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Abstract A reliable assessment of drought return periods is essential to help decision
makers in setting effective drought preparedness and mitigation measures. However, often
an inferential approach is unsuitable to model the marginal or joint probability distributions
of drought characteristics, such as drought duration and accumulated deficit, due to the
relatively limited number of drought events that can be observed in the historical records of
the hydrological variables of interest. As an alternative, the marginal and multivariate
probability cdf’s of drought characteristics can be derived as functions of the parameters
of the cdf of the underlying variable (e.g. precipitation), whose sample series is usually long
enough to obtain trustworthy estimates in a statistical sense. In this study, the latter
methodology is applied to investigate space-time variability of drought occurrences over
Europe by using the CRU TS3.10.01 precipitation dataset for the period 1901–2009. In
particular, a methodology able to take into account autocorrelation in the underlying
precipitation series is adopted. First, a spatial analysis of historical droughts at European
level is carried out. Then, the joint probability distributions of drought duration and
accumulated deficit are derived for each cell, with reference to both historical and design
drought events. Finally, the corresponding bivariate drought return periods are computed, as
the expected values of the interarrival time between consecutive critical droughts.Results
show that several heavy drought episodes have widely affected the continent. Among the
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most recent events, drought occurred during the period 1985–1995 was the worst in terms of
extent of the regions characterized by return periods greater than 250 years. Besides Euro-
Mediterranean regions, North Western and Central Eastern regions appear more drought
prone than the rest of Europe, in terms of low values of return periods.

Keywords Drought . Probabilistic characterization . Return period . Large scale analysis

1 Introduction

An in depth knowledge of drought phenomena plays an important role for an appropriate
planning and management of water resources (Yevjevich et al. 1983). Indeed, severe and
prolonged drought events have affected a large part of Europe during the last decades
(Zaidman et al. 2001; Lloyd-Hughes and Saunders 2002; Fink et al. 2004; Hannaford et
al. 2011), with harmful impacts on public water supply, industrial and agricultural produc-
tion, as well as on the environment, with special reference to the degradation of aquatic
ecosystems.

According to the last report of the Intergovernmental Panel on Climate Change (IPCC)
released in 2007, “drought is likely to intensify in both duration and severity”, with special
reference to Southern Europe, as a consequence of global warming. As a matter of fact, a
clear trend towards drier conditions during the 20th century has been documented in several
studies carried out on drought indices time series computed on reanalysis datasets (Bordi et
al. 2009), gridded data (Lloyd-Hughes and Saunders 2002; Sousa et al. 2011) and observa-
tions from meteorological stations (Van der Schrier et al. 2006) covering Europe and a large
part of the Mediterranean basin.

In light of lessons learnt from past experiences of coping with severe drought events, and
of the potential intensification of such phenomena in the next future, a common awareness
has risen about the need to develop and implement advanced drought risk management
strategies. This requires on the one hand a better understanding and modelling of the natural
phenomenon and of its impacts on economic activities, society and environment, and on the
other hand the definition and implementation of adequate long-term measures, oriented to
significantly reduce vulnerability of water supply systems to drought events, as well as of
short term measures, oriented to minimize drought impacts (Wilhite et al. 1987; Rossi 2000).

Probabilistic characterization of historical drought events, properly identified on hydro-
meteorological series of interest, is necessary to achieve the former objective, as it can help
to assess drought hazard over a region, which combined with drought vulnerability yields
the corresponding drought risk. In particular, estimation of drought return periods can
provide useful information for an appropriate water use planning under drought conditions.

Over the years, many approaches have been suggested for characterizing droughts.
Yevjevich (1967) used the theory of runs to characterize droughts as a sequence of
consecutive intervals where the water supply variable remains below a threshold level
(somehow representative of water demand), preceded and succeeded by values above the
threshold. Thus, each drought event can be characterized by two main properties, namely
drought duration, and accumulated deficit, defined as the sum of single deficits, i.e. the
deviations of the variable from the threshold, over drought duration. Such characteristics are
statistically dependent and therefore a multivariate approach should be employed for their
probabilistic analysis. However, due to the relatively limited number of drought events that
can be observed from the historical records, fitting parametric distributions to observed
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drought characteristics is unsuitable to model the marginal or joint probability distributions
of drought characteristics, such as drought duration and accumulated deficit.

A traditional solution involve data generation by applying stochastic models (Millan and
Yevjevich 1971; Kendall and Dracup 1992; Shiau and Shen 2001).

