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Abstract Accurate estimation of wind speed is essential for many hydrological applica-
tions. One way to generate wind velocity is from the fifth generation PENN/NCAR MM5
mesoscale model. However, there is a problem in using wind speed data in hydrological
processes due to large errors obtained from the mesoscale model MM5. The theme of this
article has been focused on hybridization of MM5 with four mathematical models (two
regression models- the multiple linear regression (MLR) and the nonlinear regression
(NLR), and two artificial intelligence models – the artificial neural network (ANN) and
the support vector machines (SVMs)) in such a way so that the properly modelled schemes
reduce the wind speed errors with the information from other MM5 derived hydro-
meteorological parameters. The forward selection method was employed as an input variable
selection procedure to examine the model generalization errors. The input variables of this
statistical analysis include wind speed, temperature, relative humidity, pressure, solar radi-
ation and rainfall from the MM5. The proposed conjunction structure was calibrated and
validated at the Brue catchment, Southwest of England. The study results show that
relatively simple models like MLR are useful tools for positively altering the wind speed
time series obtaining from the MM5 model. The SVM based hybrid scheme could make a
better robust modelling framework capable of capturing the non-linear nature than that of the
ANN based scheme. Although the proposed hybrid schemes are applied on error correction
modelling in this study, there are further scopes for application in a wide range of areas in
conjunction with any higher end models.
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1 Introduction

The Pennsylvania State University–National Center for Atmospheric Research (PSU/NCAR)
mesoscale modelling system 5 (MM5) is one of the sophisticated and widely accepted
downscaling models in the hydro-meteorological field (Dudhia 1993; Ishak et al. 2010).
Downscaled global assimilated weather data from the mesoscale downscaling model such as
MM5 are a very useful source of information capable of making input data to many regional
meteorological and hydrological models. For instance, the MM5 downscaled weather variables
could effectively be used for reference evapotranspiration (ETo) estimation, especially in
ungauged catchments. It has been known that the ETo is a main component in conventional
water balance studies which has considerable significance on hydrological modelling and water
resources management (Kashyap and Panda 2001; Chauhan and Shrivastava 2009) , where,
wind speed is one of the major input weather variables influencing the estimation of ETo (Allen
et al. 1998). However, many studies have highlighted the modelling difficulty of wind speed
using mesoscale models (Frank 1983; Zhong and Fast 2003). A recent study by Ishak et al.
(2010) has demonstrated that the percentage error in wind speed is about 200–400 % in the
MM5 downscaling study adopted at the Brue catchment in southwest England using the ERA-
40 reanalysis data.

The advent of modern artificial intelligence (AI) technologies provides us with many
useful approaches (e.g. artificial neural networks (ANN), support vector machines (SVMs)
and many more) to tackle complex physical processes. ANNs are one of the very powerful
mathematical tools and successfully used in hydrology for tackling many issues like river
level forecasting, rainfall runoff modelling, rainfall estimation and forecasting, ground water
modelling, reservoir inflow monitoring, water quality prediction and water resources man-
agement (Yang et al. 2001; Zhu et al. 2007; Islam et al. 2012a). ANNs are reliable tools to
improve the estimation of hydrological and meteorological variables such as wind speed.
Another new tool in hydrology from machine learning community field is called support
vector machine (SVM) and recently has gained considerable attention in environmental
science and related fields. One can find several applications of SVMs in literature like flood
stage forecasting, statistical model of daily precipitation, runoff modeling and many more
(Bray and Han 2004; Yu et al. 2006; Chen and Yu 2007; Wang et al. 2009). These artificial
intelligence models (ANNs and SVMs) could be successfully used in conjunction with
MM5 to tackle error correction issues in short-term wind speed prediction. A study by
Salcedo-Sanz et al. (2009) has presented a hybrid system including weather forecast models
(MM5) and artificial neural networks in a problem of short-term wind speed prediction.
Another useful error correction approach is with regression models (linear or power type).
Besides, the optimisation method (OP) and validation techniques are the common methods
to identify the best model structure to tackle a specific modelling problem. Study by Efron
(1986) has shown that validation with optimisation methods are a reliable and successful
scheme for model selection of parameters.

