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Abstract The applicability of fuzzy genetic (FG) approach in modeling reference evapo-
transpiration (ET0) is investigated in this study. Daily solar radiation, air temperature,
relative humidity and wind speed data of two stations, Isparta and Antalya, in
Mediterranean region of Turkey, are used as inputs to the FG models to estimate ET0

obtained using the FAO-56 Penman–Monteith equation. The FG estimates are compared
with those of the artificial neural networks (ANN). Root mean-squared error, mean absolute
error and determination coefficient statistics were used as comparison criteria for the
evaluation of the models’ accuracies. It was found that the FG models generally performed
better than the ANN models in modeling ET0 of Mediterranean region of Turkey.

Keywords Reference evapotranspiration . Penman-Monteith . Fuzzy genetic . Neural
networks

1 Introduction

Accurately estimation of evapotranspiration is crucial for the calculation of irrigation water
requirement, water resources management, and determination of the water budget, especially
under arid conditions where water resources are rare and fresh water is a restricted resource.
As described by Brutsaert (1982) and Jensen et al. (1990), a number of methods have been
proposed for estimating evapotranspiration. The energy balance/aerodynamic combination
equations generally “provides the most accurate results as a result of their foundation in
physics and basis on rational relationships” (Jensen et al. 1990). The Food and Agricultural
Organization of the United Nations (FAO) approved the evapotranspiration definition of
Smith et al. (1997) and accepted the FAO Penman-Monteith as the standard equation for
evapotranspiration estimation (Abghari et al. 2012; Allen et al. 1998; Demirtas et al. 2007;
Dinpashoh et al. 2011; Gavilan et al. 2008; Jhajharia et al. 2009, 2012; McVicar et al. 2012;
Naoum and Tsanis 2003; Perugu et al. 2013).

The application of artificial neural networks (ANN) in modeling reference evapotranspira-
tion (ET0) has received much attention recently (Cobaner 2011; Jain et al. 2008; Khoob 2008a,
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2008b; Kim and Kim 2008; Kim et al. 2012, 2013; Kisi 2006a, b, 2007a, 2008; Kisi and Cimen
2009; Kisi and Ozturk 2007; Kisi and Yildirim 2005a, b; Kumar et al. 2008, 2009, 2011;
Landeras et al. 2009; Marti et al. 2011a, b; Sanikhani et al. 2012; Sudheer et al. 2003; Trajkovic
et al. 2003; Trajkovic 2005). Sudheer et al. (2003) used radial basis function ANN (RBNN) for
estimating ET0 using limited climatic data. Trajkovic et al. (2003) developed a RBNN in
forecasting ET0. Trajkovic (2005) employed temperature-based RBNN for modeling FAO-56
PM ET0. Kisi (2006a) modeled ET0 using ANN method and he compared ANN results with
those of the Penman and Hargreaves empirical models. Kisi (2006b) developed generalized
regression neural network (GRNN) models for estimating ET0. Kisi (2007a) examined the
modeling ET0 using ANN method and he compared ANN results with those of the Penman,
Hargreaves and Turc empirical models. He found MLP to be superior to the empirical models.
Kisi and Ozturk (2007) used the neuro-fuzzy and ANN models in estimating daily ET0 using
the observed climatic variables. Kisi (2008) examined and compared the potential of different
ANN techniques in modeling ET0. Kim and Kim (2008) used GRNN model trained with
genetic algorithm in order to model alfalfa ET0. Khoob (2008a) used ANNmodel for modeling
monthly ET0 of Khuzestan plain, Iran and compared with Hargreaves method. The results
showed that the Hargreaves method underestimated and overestimated the monthly FAO-56
PM ET0 values by maximum of 20 and 37 %, respectively. Khoob (2008b) modeled ET0 from
pan evaporation using ANN in a semi-arid environment and indicated that the Hargreaves
method was poor for regional estimation of ET0. Jain et al. (2008) modeled ET0 with ANN and
outlined a procedure to evaluate the effects of input variables on the output variable using the
weight connections of ANN models. Kumar et al. (2008) used different ANN models for
modeling daily ET0 and compared with conventional methods. They found that the ANN
models gave better FAO-56 PM ET0 estimates than the respective conventional methods.
Kumar et al. (2009) investigated the accuracy of the ANN models in modeling ET0 under arid
conditions. Landeras et al. (2009) compared ANN and ARIMA models in forecasting weekly
FAO-56 PM ET0. Kisi and Cimen (2009) compared the ability of support vector machines
(SVM) and ANN models with those of the Penman, Hargreaves, Ritchie and Turc models for
estimating ET0 and demonstrated the superiority of SVR and ANN to the empirical models.
Marti et al. (2011a) investigated the accuracy of four-input ANN model for ET0 estimation
through data set scanning procedures. Marti et al. (2011b) modeled daily FAO-56 PM ET0
using ANN without local climatic data. Cobaner (2011) used two different neuro-fuzzy
methods for modeling daily ET0. Kumar et al. (2011) reviewed the studies related with
application of ANN in modeling ET0. All these studies revealed that the ANN models
performed better than the conventional methods in estimating ET0. In the present study, fuzzy
genetic approach is proposed as an alternative to ANN model for estimating daily FAO-56 PM
ET0 of Mediterranean region of Turkey.