An alternative approach (Downer et al. 1967; Llamas and Siddiqui 1969; Sen 1976;
Sharma 1995; Bonaccorso et al. 2003; Cancelliere and Salas 2004, 2010) consists in
deriving the marginal and multivariate probability cdf’s of drought characteristics as func-
tions of the parameters of the cdf of the underlying variable (e.g. precipitation), whose
sample series is usually long enough to obtain reliable estimates in a statistical sense.

Once that such probability distributions are derived, return period of different type of
drought events, with respect to one or more features (i.e. drought duration and/or accumu-
lated deficit) can be determined as well.

Since drought can span several years, it is not possible to identify a unique time unit (or
trial) with respect to which, the exceedance probability P[Xt>xt] can be expressed, as one
can usually make in flood frequency analysis, where the return period can be evaluated by
the well known formula T01/P[Xt>xt] (Fernandez and Salas 1999).

In general drought return period can be defined as the expected value of the interarrival
time between consecutive critical droughts (Loaiciga and Mariño 1991; Fernandez and Salas
1999; Shiau and Shen 2001; Bonaccorso et al. 2003; Cancelliere and Salas 2010).

In this regard, Shiau and Shen (2001) developed a procedure for deriving the return
period of accumulated deficit, assuming independent and identically distributed events.
Return period is defined as the expected value of the average interarrival time between
two successive events with accumulated deficit greater than or equal to a fixed value. This
procedure has been further extended to the case of drought events characterized by both
drought duration and accumulated deficit or drought duration and intensity (Bonaccorso et
al. 2003; Gonzalez and Valdes 2003) as well as to the case of periodic series such as monthly
or seasonal variables (Cancelliere and Salas 2004). Recently, Cancelliere and Salas (2010)
have modified the foregoing methodology in order to deal with autocorrelated series.

In the present study, the latter procedure is applied to investigate space-time variability of
meteorological drought occurrences over Europe, by using the annual precipitation series
retrieved by the CRU TS3.10.01 gridded dataset for the period 1901–2009. Such dataset
covers uniformly the globe and is freely accessible through the British Atmospheric Data
Centre (BADC) website http://badc.nerc.ac.uk.

Firstly, the time dependence structure of the annual precipitation series under consider-
ation is analyzed by verifying the significance of the lag-1 autocorrelation values through the
Anderson’s correlogram test (Anderson 1941).

Then, the goodness of fit of several probability distributions (normal, lognormal and
gamma) to the considered precipitation dataset is verified cell by cell through the Lilliefors
test (Lilliefors 1967, 1969; 1973; Crutcher 1975), and the best distribution is chosen for each
cell based on the lowest value of test statistic. Next, historical droughts at European level are
identified through the theory of runs and classified based on the probabilities of occurrence
of annual deficit.

Finally, once that the marginal and bivariate cdf’s of drought duration and accumulated
deficit for each cell are analytically derived, based on the parameters of the probability
distribution of annual precipitation series, the return periods of selected historical droughts,
which have heavily affected a large part of Europe, are analyzed. In addition, return periods
of design critical droughts, with respect to fixed drought duration and accumulated deficit,
are computed and the corresponding spatial distributions are analyzed.
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A brief description of the methodology for the analytical derivation of the probability
distributions of drought characteristics and for the assessment of drought return period is
reported in Section 2. In Section 3, the results of the application of the proposed method-
ology are illustrated. Conclusions are drawn in Section 4.

2 Methodology

2.1 Probability Distributions of Drought Characteristics

Let Xt, t01 ,2,…, be a time series of the hydrological variable of interest and x0 the threshold
level. The drought duration L is defined as the number of consecutive intervals where Xt≤x0,
followed and preceded by at least one interval where Xt>x0, whereas the accumulated deficit
D is defined as the sum of single deficits St0x0−Xt over the duration L. It follows that the
accumulated deficit can be expressed as:

D ¼
XL
t¼1

St ¼
XL
t¼1

x0 � Xtð Þ for Xt � x0 ð1Þ

In what follows the analytical derivations of the marginal and joint pdf’s and cdf’s of
drought duration L and accumulated deficit D for the general case of autocorrelated Xt series
are briefly described.

2.1.1 Probability Distribution of Drought Duration

Statistical properties of run length for stationary series have been far back derived in
literature (Downer et al. 1967; Feller 1968; Llamas and Siddiqui 1969) and then applied
to drought duration (Sen 1976; Guven 1983; Sharma 1995).