Henceforth, in this paper, we recommend the hybridization of a mesoscale model with
regression models (multiple linear regression (MLR), nonlinear (power type) regression
model (NLR)), AI models like ANNs and SVMs to obtain an error correction system for the
Brue catchment. The MM5 model dynamically downscales the ECMWF global data to
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obtain meteorological variables including wind speed in the smaller area. Then the properly
trained ANN and SVM models could process the wind speed data together with other
variables in order to accurately predict the wind speed. Later the modelling capability is
compared with that of relatively simpler regression models (linear and power type). The
paper has the following structure. In Section 2, we detail the modelling system used,
structure of the neural network and SVMs, study area and the data sets used. Section 3
details the results on the performance of the approaches. Section 4 gives some final remarks
and conclusions of this work.

2 Materials and Methods

This section describes the materials and methods for wind speed correction, using models
and different combinations of six meteorological variables obtained from the downscaled
dataset. Figure 1 shows an outline of how the system works. It starts from a global ECMWF
ERA 40-reanalysis data whose outputs are used as the boundary condition for the MM5
model. The MM5 derived variables such as wind speed, temperature, relative humidity,
pressure, solar radiation and rainfall were used as input variables for the wind velocity
correction approach. Four different models are considered for the correction viz. the ANN
model, SVM model and two regression models (a linear model and a power form model).
The details of the methodology are described in following sections.

2.1 Study Area

The Brue catchment is chosen as the study area which is located in the south-west of
England, 51.075 °N and 2.58 °W, and drains an area of 135.2 sq km (Fig. 2). The

Fig. 1 Outline of the error correction system for downscaled wind speed data
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observation data for this study were obtained from the NERC (Natural Environment
Research Council) funded HYREX project (Hydrological Radar Experiment). The ground
observed data from the Brue catchment, provided by HYREX, are used for evaluating the
downscaled wind speed data from the mesoscale regional model MM5. On top of that, this
study makes use of the ERA-40 reanalysis global weather data in the years of 1995, 1996,
and 1998. The resolutions of these data are 1°×1° in space and 6 h in time. Data from
representative seasonal months like January, March, July and October were selected for the
analysis representing winter, spring, summer and autumn seasons respectively. In addition,
winter and spring seasons may also be considered as cold season while summer and autumn
seasons may be considered as warm season (Islam et al. 2012b). Data from the first 2 years
(1995 and 1996) have been used for the training and other 1 year (1998) for the testing
purposes.

2.2 Data Analysis Techniques

2.2.1 MM5

The MM5 (Mesoscale Model 5) is the fifth generation PENN/NCAR mesoscale model
descended from the model developed by Anthes in the 1970s at PSU. MM5 is a regional-
scale primitive equation model that can be configured hydrostatically or non-hydrostatically
(Grell et al. 1994). The MM5 model uses sigma coordinates in the vertical domain, and
allows for 2-way interactive nesting of domains, with up to nine nested and interactive
domains possible. MM5 is also equipped with four dimensional data assimilation capability
and several new physics parameterisations which were not included in any of the previous
releases of the modelling system viz. Betts-Miller, Kain-Fritsch and Fritsch-Chappell cu-
mulus parameterizations, the Burk-Thompson planetary boundary layer scheme, two new

N
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Fig. 2 The study area of the Brue catchment, Somerset, Southwest England
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cloud microphysical schemes and the CCM2 radiation package (Warner et al. 1991; Mass
and Kuo 1998; Chen and Dudhia 2001). In the MM5 setting, the set of parameterizations for
the atmospheric model processes is Grell cumulus formation. We have made this selection
based on pervious case study over the Brue catchment (Ishak et al. 2012). MRF parameter-
ization for the planetary boundary layer has been chosen for the MM5 simulation. Technical
detail of this scheme can be found in (Dudhia 1993). The adopted approach uses the PSU–
NCAR mesoscale model (Dudhia 1993; Grell 1995) as a common test framework to host the
output of wind speed for 4 months in each year of 1995, 1996 and 1998. The model was run
with horizontal resolutions of 4 domains called Domain 1, 2, 3 and 4. As one can find in
Fig. 2, Domains 1 to 4 have been structured with horizontal resolutions of 21×27 km, 19×
9 km, 19×3 km, 19×1 km, respectively. The model was run using 23 vertical levels which
are default in MM5. Figure 3 shows the hourly pattern of the MM5 derived wind speed and
observed wind speed obtained from ground based HYREX project during periods 01 – 31
January, 01 – 31 March, 01 – 31 July and 01 – 31 October in 1995. The study has also used
data from similar dates in 1996, and 1998

2.2.2 Model Selection

The general hypothesis of model selection is based on model complexity (here input space is
considered as a measure of model complexity) and its influence during training and testing
phases is shown in Fig. 4. A general hypothesis states that more complex models can
simulate reality better than simpler models (i.e. less RMSE error), but they may fit to the
data noise and will perform poorly in generalisation. On the other hand, simpler models are
less influenced by the data noise, but may have poor training errors. The optimal model
should be the one in between. In reality, both model structure and data noise would have an
impact on the optimal input variables selection. Therefore, even for the same physical
problem, different models may have different optimal input variable combinations.