The main purpose of this study is to investigate the accuracy of fuzzy genetic approach in
modeling ET0 of Mediterranean region of Turkey. The ET0 values were obtained using the
standard FAO-56 Penman-Monteith (FAO-56 PM) equation. The accuracy of the FG models
was compared with those of the ANN method.

2 Methodology

2.1 Fuzzy Logic Approach

Fuzzy logic, first introduced by Zadeh (1965), has been applied in different areas of
engineering, business and many other sciences. Figure 1 illustrates a general fuzzy system
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composed of four components, fuzzification, fuzzy rule base, fuzzy inference engine and
diffuzzification. The basic idea of fuzzy logic is that it allows for something to be partly this
and partly that, rather than having to be either all this or all that. The belongingness degree to
a set can be defined numerically by a membership number between 0 and 1.

In the fuzzy inference method, a set of input and output data is introduced to the fuzzy
system. Fuzzy system can “learn” how to transform a set of inputs to the corresponding set
of outputs by using a fuzzy associative map, sometimes called fuzzy associative memory
(Kosko 1993). While the ANNs can also perform the same function such as regression, these
tend to be “black box” methods. A fuzzy logic system is more flexible and transparent than
the ANNs. It is possible to see how it works, and adjust it by using the black-box analogy
(Russel and Campbell 1996). The fuzzy logic approach used for the estimation of ET0 in this
study is explained as below:

First, the input and output parameters are divided into a number of subsets with Gaussian
membership functions. There are ck fuzzy rules where c and k respectively indicate the
numbers of subsets and input parameters. As the number of subsets increase so does the
possible efficiency but the rule base gets larger, that is harder to construct (Şen 1998). In the
case of one input, x, with k subsets, the rule base takes the form of an output yn (n=1, 2, …,
k2). If there is one input variable as x with “low”, “medium”, “high” and “very high” fuzzy
subsets then consequently there will be four rules as follows.

R1: IF x has low THEN y1
R2: IF x has medium THEN y2
R3: IF x has high THEN y3
R4: IF x has very high THEN y4

Thus the weighted average of the outputs from these four rules results a single weighted
output, y, as:

y ¼

X4
n¼1

wn⋅yn

X4
n¼1

wn

ð1Þ

where wn, membership degree, for x is computed to be assigned to the corresponding output
yn for each rule triggered.

Thus, the output values (y) can be calculated by Eq. (1) for any combination of input
parameter fuzzy subsets after designating the rule base (Şen 1998). A fuzzy rule base used in
the current study can be incrementally obtained from sets of input and output data as
follows:

1. Use minimum number of input parameters.

Fuzzy Rule Base

Fuzzy Inference Engine
Input

DefuzzificationFuzzification

Output

Fig. 1 A typical fuzzy inference system
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2. Specify membership functions for each input.
3. Calculate the membership value (wn) for x in each of the fuzzy subsets.
4. Keep the output yn along with the complete set of rule weights wn.
5. Renew for all the other data points.
6. Compute the weighted average similar to Eq. (1) (Kiszka et al. 1985a, b).