Assuming that the sequence of deficits and surpluses can be modelled by a stationary lag-
1 Markov chain, it can be shown (Sen 1976) that the probability mass function (pmf) of
drought duration L is geometric, with parameter p01:

fL ‘ð Þ ¼ P L ¼ ‘½ � ¼ 1� p01ð Þ‘�1p01 ð2Þ
The parameter p01 represents the transition probability from a deficit to a surplus, namely

p01 ¼ P Xt > x0 Xt�1 � x0j½ � . Equation (2) enables to compute the probability that a drought
will last exactly ‘ time-steps. The expected value and the variance of drought duration L
follow from Eq. (2) as:

E L½ � ¼ 1

p01
ð3Þ

Var L½ � ¼ 1� p01
p201

ð4Þ

In Appendix A, details about the estimation of the transition probability p01 are provided.
The adequacy of the lag-1 Markov hypothesis for modeling the sequence of deficits and

surpluses has been investigated, among others, by Cancelliere and Salas (2010) and Akyuz
et al. (2012). In particular, Cancelliere and Salas (2010) have shown that for low to moderate
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autocorrelations in the underlying hydrological series the Markov hypothesis holds with a
fair approximation, while for stronger autocorrelations, models with a stronger time depen-
dence should be employed, as confirmed by Akyuz et al. (2012).

2.1.2 Joint Probability Distribution of Drought Duration and Accumulated Deficit

The joint probability distribution of drought accumulated deficit D and duration L can be
expressed as follows (Salas et al. 2005):

fD;L d; ‘ð Þ ¼ fD L¼‘j ðdÞ � fL ‘ð Þ ð5Þ
where fD|L0‘ dð Þ is the conditional probability distribution of accumulated deficit conditioned
by drought duration, namely D|L.

Exact analytical derivation of the conditional probability distribution of D|L is still an
unsolved problem (except for a few simple cases), due to the mathematical difficulties that
generally prevent closed form solutions (Millan and Yevjevich 1971; Sen 1976; Chung and
Salas 2000).

In order to overcome analytical difficulties, some authors have assumed a parametric
distribution for D|L, and have estimated the parameters from observed droughts (e.g. Guven
1983; Sharma 1995; Shiau and Shen 2001). In some cases, due to the limited number of
droughts that can be observed from the available records, synthetic generation (Shiau and
Shen 2001) or long series reconstructed from tree rings records (Gonzalez and Valdes 2003;
Biondi et al. 2005) have been utilized.

An alternative approach consists in evaluating the parameters of the distributions of D|L,
a priori selected, based on the parameters of the distribution of Xt , which, in turn, can be
assessed with good approximation through the traditional inferential approach applied to
common hydrometeorological sample series with sufficient length (typically more than 30
observations).

For instance, under the assumption of serially independent series, the first two moments
of D|L are given by:

E D L ¼ ‘j½ � ¼ E
XL

t¼1
St
���L ¼ ‘

h i
¼ ‘E St½ � ð6Þ

Var D L ¼ ‘j½ � ¼ Var
XL

t¼1
St L ¼ ‘j

h i
¼ ‘Var St½ � ð7Þ

The pdf of St is equal to the truncated distribution of X(t) (Bonaccorso et al. 2003), i.e.:

fSt stð Þ ¼ 1

p0
� fX ðtÞ x0 � stð Þ � I stð Þ 0;1ð Þ ð8Þ

where p00P[Xt≤x0], and I(st) is an indicator equal to 1 for 0<st<∞ and 0 otherwise.
Thus, the k-th moment of St is given by:

E Skt
� � ¼ 1

p0

Z1
0

skt � fXt x0 � stð Þ � dst ð9Þ

Therefore, once that the moments of D|L are computed based on Eqs. (6) and (7), the
parameters of the distribution of D|L can be evaluated through the method of moments.
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Clearly, if the underlying series exhibit a strong autocorrelation, Eqs. (6) and (7) are no
longer valid. In this case, computation of the conditional moments of accumulated deficit is
more difficult, and deriving a closed form solution becomes cumbersome. Empirical approx-
imations have been provided by Cancelliere and Salas (2010), that enable to compute the
conditional moments as a function of the skewness coefficient of the underlying variable Xt, of
the lag-1 autocorrelation ρ1, and of the threshold parameterized as x00μx−ασx where μx and σx
are the mean and standard deviation of Xt and a is a parameter ranging between 0 and 1.