2.2.3 Regression Models and Validation Method

This study has used two regression models viz. the linear and nonlinear power-form function
models commonly used to describe a relationship between output (Y) with input of variables
(X1, X2, X3, X4, …, Xn) and with model parameters (a0, a1, a2, …. an) (Thomas and Benson,
1970). These are reliable techniques and widely used in many estimation and forecasting
problems. The linear and power form equations are given in Eqs. 1 and 2:

Y ¼ ao þ X1a1 þ X2a2 þ X3a3 þ X4a4 þ X5a5 þ X6a6 þ :::::::Xnan þ "o ð1Þ

Y ¼ a0X
a1
1 X a2

2 X a3
3 X a4

4 X a5
5 X a6

6 :::::X an
n þ "o ð2Þ

where, a0, a1,…an, are the model parameters, ε0 is the error term, n is the number of data. In
this study, Y is the observed wind speed while X1 to Xn are input variables and these are from
the MM5 outputs such as wind speed, surface temperature, surface pressure, solar radiation,
rainfall and relative humidity. Optimization technique has been used to minimize the result
estimated variables function, for instance min

x
f ðxÞ (Broyden 1970; Fletcher 1987). The

Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton gradient-based algorithms are
the common methodology to solve this kind of unconstrained minimization problems. The
unconstrained minimization case is applied due to the imposed conditions on the
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Fig. 3 Time series of hourly wind speed based on the observed ground data and MM5 derived for year 1995,
1996 and 1998

6 A.M. Ishak et al.



independent variables X and it assumes that f is defined for all X. Therefore, the optimization
uses an iteration process to find the most optimum value on this process. The value of a0
(initial value) should be considered first, later the processes are carried out for next a1, a2, a3,
a4,…, an. At the end of this, the process will succeed on estimation of those variables at the
local minimum. Thus, this technique will end the process of analysis until it reaches the
predefined number of iterations of k. The forward model selection method is applied to
identify the suitable model. The concept is based on separation of the dataset into training
and validation data sets (Cawley and Talbot 2003). In addition, the validation is considered
as an estimator of model generalization error.

2.2.4 Artificial Neural Network (ANN)

The supervised learning is the most common learning approach used in ANNs, in which the
input is presented to the network along with the desired output, and the weights are adjusted
so that the network attempts to produce the desired output (Møller 1993). There are different
learning algorithms and a popular algorithm is the back propagation algorithm. This study
has adopted the artificial neural network with single hidden layer architecture as shown in
Fig. 5. We have adopted a three layer network topology with six input in the first layer (layer
A), six nodes units in the second layer (layer B or hidden layers) and a single node in the
third layer (layer C or output layer). The ‘trial and error’ method was adopted to identify the
number of hidden nodes (10, in this study). In the network, each input-to-node and node-to-
node connection is modified by a weight. There is an extra input assumed in each node that
is assumed to have a constant value of one. The weight that modifies this extra input is called
the bias. Before performing training process, the weights and biases were initialized to
appropriately scaled values. Appropriate normalisation of training data was essential to
avoid saturating the activation function, hence our training data were normalised. The
sigmoid activation function was employed in this study. The training of the network was

Fig. 4 Hypothesis showing effect of complexity during training and testing (Hastie et al., 2001)
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carried out using the Levenberg–Marquardt algorithm. Various neuron number combinations
at the hidden layer were tested for the ANN models to find the best number of the hidden
layer nodes for modelling.