One of the basic problems in designing any fuzzy system is building fuzzy subsets
because all changes in the subsets will directly affect the performance of the fuzzy
model. Hence, the optimum determination of the membership functions is crucial for
the successful optimum modeling. In current study, the genetic algorithm is used to
determine optimum membership functions. Next section provides information about
genetic algorithm.

2.2 Genetic Algorithm

Genetic algorithms (GAs) are heuristic combinatorial search methods based on the mechan-
ics of natural genetic and selection. The top idea is to simulate the natural evolution
mechanisms of chromosomes, involving the main factors of natural genetics such as
reproduction, crossover, and mutation. Three main processes are included in a typical form
of a genetic algorithm (Preis and Ostfeld 2008):

– Generation of initial population: GA generates a set of strings (or population), with each
string (chromosome) which composed of a set of values of the parameters to be optimized.

– Computing strings fitness: GA evaluates the objective function of each string.
– Production of next generation: the GA produces the new generation by performing:

selection, crossover and mutation. Selection is used for choosing chromosomes from the
current population for reproduction according to their fitness values. Crossover is used
for producing new parameter sets by changing pairs of strings. Mutation is used for
changing one of the strings locations.

GA is a powerful method which can search the optimum solution to complex problems
such as the selection of the membership functions where it is hard or almost impossible to
test for optimality (Ahmed and Sarma 2005). The main differences between GAs and
traditional optimization methods are (Goldberg 1989):

– The sets of parameters are coded in GAs instead of parameters.
– Local optimum is searched from a population in GAs instead of a single point.
– The objective function information is used in GAs instead of derivatives or other

adjutant knowledge.
– Probabilistic evolution rule is used in GAs instead of deterministic rules.

The GAs seek for the best possible solutions of a problem from available solution sets.
The problem is turned into binary form and the solutions are allowed to crossover and mate
with a given criterion to generate the optimal. The basics of the GA are explained by many
authors like Wang (1991), Ahmed and Sarma (2005). Therefore, the current study is not
focused on the details of the basic procedures of GA.

2.3 Artificial Neural Network

Artificial neural network (ANN) is a massively parallel system which is composed of many
processing units connected by links of weights. Of the many ANN paradigms, feed-forward
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back-propagation network (FFBP) is one of the most popular and it has been intensively
studied and widely used at different engineering fields (Haykin 1998). FFBP network is
composed of layers of parallel processing elements, called neurons, with each layer being
fully connected to the proceeding layer by interconnection weights. During a training
process, initial assigned weight values are progressively corrected at each iteration.
Network compares predicted outputs with target outputs, and back-propagates any errors
to determine the proper weight adjustments which are necessary to minimize errors. Detailed
theoretical information for FFBP can be found in Haykin (1998).

The trained ANN can estimate behavior of any process even with incomplete information
whereas the mathematical models need precise knowledge of all the contributing variables. It
is indicated that the FFBP has a robust generalization ability, which means that once it has
been correctly trained, it is able to provide accurate results even for cases it has never seen
before (Haykin 1998; Hecht-Nielsen 1991). The ANN was trained using conjugate gradient
algorithm in this study because this technique is more powerful and faster than the conven-
tional gradient descent algorithm (Kisi 2007b).

2.4 Analysis of Variance (ANOVA)

One way ANOVA is used for testing significant differences among two sample means.
ANOVA test is summarized as below (Scheffé 1959):

1. There are two hypothesis

H0 Means of the two samples are equal to each other.
H1 Means of the two samples are different from each other.

2. Obtain the critical value from F table. Tables are for one-tailed test because ANOVA is
always one-tailed.

3. Calculate the F test value as

F ¼ S2B
S2W

¼

X
ni X i−XGM

� �2

k−1X
ni−1ð Þs2iX
ni−1ð Þ

ð2Þ

where SB
2 and SW

2 indicate the variance between and variance within, respectively. Here,
X i is the mean of group i, XGM is the grand mean, Si

2 is the variance in group i, ni is the
number of data in group i and k is the number of groups. k-1 indicates the degree of
freedom.