In particular, the proposed approximate expressions for the mean and the variance of
accumulated deficit of fixed duration ‘, are (Cancelliere and Salas 2010)

E D L ¼ ‘j½ � ¼ μS am ‘bm ð10Þ

Var D L ¼ ‘j½ � ¼ σ2
S av ‘

bv ð11Þ
where μS and σ2

S are respectively the expected value and variance of a single year deficit St
assuming that the series are skewed but uncorrelated, which are functions of the underlying
marginal distribution and the threshold x0 (as from Eq. (9)), and the parameters am, bm, av
and bv are related to ρ1 and x0 through the following expressions:

am ¼ �0:6634a � :3418ð Þρ21 þ 0:6983a � :5592ð Þρ1 þ 1:0 ð12aÞ

bm ¼ 0:1865a þ 0:0839ð Þρ21 þ �0:1840a þ 0:5903ð Þρ1 þ 1:0 ð12bÞ

av ¼ �0:7969a � 0:0928ð Þρ21 þ 0:7415a � 1:0325ð Þρ1 þ 1:0 ð13aÞ

bv ¼ 0:4175a þ 0:5707ð Þρ21 þ �0:4414a þ 1:078ð Þρ1 þ 1:0 ð13bÞ
Note that for ρ100, E [D|L0‘]0‘μS and Var D L ¼ ‘j½ � ¼ ‘σ2

S since am0bm0av0bv01.
By assuming D|L0‘ beta distributed, the pdf takes the form (Johnson et al. 1994):

fD L¼‘j ðdÞ ¼ 1

B p; qð Þ
d � að Þp�1 b� dð Þq�1

b� að Þpþq�1 a � d � bð Þ ð14Þ

where B p; qð Þ ¼ R1
0
yp�1 1� yð Þq�1dy is the complete beta function, and a and b are the

lower and upper bounds, respectively. In our case, a00 and b0‘xo, since a drought of length
‘ cannot have accumulated deficit greater than ‘xo, and the parameters p,q can be estimated
as a function of the first two moments of accumulated deficit μD0E[D|L0‘] and σ2

D ¼
Var D L ¼ ‘j½ � as (Johnson et al. 1994):

p ¼ μD

σD

� �2

1� μD

‘xo

� �
� μD

‘xo
ð15Þ

q ¼ μD ‘xo � μDð Þ
σ2D

� 1þ pð Þ ð16Þ
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where μD and σ2
D are determined from Eqs. (10) and (11) respectively. Then, the bivariate

pdf of drought accumulated deficit and duration takes the following form:

fD;L d; ‘ð Þ ¼ 1

B p; qð Þ
ðdÞp�1 ‘ xo � dð Þq�1

‘ xoð Þpþq�1 fL ‘ð Þ ; 0 � d � ‘xoð Þ ð17Þ

where fL ( ℓ ) is the pdf of drought duration (see Section 2.1.1).
By integrating appropriately the bivariate pdf's, the occurrence probability of various

drought events can be found. In particular, with reference to specific drought events, it
follows that:

(1) for drought event E0{D>d0 and L0 ℓ 0( ℓ 001,2, . . . )}:

P D > d0; L ¼ ‘o½ � ¼
Z‘oxo
d0

fD;L z; ‘0ð Þdz ¼ fL ‘0ð Þ
Z‘0x0
d0

1

B p; qð Þ
ðzÞp�1 ‘0 x0 � zð Þq�1

‘0 x0ð Þpþq�1 dz

ð18Þ
(2) for drought event E0{ D>d0 and L≥ ℓ 0 ( ℓ 001,2, . . . )}:

P D > d0; L � ‘0½ � ¼
X1
‘¼‘0

Z‘0x0
d0

fD;L z; ‘ð Þdz

¼
X1
‘¼‘0

fL ‘ð Þ
Z‘ xo
d0

1

B p; qð Þ
ðzÞp�1 ‘ x0 � zð Þq�1

‘ x0ð Þpþq�1 dz

2
64

3
75 ð19Þ

where z is a dummy variable of integration.
Furthermore, the marginal probability of droughts events E0{D>d0}, namely

P [D>d0], can be obtained from Eq. (19), by letting ℓ 001.

