
interviews and expert panel opinions are the two primary sources of the data used to develop
depth-damage relationships for structural damage and its content groupings and alternative
residence types. Flood depth here refers to the depth of the flooding above or below the first
floor of the structure. The percentage damage to the structure refers to the percent of the total
depreciated replacement cost of the structure that is damaged (US Army Corps of Engineers
1997). For this research, four different kinds of structures are considered for flood damage
calculation, including high density residential area, low density residential area, commercial/
industrial/transportation area, and urban/recreational area. The estimated dollar value for the
above 4 categories is $500,000, $400,000, $300,000 and $100,000 respectively on a 30 by
30 m cell basis.
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Remote sensing (RS) can provide important information by showing various urban land
cover features, like vegetation, residential areas or water bodies (Lillesand 1999). Since
different land feature types have their inherent spectral reflectance and emittance properties,
the RS image is usually classified so that all the pixels in the image fall into certain land
cover classes or themes. Each class of land features manifests a unique digital number (DN)
value. By overlaying the classified RS image on flood depth image, the flood damage
calculation can be achieved using arithmetic and relational raster map algebra. For example,
the following syntax will generate a raster layer showing the flood damage distribution in
dollars:

DamageMap½ � ¼
XL

l¼1

LandUse½ � ¼¼ DNlð Þ � Eq Depth−Damageð Þl
� �� DV l ð4Þ

where [DamageMap] is the raster map showing flood damage in dollars; [LandUse] is the
classified land use RS layer for the research area; l=1,…, L land use type. For land use type l,
DNl is the digital number; Eq(Depth-Damage)l is the depth-damage relationship equation, DVl
is the dollar value for a cell. Note that the rational operation ([LandUse]==DNl) will produce an
output raster layer with all the cells occupied by land use type l having a value “1” (also means
“TRUE”). The final damage image is then obtained by combining all the flood damage layers
across all the land use categories. This raster map directly shows the variations of damage in
dollar values in space. By overlaying the classified RS image with the flood inundation image,
the flood damage calculation can be achieved in GIS as shown in Fig. 1 (Altinakar et al. 2008).

CCHE-2D FLOOD

Flood Depths

Flood Velocities

Knowledge base

Depth and
Velocity vs.
% Damage

Relationships

Urban and
agricultural

property surveys

GIS Data (for ex.
HAZUS) and

Remote sensing
images

Infrastructures

Residential
Buildings

Commercial
Buildings

Industrial
Buildings

Public Buildings

Crop fields

Farm houses

Farm
installations

Property
values ($US)

% Damage

Urban and
Rural Damage

Maps ($US)

Empirical relationship based
on past events (USACE)

Infrastructure stock
Urban property stock
Rural (Agricultural) property stock

Fig. 1 Urban Flood Damage Calculations with RS Image
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2.2.3 Risk and Uncertainty Analysis

Flood hazard management formulated as a spatial decision making problem is subject to
multiple sources of uncertainty. A risk analysis approach to flood management uses
probabilistic descriptions of the uncertainty in estimates of selected important variables.
These enter into the computation as randomly distributed stochastic variables. The date
and time of the flood, for example, is a parameter which may significantly affect the
PAR distribution. In current practice, an event tree, such as the one given in Fig. 2, can
be used to estimate the PAR variation (Dise 2002) with date and time. The time of
releasing of the warning with respect to the beginning of the flood event, local flood
severity levels and PAR fatality rates also have uncertainties. For flood damage calcu-
lation, five important parameters including number of structures, structure value, content
value, other value and first floor height, are also treated as randomly distributed
variables for each land use category.

For each uncertainty variable, one of the four most commonly used distributions,
including normal, logarithms, triangular and uniform distributions (Table 1) is applied and
the related parameters are supplied through the user interface with date and time. Based on
the results of a 2D hydrodynamics analysis, ArcGIS functions are used to carry out a Monte
Carlo analysis by stochastic sampling of the uncertainty variables.