4. Make a decision; if F > critical F value, reject H0

5. Summarize the results in a table. Means of the two samples are the same or come from the
same population or means of the two samples are significantly different from each other.

3 Case Study

The daily climatic data of two automated weather stations, Isparta Station (latitude 37° 47′
00″N, longitude 30° 34′ 00″ E) and Antalya Station (latitude 36° 42′ 00″ N, longitude 30°
44′ 00″ E), operated by the Turkish Meteorological Organization (TMO) in Turkey were
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used in the study. The locations of the Isparta and Antalya stations in Mediterranean region
of Turkey are shown in Fig. 2. The elevations are 997 and 64 m for the Isparta and Antalya
stations, respectively. The Mediterranean Region has a Mediterranean climate characterized
by warm to hot (dry) summers and mild to cool (wet) winters. The temperature may reach
the maximum value of 24 °C in winter, and it may be as high as 40 °C in summer.

The data sample consisted of 20 years (1982–2006) of monthly records of air temperature
(T), solar radiation (Rs), wind speed (U2) and relative humidity (RH). For each station, the
first 12 years data (50 % of the whole data) were used to train the models, the second 6 years
data (25 % of the whole data) were used for testing and the remaining 6 years data (25 % of
the whole data) were used for validation. The monthly statistical parameters of the climatic
data are given in Table 1. In the table, the xmean, Sx, Cv, Csx, xmin and xmax denote the mean,
standard deviation, variation coefficient, skewness, minimum and maximum, respectively.
The relative humidity shows significantly low variation for the both stations (see Cv values
in Table 1). For the both stations, solar radiation and temperature data show low skewed
distribution and have high correlations between ET0. Wind speed data have the lowest
correlations between ET0. For the Isparta station, however, climatic data do not show
skewness as low as Antalya. The mean relative humidity is more than 55 % for both stations.
Solar radiation and temperature data seem to be the most effective parameters on ET0 with
respect to correlation values.

4 Application and Results

Fuzzy genetic (FG) models were compared with those of the ANN models. First, the ET0
values of the Isparta and Antalya stations were calculated using the FAO-56 PM method as
described in Allen et al. (1998)

ET0 ¼
0:408Δ Rn−Gð Þ þ g

900

T þ 273
U2 ea−edð Þ

Δþ g 1þ 0:34U2ð Þ ð3Þ

where ET0 = reference evapotranspiration (mm day−1); Δ = slope of the saturation vapour
pressure function (kPa °C−1); Rn = net radiation (MJ m−2 day−1); G = soil heat flux density
(MJ m−2 day−1); g = psychometric constant (kPa °C−1); T = mean air temperature (°C); U2 =

Turkey

Black Sea

ae
S

naege
A

Mediterranean Sea

Isparta

Antalya

Fig. 2 The location of the Isparta and Antalya stations in Mediterranean Region of Turkey
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average 24 h wind speed at 2 m height (m s−1), ea is the saturation vapour pressure (kPa), ed
is the actual vapour pressure (kPa).

Then, the inputs, Rs, T, RH and U2 and output ET0 values calculated using the FAO-56
PM method were used for the calibration of FG and ANN models. Root mean square error
(RMSE), mean absolute error (MAE) and determination coefficient (R2) statistics were used
for the evaluation of the models. The RMSE, MAE and R2 are defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

xi−yið Þ2
vuut ð4Þ

MAE ¼ 1

N

XN
i¼1

xi−yij j ð5Þ

R2 ¼

Xn
i¼1

xi−x
� �

yi−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi−x
� �2Xn

i¼1

yi−y
� �2

s
0
BBBB@

1
CCCCA

2

ð6Þ

in which N and bar respectively denote the number of data and mean of the variable, x and y
are the predicted and FAO-56 PM ET0 values.