2.2 Assessment of Drought Return Period

In general, the return period of a drought can be defined as the expected value of the average
interarrival time TE between two successive droughts, recognized “critical” with respect to
one or more drought characteristics (Lloyd 1970; Loaiciga and Mariño 1991; Fernandez and
Salas 1999; Shiau and Shen 2001).

Let E be a critical drought, and Ē a non critical drought, by definition the return period of
drought event E can be expressed as:

E TE½ � ¼ E L Ef g þ Lnþj
XNl

j¼2

Lj E
� �þ Lnj

���	 
" #
ð20Þ

where L|{E} is the duration of the first critical drought E, Ln is the duration of the next non
drought period, Lj E

� ��� and Lnj are the duration of j-th non critical drought event and the
duration of the next j-th non drought period, and Nl is the number of drought and non
drought events preceding the second critical drought.

Assuming independence between consecutive drought events, the above expectation can
be simplified into (Gonzalez and Valdes 2003):
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E TE½ � ¼ E L½ � þ E Ln½ �
P E½ � ð21Þ

where P[E] is the probability of occurrence of a critical drought E, which can be determined
once that the pdf or cdf of event E are known.

For the case of a lag-1 Markov process, both E [L] and E [Ln] can be obtained from Eq.
(3) (in the latter case by replacing p01 with p10). Also, P[E] can be computed from the joint
cdf's given in Eqs. (18)–(19) depending on the case.

Cancelliere and Salas (2010) have shown by Monte Carlo simulation that, although for
autocorrelated process the independence assumption between drought events is not exactly
met, yet Eq. (21) still provides an excellent approximation of drought return period.

3 Applications

3.1 Data

Data used for large scale drought analysis are annual precipitation series derived from the
CRU TS3.10.01 dataset for the period 1901–2009 (http://badc.nerc.ac.uk). This dataset is
produced by the British Atmospheric Data Centre through a model provided by the Climate
Research Unit (CRU) at the University of East Anglia. It includes monthly values of several
climate variables (e.g. cloud cover, daily mean temperature and wet day frequency, among
others) computed on high-resolution grid (0.5x0.5 degree).

The gridded dataset is based on an archive of monthly climate observations from more
than 4000 weather stations distributed around the world. The database is checked for
heterogeneities in the stations records using an automated method which includes the
development of reference stations using neighbouring stations. For further details on the
interpolation of the observed records onto the 0.5 latitude-longitude grid, readers may refer
to Mitchell and Jones (2005).

The study area is the European region 31.75–71.25°N and 33.75°E-15.25°W.

3.2 Autocorrelation Analysis and Goodness of Fit of Selected Probability Distributions
to Precipitation Data

Although annual precipitation series are generally characterized by low values of autocor-
relation, the Anderson’s test (Anderson 1941) has been carried out to test the hypothesis that
the sample lag-1 serial correlation (or autocorrelation) coefficient, r1, is not significantly
different from zero. If the hypothesis cannot be rejected, the series can be considered
uncorrelated, otherwise it is to be assumed autocorrelated.

Figure 1 shows the results of the Anderson’s test at 5 %. significance level. White cells
correspond to series for which the lag-1 autocorrelation is not significantly different than zero,
whereas grey ones correspond to series that should be considered autocorrelated. Grey cells amount
to about 23 % of the total study area, thus implying that a time dependence structure must be taken
into account in the following drought analysis when dealing with the corresponding series.

Then, the goodness of fit of normal, lognormal and gamma probability distributions to the
considered annual precipitation dataset has been checked cell by cell through the Lilliefors
statistic test (Lilliefors 1967, 1969; 1973; Crutcher 1975). Such test is a modified version of
the Kolmogorov Smirnov test, and is valid when the parameters of the underlying distribu-
tion are estimated from a sample.
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First, the goodness of fit of each distribution was verified at the 5 % significance level.
Since test results did not clearly indicate a preference towards one distribution over all the
investigated area, for each cell the distribution with the lowest Lilliefors test statistic value
was selected. Table 1 shows, for each distribution, the percentage of cells for which the null
hypothesis H0 (i.e. the probability distribution fits the data) is rejected at the 5 % significance
level, as well as the percentage of cells with the lowest test statistic value. Although the
gamma distribution shows a good fit for the most part of the cells, the normal distribution is
the one to which corresponds the greater number of cells characterized by the lowest test
statistic. Figure 2 illustrates the spatial coverage of probability distribution identified for
each cell. Such figure also includes a few scattered cells (less than 2 % out of the total) for
which H0 is rejected at the 5 % significance level for all the considered distributions.