Monte Carlo simulation refers to a mathematical technique that converts uncertainties in
input variables of a model into probability distributions (Mooney 1997). By combining the
input distributions and randomly selecting values from them, it recalculates the simulated
model many times and brings out the probability of the output (Charalambous 2004). In this
study, the Monte Carlo simulation approach is first used to draw samples of n different
uncertainty parameters from their predetermined probability distribution. Then, the flood
management tool is used with those samples. The whole procedure is repeated for a large
number of model runs and the final results (loss of life and flood damage, with mean,
min/max and standard deviations) are then calculated from the results. The number of runs
required to achieve convergence can either be determined by using Kolmogorov-Smirnov
and Renyi statistics, or, more arbitrarily, by experience (Beck 1987). Theoretically, the
greater the number of simulations, the better resemblance between generated and parent
distribution of each random variable. However, for the complex flood management decision
support system with many uncertainty parameters running on a GIS platform, the compu-
tational time to achieve convergence may become prohibitively high. Therefore, there is
often a trade-off between desired accuracy and affordable computational expense. Generally,
Monte Carlo runs should be greater than 5,000 times.

Flood Event

Spring Summer Fall Winter

Weekday Weekend

Day Night Day Night

Weekday Weekend

Day Night Day Night

Weekday Weekend

Day Night Day Night

Weekday Weekend

Day Night Day Night

40% 10% 30% 20%

71% 29% 71% 29% 71% 29% 71% 29%

50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%

14.20% 14.20% 5.80% 5.80% 3.55% 3.55% 1.45% 1.45% 10.65% 10.65% 4.35% 4.35% 7.10% 7.10% 2.90% 2.90%

50%

Fig. 2 Event tree for the breakdown of a year into to time periods when PAR is different. Blue numbers indicate
the probability of branches and the red numbers correspond to the final probabilities at the terminal nodes.
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It should be noted here that the results of the Monte Carlo simulation show the spatial
variances of loss of life and flood damage at each geographical location (based on the
resolution of the data, called pixel location) in the research area. Hence, this method is called
“Spatial” Monte Carlo simulation method. The final results can be displayed in the form of
raster/vector maps as an aid for better decision making related to flood hazard management
(Qi and Altinakar 2011b). It can also be used to evaluate the cost effectiveness of alternative
approaches to strengthening flood control measures.

2.2.4 GIS Post-Processing

The system structure is shown in Fig. 3. Having decided upon the criteria from the computa-
tional results, raster images are generated for each of the criteria with the overlays of other GIS
feature layers, in which each raster cell contains the unique criteria values for all distinct
geographic locations. Since the best/worst criteria values are also required for computation of
the distance metric, in ArcGIS, the “cell statistics” function is used to determine the best/worst

Table 1 Characteristics of normal, lognormal, triangular and uniform distributions used in Monte Carlo analysis

Fig. 3 Flow Chart of SMCAwithin GIS Framework
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value for each location of the criterion. Suppose there are m alternatives and each of them
contains n criteria, the total number of maps after this operation is (m×n+2n).

After all the required information is obtained, the distance metric value for each alternative is
calculated using Eq. (1). This set of distance metric maps is stored in the decision support
module. The cell-by-cell comparison of the distances metric maps will produce the final map
showing the best alternative for each location within the region of interest. This is achieved by
using relational operation in map algebra module in ArcGIS® with the following syntax:

FinalMap½ � ¼
Xm

j¼1

DisM j

� �
< DisMk½ �� �

& DisM j

� �
< DisMkþ1½ �� �

⋯& DisM j

� �
< DisMm½ �� �� �� j

k ¼ 1; 2;⋯;m and k≠ j

ð5Þ

where [FinalMap] is the final raster layer showing the best alternative for each location; j, k=1,
…, m alternatives; [DisMj] and [DisMk] are the distance metric maps of alternative j and k. By
using this equation, the result map identifying the smallest distance metric for each location is
obtained, with each cell containing a number corresponding to the best alternatives’ index.

3 Demonstration of SMCA and Case Study Application

A floodplain analysis of Oconee River near Milledgeville, Georgia of the United States has
been chosen to test the capability of the designed SMCA tool (Fig. 4). The Oconee River
extends from central northern Georgia, northeast of Atlanta, to central southern Georgia,
occupying a basin area of 13, 840 km2 (Oconee River Basin Management Plan 1998). The
Oconee River basin contains parts of the Piedmont and Coastal Plain physiographic prov-
inces, which extend throughout the southeastern United States. The floodplain of Oconee
River near the City of Milledgeville has an area about 669 km2, and the population (2000
Census) is about 44,700. Most of this area is covered by forests, and forestry-related
activities account for a major part of the basin’s economy. Agriculture is also a significant
land use activity supporting a variety of animal operations and commodity production. The
rest is occupied by urban area.