Two different FG models were developed. First, Gaussian membership functions with
equal base widths were selected for each FG model. Then, the parameters of the membership
functions were found using GA as shown in Fig. 3. A program code was prepared in
MATLAB language using Fuzzy Logic and GA toolboxes for the applications of FG models.
Different FG architectures were employed using this code and the optimal models’ structures
were determined. Optimum parameters of the membership functions were determined by
minimizing the objective function (RMSE error between estimated and FAO-56 PM ET0
values). Two membership functions were found to be sufficient for the FG models. The
small numbers of membership functions were used because the model becomes

Table 1 The monthly statistical parameters of each data set for the entire time series

Station Variable xmean xmin xmax Sx Cv (Sx/xmean) Csx Correlation with ET0

Isparta Rs (langley) 325 112.3 657 123 0.38 0.13 0.940

T (°C) 13.3 −2.3 25 7.77 0.58 −0.35 0.759

RH (%) 60.7 46 72.5 4.88 0.08 −0.51 −0.684
U2 (m/s) 1.76 0.6 3.6 0.51 0.29 0.45 0.001

ET0 (mm) 3.52 0.69 6.80 1.52 0.43 0.01 1.000

Antalya Rs (langley) 401 120 679 153 0.38 −0.07 0.924

T (°C) 19.6 7.3 32.3 7.32 0.37 0.05 0.842

RH (%) 56.2 45.5 68.5 4.20 0.08 0.18 −0.379
U2 (m/s) 2.64 0.9 4.9 0.66 0.25 0.17 0.002

ET0 (mm) 5.62 1.16 10.4 2.05 0.37 0.17 1.000
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exponentially more complex as the number of variables or membership functions increases
(Keskin et al. 2004).

The daily ET0 estimation was also carried out by conventional ANN model. The
conjugate gradient algorithm was used for adjusting the weights of the ANN model. The
sigmoid and linear activation functions were used for the hidden and output nodes, respec-
tively. The optimal hidden layer node numbers of each model were obtained after trying
various network structures since there is no theory yet to tell how many hidden units are

Randomly generation of 
initial population

Finding optimum parameters 
of the MFs

Estimating PE with fuzzy 
inference method

Selecting chromosomes to 
pass the next generation

Obtaining new chromosomes 
with crossover and mutation

Is objective function 
optimized?

Solution with optimized 
parameters

End

Yes

No Is iteration 
number reached?

Yes

No

Calculating objective 
function (RMSE)

Fig. 3 The flowchart of the FG model
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needed to approximate any given function. The ANN networks training were stopped after
250 epochs following the suggestion of Kisi and Uncuoglu (2005) and Kisi (2007a).

The optimal FG and ANN models for the Isparta and Antalya stations are given in
Table 2. In this table, the FG1(2,50000,100) model indicates a fuzzy genetic model having 2,
2, 2 and 2 Gaussian membership functions for the inputs, T, Rs, U2 and RH with 50,000
generations and 100 populations. In Table 2, the ANN1(4,4,1) denotes an ANN model
comprising 4 inputs, 4 hidden and 1 output nodes.

Table 2 The performance statistics of the models in validation period

Models Model inputs RMSE (mm day−1) MAE (mm day−1) R2

Isparta Station

FG1(2,50000,100) Rs, T, RH and U2 0.549 0.422 0.933

ANN1(4,4,1) Rs, T, RH and U2 0.685 0.492 0.851

FG2(6,500000,40) Rs and T 0.772 0.708 0.961

ANN2(2,10,1) Rs and T 0.760 0.770 0.942

Antalya Station

FG1(2,20000,100) Rs, T, RH and U2 0.251 0.198 0.988

ANN1(4,3,1) Rs, T, RH and U2 0.285 0.221 0.978

FG2(2,20000,40) Rs and T 0.533 0.418 0.928

ANN2(2,3,1) Rs and T 0.648 0.509 0.908
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Fig. 4 The FAO-56 PM and estimated ET0 values of the Isparta station in validation period
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The four-input FG1 and double-input FG2 models are compared with the ANN models
with respect to RMSE, MAE and R2 statistics in Table 2. The input variables used for each
model are also given in this table. The FG2 and ANN2 models use the same input variables.
It is clear from the Table 2 that the FG1 model comprising four inputs performed better than
the other models in terms of RMSE, MAE and R2 performance criteria. The FG2, ANN2
models are rather simple and consider only T and Rs data. Compared with the ANN2 model,
the FG2 model performed better in Antalya station.