3.3 Drought Identification and Characterization

Drought conditions over Europe were identified by application of the theory of runs on
annual precipitation gridded data, by considering a threshold level x0 equal to the median
computed from the fitted distribution.

Dry and wet conditions with respect to the k-th cell were classified based on the
probabilities of occurrence of annual deficit and surplus. In particular, the time series of

Table 1 Comparison of the Lilliefors test results for the normal, lognormal and gamma probability distribu-
tions (Percentages are referred to a total amount of 4507 cells)

Probability distribution Cells for which H0 is rejected (%) Cells with the lowest test statistic value (%)

Normal 14.55 40.12

Lognormal 12.40 27.67

Gamma 6.72 30.40

Fig. 1 Results of the Anderson’s
test for the significance of the lag-
1 autocorrelation coefficient (grey
cells indicate that the hypothesis
of uncorrelated series for the
corresponding observed samples
is rejected at 5 % significance
level)
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non exceedance probability of annual precipitation data were computed by making use of
probability distributions previously determined for each cell. Then dry and wet conditions
were identified according to the classification reported in Table 2.

It is worth highlighting that, since the present work focuses on drought analysis, in what
follows normal and wet conditions have been grouped into one class.

Figure 3 illustrates the temporal distribution of dry and wet periods from 1901 to 1956 (a)
and from 1957 to 2009 (b), related to selected cells of the CRU TS3.10.01 grid including
main cities in Europe. Although, the two images refer to a few cells, they enable to identify
at a glance the most severe dry periods, as well as the corresponding duration and affected
areas.

In particular, with reference to Fig. 3a, 1921 looks like an extremely dry year for many
regions in North Western and Central Europe, also affected by longer dry periods during the
first decade of the last century. During the ‘40s, long and severe dry periods have affected
most part of Europe, with worse conditions in Southern Central Europe. Also, extremely dry
conditions can be observed in 1953/1954 spread across the investigated area.

From the ’60s onward (see Fig. 3b) the worst dry conditions seem to affect smaller area,
with respect to the periods previously observed. For instance, one of the main dry periods,
which has particularly affected North Western Europe, has been recorded during mid ‘70s.

Fig. 2 Spatial coverage of probability distributions, selected on the basis of the lowest Lilliefors test statistic
value for each cell of CRU TS3.10.01 grid

Table 2 Wet and dry period clas-
sification based on the probability
of occurrence of annual deficit

P(xt) Class

>0.40 Normal or wet

0.25–0.40 Moderately dry

0.10–0.25 Very dry

<0.10 Extremely dry
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Between the end of the ’80s and mid ‘90s, severe dry periods have occurred mainly in the
South side. Finally, it is worth mentioning the 2003 event characterizing Central Europe, and
those occurred in 2004 and 2005 in Southern Europe, which extended into 2007/2008 in
South Eastern regions.

In order to complement such an analysis, Fig. 4 illustrates the time series of the spatial
coverage of dry conditions for the whole study area. In particular, Fig. 4a represents the time

Fig. 3 Dry and wet conditions over Europe from 1901 to 1956 (a) and from 1957 to 2009 (b)
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variation of spatial extent of different dry conditions. Results show that in 24 years out of
109, more than 50 % of the investigated area have been affected by droughts at the same
time. Among these dry years is worth mentioning the periods: 1907–1908, 1920–1921,

Fig. 4 Time series of the percentage of cells under different dry conditions from 1901 to 2009 (a) and trend
pattern in the percentage of cells under dry conditions (b)
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1945–1947, 1975–1976, and more recently 1989 and 2003. Figure 4b illustrates the trend
pattern of the time series of cells under dry conditions. From the figure, it can be observed a
decreasing trend, which is significant at α05 % of the Student’s t test. This result, which
apparently contradicts the common perception, is actually in agreement with other previous
studies. For instance in their study on drought and wetness trends in Europe, based on
Standardized Precipitation Index (SPI) values computed on NCEP/NCAR reanalysis dataset
of monthly precipitation from January 1948 to February 2009, Bordi et al. (2009) observe
that the percentage of grid points in dry conditions noticeably decreases in the latest 15 year
or so, in contrast with a positive trend detected in the previous 45 years. Also, Briffa et al.
(2009), analyzing moisture availability using the Palmer Drought Severity Index (PDSI),
derived from observed precipitation and temperatures records in 22 stations across Western
and Central Europe, covering the period 1750–2003, conclude that recent widespread drying
is apparent in the latter part of the 20th century, showing that anomalously high temperatures
can be seen to be a major cause for the large areal extent of summer drought in the last two
decades.