The main objective of the floodplain analysis is to identify the best flood mitiga-
tion strategy from a set of potential alternatives. A 100-year flood computed by USGS
regression equation is assumed to occur in this area. To alleviate the flood hazard, the
following flood protection strategies are considered to be the alternatives: (a) con-
struction of a reservoir upstream of the river to reduce the peak flow to 2,500 m3/s
(Test study shows that 2,500 m3/s will not cause inundation to the major roadway and
buildings inside the city limits); (b) construction of 10-m dykes around specific areas
to block the flood. In order to compare the results, another alternative which is called
base case is also simulated without any flood protection measures. The locations of
these alternatives are shown in Fig. 5.

Among the various output produced by the simulation of the flood, two datasets are
particularly important for carrying out a consequence analysis. One of these datasets
contains the maximum flow depths over the computational domain and the other arrival
time of the flood. These two files were imported into the system implemented in ArcGIS as
raster layers. These raster layers were then interfaced with the PAR data layer and the
classified land-use layer to estimate potential loss of life and urban and agricultural damage.
The principles of these analyses were already explained in section 2.1 and 2.2. The percent
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damage versus stage curves used for different urban land use types listed in Table 3 are
plotted in separated figures. These curves were obtained by fitting a polynomial to the
original data by the US Army Corps of Engineers (1997). The input data used for the spatial
Monte Carlo Analysis of loss of life and flood damage for both urban and rural areas are
presented in Tables 2 and 3.

For this study, four different types of flood water impacts are used as criteria to
evaluate the proposed alternatives using the SMCA toolbox. The criteria, weights
(obtained from the survey questionnaires from the stakeholders) and the associated
computational results from CCHE2D-FLOOD (results from other model like Mike-11,
Flo-2D, TUFLOW, RMA4 and etc. can also be used for SMCA tool.) are listed
(selected option is indicated by “X”) in Table 4. The unique value of p=2 is used
here as recommendations from the literature (Simonovic 2002) with sensitivity
analysis tests.

Sinclair Dam

Oconee River

N

0 5 10 15 km

Milledgeville, GA

Fig. 4 Study Area: Milledgeville, Georgia in Southeastern United States
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4 Results and Discussion

In the present case study analysis (loss of life and urban flood damage analysis), each
uncertain variable (or a variable with uncertainty) was assigned a probability distribution
among the four distributions presented in Table 1 (e.g. normal, lognormal, triangular or
uniform distributions). The parameters associated with the selected distribution are provided
by the user through a graphical user interface. Based on the results of the 2D hydrodynamics
analysis provided by CCHE2D-FLOOD, ArcMap functions were used to carry out a Monte

Flood Depth

DEM

High: 32.44 m

Low: 0.001 m

High: 189.00 m

Low: 71.00 m

Alternative 1
Base Case

Alternative 2
Reservoir

Alternative 3
Dykes 1&2

Milledgeville, GA

0 5 10 15 km

Fig. 5 Locations of Flood Protection Alternatives on Base Case 100-Year Inundation Map and DEM

Table 2 Input data for loss-of-life estimation with probability distribution functions

Category Name Primary Value Probability Distribution Related Parameters

Flood Severity High > 6 m Normal variance=0.45

Low < 4.6 m Normal variance=0.6

Warning Time Initial 20 min (after flood) Uniform Range (15, 35)

Adequate > 70 min Uniform Range (50, 90)

No < 25 min Uniform Range (15, 35)

Census PAR census raster Normal Variance=8 % PAR

Fatality Rate FR default value N/A N/A
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Carlo analysis by stochastic sampling of the uncertainty variables. Monte Carlo simulation
of loss of life computation and flood damage computations were chosen to be 5,000 times
based on the variable generated from Tables 2 and 3. The Monte Carlo analysis yielded the
probability distribution functions of loss of life and flood damage in each cell, from which
mean and standard deviation was calculated. The average results from the Monte Carlo
simulation runs were obtained as the final decision criteria, and it was presented in the form
of raster maps as an aid for better decision making related to flood hazard management.