Oa ¼ hhidden
XP
p¼1

ia;pwa;p þ ba

 !
ð3Þ

where hhiddenðxÞ ¼ 1
1þe�x

When the network runs, each hidden layer node makes a calculation as per Eq. 3
on its inputs and transfers the result (O) to the next layer of nodes. In the above
equation, Oa is the output of the current hidden layer node a, P is either the number
of nodes in the previous hidden layer or number of network inputs, ia,p is an input to
node a from either the previous hidden layer p or network input p, wa,p is the weight
modifying the connection from either node p to node a or from input p to node a,
and ba is the bias. The subscripts a, p, and n in the given equations in this section
identify nodes in the current layer, the previous layer, and the next layer, respectively.
The sigmoid activation function was employed in this research. In the above equation,
hhidden (x) is the sigmoid activation function of the node. Before performing training
process, the weights and biases were initialized to appropriately scaled values.
Appropriate normalisation of training data was essential to avoid saturating the activation
function. For output layer, multi linear activation function was used. So the output layer nodes
perform the calculation as follows

Oa ¼ houtput
XP
p¼1

ia;pwa;p þ ba

 !
ð4Þ

where houtputðxÞ ¼ x
where, Oa is the output of the output layer node unit a, P is the number of nodes in the

previous hidden layer, ia,p is an input to node a from the previous hidden layer node p,wa,p is the
weight modifying the connection from node p to node a, and ba is the bias. hOutput (x) is a multi
linear activation function.

Input Layer Hidden layer Output layer

Fig. 5 The structure of a single hidden layer artificial neural network
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Before performing modelling, the input data for ANN has been normalized within the
range of −1 to 1. The shape of the sigmoid function plays an important role in ANN learning.
The weight changes corresponding to a value near −1 or 1 are minimal (Rao and Rao 1996).
The following normalise equation was used for normalization:

xnorm ¼ xo � x

xmax � xmin
ð5Þ

where xnorm0normalized value; x00original value; x 0 mean; xmax0maximum value; and
xmin0minimum value.

2.2.5 Support Vector Machines (SVM)

The SVMs for regression were first introduced in (1998) by Vapnik which was developed at
AT&T Bell Laboratory by Vapnik and co-workers in the early 1990s. Just like ANNs, SVM
can be represented as two-layer networks (where the weights are non-linear in the first layer
and linear in the second layer).

Mathematically, a basic function for the statistical learning process is

y ¼ f ðxÞ ¼
XM

i¼1
ai8iðxÞ ¼ w8ðxÞ ð6Þ

where the output is a linearly weighted sum ofM. The nonlinear transformation is carried out
by 8ðxÞ .

The decision function of SVM is represented as

y ¼ f ðxÞ ¼
XN

i¼1
aiK xi; xð Þ

n o
� b ð7Þ

where K is the kernel function, αi and b are parameters, N is the number of training data, xi
are vectors used in training process and x is the independent vector. The parameters αi and b
are derived by maximising their objective function.

The least squares approach prescribes choosing the parameters (w, b) to minimise the sum of the

squared deviations of the data,
Pl
i¼f 1

yi� < w � x > �bð Þ2 (Cristianini and Shawe-Taylor 2000).

To allow for some deviation ε, between the eventual targets yi and the functionf ðxÞ ¼< w � x >
þb , modelling the data, the following constraints are applied: yi � w � x� b < " and
yi � w � xþ b � "

This can be visualised as a band or a tube around the hypothesis function f(x) with points
outside the tube regarded as training errors, otherwise called slack variables ξi. These slack
variables are zero for points inside the tube and increase progressively for points outside the
tube. This approach to regression is called ε -SV regression and it is the most common
approach.

The task is now to minimise wk k2 þ C
Pm
i¼1

xi þ x*i
� �

subject to: yi � w � x� b � "þ xi

and w � xþ bð Þ � yi � "þ x*i
An alternative form of SVM is called nSV regression. This model uses ν to control

the number of support vectors. Given a set of data points, {(x1,z1),…(xl,zl)}, such that
xi ∈Rn is an input vector and zi ∈Rl the corresponding target, the form is:

min
w;b;x;x*

1
2w

Twþ C v"þ 1
l

Pl
i¼1

ðxi þ
Pl
i¼1

x*i

� �
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Subject to: wTf xið Þ þ b� zi � "þ xi and zi � wTf xið Þ � b � "þ x*i with ξ is the upper

training bound and x*i the lower training bound.
The role of the kernel function simplifies the learning process by changing the representation

of the data in the input space to a linear representation in a higher-dimensional space called a
feature space. A suitable choice of the kernel allows the data to become separable in the feature
space despite being non-separable in the original input space. Four standard kernels are usually
used in classification and regression cases: linear, polynomial, radial basis and sigmoid.