3.4 Return Periods of Historical Critical Droughts

Return periods of severe historical drought events have been computed, based on the
methodology described in section 2. In particular, for each cell, precipitation series have
been assumed either autocorrelated or not based on the results of the autocorrelation analysis
illustrated in par. 3.2. Among the most severe drought events occurred in Europe during the
latest 40 years, it is worth reminding those ones in 1972–1973 and 1975–1976, in 1988–
1990 and 1992, and in 2000 and 2003–2005.

In order to take into account the different durations of concurrent droughts, a time span of
11 years approximately centered around the above mentioned events was considered. To this
end, the following periods have been analyzed: 1968–1978, 1985–1995 and 1999–2009.
Figure 5 illustrates the spatial distribution of the bivariate return periods of drought events
characterized by {D>Do, L≥Lo}, where Do and Lo are respectively the accumulated deficit
and duration of historical drought identified in each cell for each period. In case that more
than one event is identified in a cell in a given period, drought characterized by the largest
accumulated deficit was selected for that cell.

According to the adopted chromatic scale, drought return period increases as cell colour
ranges from white to dark colors, identifying from common (T<10 years) to extremely rare
events (T>1000 years). As it can be observed, almost the whole case study area is under
drought condition during the three considered periods. Nonetheless, the areas affected by
extreme drought events (T>100 years), change significantly from one period to another. In
particular, the period 1985–1995 seems characterized by the broadest spread of extreme
drought events, mainly localized on the Iberian peninsula, Central Europe, the Balkans and
Western Turkey.

For the sake of completeness, Table 3 reports the percentage of cells with corresponding
return periods greater than 100 and 250 years andmean drought characteristics. Results confirm
that the period 1985–1995 has been the worst in terms of areal extent of extreme drought events
occurred, as well as with respect to mean drought duration and accumulated deficit.

3.5 Return Periods of Design Critical Droughts

Previous results show that regions affected by extreme droughts (in terms of higher values of
corresponding return periods) may significantly differ from one period to another. Thus, it
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could be interesting to analyze how the European regions respond to equal drought con-
ditions, by fixing drought accumulated deficit and duration.

To this end, Fig. 6 illustrate return periods of two design droughts: the first (Fig. 6a)
characterized by dimensionless accumulated deficit (i.e. divided by the drought threshold
level) greater than 0.5 and duration greater than or equal to 3 years (a), the second (Fig. 6b)
with dimensionless accumulated deficit greater than 1 and duration greater than or equal to

Table 3 Percentage of cells with corresponding drought return periods greater than 100 and 250 years and
mean drought characteristics for each selected period

Period Cells with T>100 years (%) Cells with T>250 years (%) Mean characteristics

L (years) D/x0

1968–1978 9.39 3.11 2.97 0.49

1985–1995 9.90 4.04 2.95 0.46

1999–2009 3.42 1.40 2.47 0.40

Fig. 5 Spatial distributions of bivariate return periods of historical droughts occurred during 1968–1978 (a),
1985–1995 (b) and 1999–2009 (c)
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5 years (b). For Fig. 6, the chromatic scale has been inverted in order to better highlight
drought prone areas, characterized by the lowest values of return periods.

From both figures, it clearly appears that Euro-Mediterranean regions are more drought
prone than the rest of the continent. However, with special reference to drought with
moderate accumulated deficit and limited duration (Fig. 6a) some North Western and Central
Eastern regions also exhibit a marked trend towards frequent events (i.e. return periods less
than 50 years).

4 Conclusions

In this paper a methodology for drought characterization, proposed in previous studies
(Bonaccorso et al. 2003; Cancelliere and Salas 2004, 2010), is applied for deriving the
probability distributions of drought events, considering both drought duration and accumu-
lated deficit, and for estimating the ensuing return periods.

The proposed approach has been used for a large scale drought analysis at European
level, based on annual precipitation series derived from the CRU TS3.10.01 gridded dataset
for the period 1901–2009. Different probability distributions, namely normal, lognormal and
gamma, were fitted cell by cell to the data, based on the criteria of the lowest value of the
Lilliefors test statistic. Historical dry and wet conditions have been identified through the
theory of runs with a threshold equal to the theoretical median, and then classified based on
the probabilities of occurrence of annual deficit and surplus.