The ET0 estimates of each model for the Isparta and Antalya stations are shown in
Figs. 4 and 5 in the scatterplot form. It is clear from the scatterplots that the FG1

y = 0.9933x + 0.1188
R² = 0.9779

2

4

6

8

10

2 4 6 8 10

A
N

N
1 

(m
m

)

FAO-56 PM ET0 (mm)

y = 0.99x + 0.2048
R² = 0.9878

2

4

6

8

10

2 4 6 8 10

)
m

m(
1

GF

FAO-56 PM ET0 (mm)

y = 1.0625x - 0.498
R² = 0.9075

2

4

6

8

10

2 4 6 8 10

A
N

N
2 

(m
m

)

FAO-56 PM ET0 (mm)

y = 1.0335x - 0.2475
R² = 0.9283

2

4

6

8

10

2 4 6 8 10

)
m

m(
2

GF

FAO-56 PM ET0 (mm)

Fig. 5 The FAO-56 PM and estimated ET0 values of the Antalya station in validation period

Table 3 Total estimated evapotranspirations in validation period

Models Total evapotranspiration (mm) Relative error (%)

Isparta Antalya Isparta Antalya

Observed 267 437 – –

FG1 268 448 0.3 2.6

ANN1 279 443 4.5 1.4

FG2 321 432 20 −1.0
ANN2 318 425 19 −2.5
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estimates are closer to the corresponding FAO-56 PM ET0 values than those of the
other models especially for the Antalya station. For the Antalya station, the superiority
of FG2 model to ANN2 model can be obviously seen from the scatterplots. It can be
seen from the fit line equations (assume that the equation is y=ax+b) that a and b
coefficients of the FG1 and FG2 models are closer to the 1 and 0 with higher R2

values than those of the ANN1 and ANN2 models, respectively. These are confirmed
by the RMSE, MAE and R2 values given in Table 2.

The total ET0 estimation of each model was also compared with each other since it is
important in irrigation management (see Table 3). For the Isparta station, the FG1 model
gave an estimate closest to the total FAO-56 PM ET0 value. The ANN1 was ranked as the
second best. For the Antalya station, double-input FG2 model provided the closer total ET0
estimate than the ANN2 model.

The results were also tested by ANOVA for verifying the robustness (the significance of
differences between the FAO-56 PM ET0 values and model estimates) of the models. The
statistics of the tests are given in Table 4. The FG1 and FG2 models give the smallest testing
values with highest significance levels than the corresponding ANN models for the Isparta
and Antalya stations, respectively.

5 Conclusion

The ability of fuzzy genetic approach for the estimation of reference evapotranspiration
using climatic variables was investigated in this study. Fuzzy genetic models were tested and
validated by applying monthly climatic data of two stations, Isparta and Antalya, in
Mediterranean region of Turkey to estimate ET0 obtained using the FAO-56 Penman–
Monteith equation. The accuracy of the fuzzy genetic models was compared with those of
the ANN method. The fuzzy genetic model whose inputs are the Rs, T, RH and U2 were
found to perform better than the other models in estimation of FAO-56 PM ET0. However, in
some areas (e.g., developing countries) the available data may be the solar radiation and air
temperature due to the difficulty in obtaining the data of other two parameters, relative
humidity and wind speed. Therefore, fuzzy genetic and ANN models containing only two
inputs, Rs and T, were also developed and compared with each other. The comparison results
indicated that, double-input fuzzy genetic model was generally superior to the double-input
ANN2 model in both stations. The results were also compared according to the ANOVA test.
The FG1 and FG2 models were found to be more robust than the corresponding ANN
models for the Isparta and Antalya stations, respectively.

Table 4 ANOVA of the FG, ANN and empirical models in the validation period

Method Isparta Antalya

F-statistic Resultant significance level F-statistic Resultant significance level

FG1 0.003 0.958 0.249 0.619

ANN1 0.471 0.493 0.073 0.787

FG2 7.216 0.008 0.035 0.851

ANN2 6.931 0.009 0.208 0.649
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