Linear u
0 � v

Polynomial g � u
0 � vþ coef

� �deg ree
Radial basis e�g� u�vj j2

Sigmoid tanh g � u
0 � vþ coef

� �
A number of support vector machine software packages are now available. The software

used in this project was LIBSVM developed by Chih-Chung Chang and Chih-Jen, and
supported by the National Science Council of Taiwan (Chang and Lin 2011). Figure 6
illustrates the SVM layout describing the processes carried out in this study.We have tried SVM
modelling with different kernel functions and different SVR types (ν-SV regression and ε-SV
regression). Note that, the results from the procedures set by (Bray and Han 2004), it was found
that the ε-SV regression and linear kernel had better performance than the remaining models.

The deviation between the target value and the function describing the hypothesis found
by the support vector machine is controlled by the ε parameter. ε Values were varied
between ε01 to ε00.00001 (the default value is ε00.01) whilst keeping all other parameters
fixed at their default values. However, in this study the ε value was set as 1. If the data is of
good quality, the distance between the two hyperplanes is narrowed down. If the data is
noisy, it is preferable to have a smaller value of C which will not penalise the vectors. In this
study, the cost value was chosen to be 10.

2.3 Statistical Parameters

In this study, we have compared the MM5 downscaled and error corrected values of wind
speed with the HYREX land based observed data. Although there are many statistical

Fig. 6 The SVM based hybrid modelling scheme used in this study
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indices available, the study has focused on two indices, root mean square error (RMSE) and
mean bias error (MBE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i�1

yiðiÞ � xiðiÞ½ �2
 !vuut ð8Þ

MBE ¼
Pn

i¼1 yi � xið Þ
n

ð9Þ

where n is the number of observations; xi0observed variable and yi0estimated variable. The
RMSE and MBE values are expressed as a percentage of the mean value of the observed data.

3 Results and Discussions

This section gives an overview of the four models performance on error correction meth-
odology based on selected input variables.

3.1 Selection of Model Inputs

The models reported in this paper were developed to correct the wind speed obtained from
MM5 [WndMM5(t)], using different hourly sets of data like MM5 derived air temperature
[TmpMM5(t)], MM5 derived atmospheric pressure [PrsMM5(t)], MM5 derived relative
humidity [RhMM5(t)], MM5 derived solar radiation [SolarMM5(t)], and MM5 derived
rainfall [RfMM5(t)] with the observed HYREX wind velocity [WndOBS(t)] as the target
data set. The study has used the MM5 outputs directly for modelling, without performing
any bias correction for individual variables. It can be reasonably assumed that the correction
models should be able to correct the biases in the input variables during the training process.
A traditional approach to find the dominant inputs is cross correlation method. Normally in
this approach, researches depend on linear cross-correlation analysis to determine the
strength of the relationship between the input time series and the output time series
(Haugh and Box 1977). The disadvantage associated with this method is its inability to
capture any nonlinear dependence that may exist between the inputs and the output.

Table 1 shows the correlation coefficients of input data series with both training and testing
data sets. The correlations are higher for the MM5 derived wind speed with the value of 0.69
during the training period while 0.70 during the testing period. The second higher correlation
values are associated with the MM5 derived pressure values in both training and testing period
with values of −0.30 and −0.40 respectively. TheMM5 derived rainfall and surface temperature

Table 1 Correlation values between the observed wind speed (WndOBS) and input variables for training and
testing results

WndMM5 TmpMM5 RhMM5 PrsMM5 RfMM5 SolarMM5

1995 and 1996 (Training phase )

WndOBS 0.6992 −0.1887 −0.1039 −0.3040 0.0650 0.1085

1998 (Testing phase)

WndOBS 0.7029 0.0094 −0.1294 −0.4001 0.1267 0.1087

An Hybrid Approach for Wind Speed Error Correction Modelling 11



have shown weak correlation during the training and testing phases. Based on the correlation
outputs, one could easily point out that the dominant inputs have a trend as follows- WndMM5
>PrsMM5>SolarMM5>RhMM5>TmpMM5>RfMM5. In addition, this study has also adop-
ted forward selection approach to identify suitable input combinations for modelling. The
adopted forward selection involves using a single dataset from the available input space for
modelling and to identify the best input which gives optimised training and testing results. In the
next step, this modelling is repeated with two inputs keeping the best input fixed and varying
other input series. The performance of the forward selection is evaluated based on the value of
RMSE in each model. We have adopted this approach for all four models in this study. The best
model input structure obtained are shown in Table 2 and the corresponding figures for linear
regression, nonlinear regression, ANNs and SVMs are shown in Fig. 7a, b, c and d respectively.