The analysis of spatial and temporal distribution of dry and wet periods, although limited
to selected cells of the CRU TS3.10.01 grid, has revealed that quite a few severe dry periods,
affecting a large part of the continent, have occurred during the period of observation, such
as at the beginning of the ‘20s, during the ‘40s, in the mid ‘70s, at the end of the ‘80s and in
2002/2003.

The time behaviour of the spatial coverage of dry conditions for the whole study area has
shown a general significant decreasing trend, which leads one to believe that recent severe
droughts have a reduced extent with respect to those occurred in the first mid of the past
century. On the other hand, the comparison of the spatial distribution of return periods of
droughts occurred during 1968–1978, 1985–1995 and 1999–2009, has highlighted worst

Fig. 6 Spatial distributions of bivariate return periods of droughts with dimensionless accumulated deficit
greater than 0.5 and duration greater than or equal to 3 years (a) and dimensionless accumulated deficit greater
than 1 and duration greater than or equal to 5 years (b)
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conditions during the second period, in terms of broader extent of the regions with a
corresponding drought return periods greater than 250 years. Finally, the spatial distributions
of return periods of droughts with fixed accumulated deficit and duration have revealed that,
in addition to Euro-Mediterranean regions, some North Western regions (e.g. from Southern
England to Germany) and Central Eastern regions (e.g. countries close to the Black Sea) are
more drought prone.

It’s worth pointing out that, although the joint analysis of drought characteristics pre-
sented in this study is built on the theory of runs applied on observed hydrometeorological
series (i.e. annual precipitation), nevertheless it can be easily extended to drought character-
istics identified on drought indices, such as the Standardized Precipitation Index, for instance
by means of copula functions. Interested readers may refer to Shiau (2006) and Serinaldi et
al. (2009) and reference therein for further details.

Further investigations are ongoing to identify homogeneous regions for characterizing
meteorological droughts at European level.
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Appendix A: Estimation of Transition Probabilities

The transition probability p01 can be defined as:

p01 ¼ 1� p00 ðA:1Þ

where p00 ¼ P Xt � x0 Xt�1 � x0j½ � ¼ P Xt�x0;Xt�1�x0½ �
P Xt�1�x0½ �

Estimation of p01 can be carried out either through a frequency approach or by a
parametric approach, assuming an underlying bivariate distribution for (Xt, Xt-1). Using the
latter approach, assuming a bivariate normal distribution for (Xt, Xt-1), the transition prob-
ability can be estimated as:

p̂01 ¼ 1� P Xt � x0;Xt�1 � x0½ �
P Xt�1 � x0½ � ¼ 1�

Φ x0;μ;Σ
	 


Φ x0;μ;σ2ð Þ ðA:2Þ

where in usual notation Φ x0;μ;Σ
	 


is the bivariate normal cdf evaluated at the point x0 ¼
x0; x0½ �0 and μ and Σ are the vector of the means and the variance-covariance matrix of (Xt,

Xt-1) respectively, while Φ x0;μ;σ2ð Þ is the normal cdf with mean and variance μ and σ2

respectively evaluated at x0.
The above approach can also be employed when Xt is not normally distributed but it can

be assumed that the transformed variable Yt0 f(Xt) is. For instance, if Xt is log normal
distributed, then Yt0 log(Xt) is normally distributed. Also, if Xt is gamma distributed, then
Yt0Xt

1/3 is normal distributed as well. Then the transition probability in Eq. A.1 can be
expressed as:

p̂01 ¼ 1� P Xt � x0;Xt�1 � x0½ �
P Xt�1 � x0½ � ¼ 1� P f Xtð Þ � f x0ð Þ; f Xt�1ð Þ � f x0ð Þ½ �

P f Xt�1ð Þ � f x0ð Þ½ � ðA:3Þ

Note that having assumed an appropriate transformation for f(Xt) both probabilities in A.3
are normal and therefore can be computed as:
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p̂01 ¼ 1� P f Xtð Þ � f x0ð Þ; f Xt�1ð Þ � f x0ð Þ½ �
P f Xt�1ð Þ � f x0ð Þ½ � ¼ 1�

Φ y0;μy;Σy

	 

Φ y0;μy;σ2y

	 
 ðA:4Þ

where y00f(x0) and the means, variances and covariances are now related to the transformed
variableYt.
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