The result image identifying the best alternative for each location is shown in Fig. 6. The
larger the spatial extent of an alternative, the better the performance is. The spatial variability
of each alternative represents the decision maker’s preferences of each criterion. Almost no
region will benefit from Alternative 1 (smallest distance metric values occupying 24 cells),
which is the base case with no flood protection measure. Alternative 2 (smallest distance
metric values occupying 2,648 cells), which is the reduced peak flow scenario, gives better
results for inundation areas along the river since it reduces the flood depth, velocity and
arrival time significantly. Alternative 3 (smallest distance metric values occupying 274 cells)

Table 3 Input data for urban flood damage analysis with probability distribution functions

Category Name Primary Value Prob.
Distribution

Related
Parameters

High Intensity Residential
Area (HIRA)

No of houses 15 Units Triangular min=8, max=14

Structure value $ 150,000 Normal variance=0.35

Content value $ 95,000 Normal variance=0.25

Low Intensity Residential
Area (LIRA)

No of houses 8Units Triangular min=4, max=10

Structure value $ 220,000 Normal variance=0.48

Content value $ 120,000 Normal variance=0.38

Commercial Industrial
Transportation Area (CITA)

No of houses 12 Units Triangular min=6, max=12

Structure value $ 150,000 Normal variance=0.45

Content value $ 130,000 Normal variance=0.25

Other value $ 60,000 Normal variance=0.35

Depth – % Damage
Relationship

HIRA f=−0.68h4+7.78h3
−34.52h2+78.7h+4.95

Triangular min=− 5%f,
max=+ 5%f

LIRA f=−2.61h4+25.37h3
−78.42h2+95.89h+4.31

Triangular min=− 5%f,
max=+ 5%f

CITA f=−0.81h4+9.25h3
−38.13h2+71.20h+4.77

Triangular min=− 5%f,
max=+ 5%f

Table 4 Criteria, weights and related CCHE2D-FLOOD results

Criteria SMCA Used? Weight Related results from CCHE2D-FLOOD

Depth Arrival Time Duration Velocity

Loss of life Yes 0.4 X X

Flood damage Yes 0.3 X

Flood duration No 0.15 X

Flood power No 0.15 X X
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produces better results for the urban area since the dykes are effective in blocking the flood
wave from entering in the urban area. The overall decision based on the above analysis is the
alternative 3, since it is the most appropriate flood protection approach for the urban area.

When the ranked alternatives produced by the SMCA method are presented, it is found
that it provides decision makers the ability to have more definition, diversity and discrim-
ination in terms of the best strategies for particular spatial locations. This occurs because
SMCA considers distance metric values spatially at each grid cell in the area, whereas the
traditional Compromise Programming method calculates the average value of distance
metrics throughout the whole region. Overall, the case study results seem to suggest the
SMCA method is a competitive method for evaluating floodplain alternatives. It gives
abundant information allowing the decision maker to more accurately discriminate among
the best alternatives under investigation.

5 Conclusions

Natural disasters like flood are complex spatial phenomenon. In this research, an effective
MCDM technique, SMCA is implemented as a comprehensive toolbox in widely used GIS
software, ArcGIS to achieve the comparisons of various flood management alternatives.
This toolbox takes the computational results from CCHE2D-FLOOD model as raster layers,

Common Area

Alternative 1

Alternative 2

Alternative 3

0 5 10 15 km

Milledgeville, GA

Fig. 6 Spatially Distributed Ranking of Alternatives Using SMCA
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and makes use of multiple GIS feature layers and remote sensing images as reference layers
to calculate the loss of life and economic damage from flood events. Various other criteria
stream power “U x V” can be built using the interfaces of the toolbox, and different
preferences of these criteria from decision makers can be taken into account. Raster layer
computations and ranking the alternatives in ArcGIS environment make the evaluation
process efficient and reliable.

The result from the case study clearly indicates the great effectiveness of this toolbox in
facilitating flood management decision making. The spatial variability of each alternative is
addressed, as well as the uncertainties involved in the analysis, so the most appropriate
alternative for the area can be selected. This toolbox can serve not only flood protection
planning purposes, but also be used to evaluate a large variety of natural resources manage-
ment problems like forest management, agricultural land use planning, wetland planning and
many others.

The CCHE2D-FLOOD simulation is performed for each pixel from the marginal distri-
butions listed in Tables 1, 2 and 3; even though the spatial variability is accounted for in
some extent by the parameter stratification, the random number generation is driven by some
spatial dependence as it is reasonable that high marginal quantities in a pixel would
correspond to high marginal quantities in the nearby pixels. The SMCA tool is specifically
developed for CCHE2D-FLOOD, but can be extended for other models in the future.
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