Table 2 Model selection showing RMSE for nonlinear form function, multi linear form function, ANN
model and SVM model

List of Variables RMSE Training (m/s) 1995 and 1996 RMSE Testing (m/s) 1998

For Power form (Nonlinear model)

WndMM5 0.9895 0.9901

Wnd+TmpMM5 0.9697 0.9705

Wnd+Tmp+RfMM5 0.9691 0.9702

Wnd+Tmp+Rf+PrsMM5 0.9683 0.9694

Wnd+Tmp+Rf+Prs+RhMM5 0.9681 0.9693

Wnd+Tmp+Rf+Prs+Rh+SolarMM5 0.9677 0.9692

For linear form (Multilinear model)

WndMM5 0.9878 0.9883

Wnd+TmpMM5 0.9825 0.9832

Wnd+Tmp+RhMM5 0.9801 0.9809

Wnd+Tmp+Rh+SolarMM5 0.9779 0.9789

Wnd+Tmp+Rh+Solar+PrsMM5 0.9627 0.9778

Wnd+Tmp+Rh+Solar+Prs+RfMM5 0.9767 0.9792

Normalised data

For ANN model

WndMM5 0.0982 0.1076

Wnd+SolarMM5 0.0954 0.1048

Wnd+Solar+RfMM5 0.0933 0.1034

Wnd+Solar+Rf+RhMM5 0.0931 0.1031

Wnd+Solar+Rf+Rh+TmpMM5 0.0930 0.1051

Wnd+Solar+Rf+Rh+Tmp+PrsMM5 0.0927 0.1065

Scaled data

For SVM model

WndMM5 0.1112 0.1296

Wnd+SolarMM5 0.1093 0.1278

Wnd+Solar+RfMM5 0.1080 0.1258

Wnd+Solar+Rf+RhMM5 0.1078 0.1252

Wnd+Solar+Rf+Rh+TmpMM5 0.1075 0.1255

Wnd+Solar+Rf+Rh+Tmp+PrsMM5 0.1074 0.1389
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Various combinations based on six input variables were tested for all the models where the
objective was to find the best combination with the least value of RMSE. For example, in
Fig. 7a, for NLR, wind speed (W) performed the best within the six variables with the lowest of
RMSE value. Meanwhile the lowest values of RMSE for two combinations of variables are
wind speed and temperature (W+T); as for three best combinations are wind speed, temperature
and rainfall (W+T+R); and so on. Similar descriptions can be applied for Fig. 7b, c and d.

In this regards, Fig. 7a describes the model selection for nonlinear power form function. It
has shown that, the combination of the MM5 derived wind speed, surface temperature,

Fig. 7 Results showing the model selection method (a) nonlinear form model; (b) multi linear model; (c)
ANN model and (d) SVM model
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rainfall, atmospheric pressure, relative humidity and solar radiation can produce a better
model with the least value of RMSE in the case of nonlinear regression models. The
corresponding RMSE values can be found in Table 2. Whereas in the case of multi linear
regression models, the best input combination of selection is identified as the MM5 derived
wind speed, surface temperature, relative humidity, solar radiation and surface pressure.

Fig. 7 (continued)
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When rainfall data were added to this combination, the RMSE value at the testing phase
changed to a higher value, but the RMSE value during training phase remained unchanged
(Table 2). In the case of ANN model, the best inputs are identified as a combination of the
MM5 derived wind speed, solar radiation, rainfall and relative humidity. This combination
has been identified considering the best RMSE values during the testing phase. For the SVM
model, unlike ANN, a combination of wind speed, solar radiation, rainfall and relative
humidity (W + S + R + Rh) is the best.

3.2 Application of Different Wind Velocity Error Correction Methods

This section describes the four models (multi linear regression, nonlinear regression, ANNs
and SVMs) used for the MM5 derived wind velocity error correction at the Brue catchment.

3.2.1 Modelling with Multi Linear Regression (MLR) and Nonlinear Regression (NLR) Models

Before implementation of the multi linear and nonlinear regression models, it is important to
standardize the input data with the target output ranging either for Xmax, Xmean or Xmin. The
statistical details of the observed wind speed and other MM5 derived inputs are shown in
Table 3. After standardization, the multi linear and nonlinear regression equations were
modelled according to Eqs. 1 and 2 respectively. The study has followed the suggestions from
the forward selection method, in which nonlinear regression model gave better results for the
combination of [WndMM5, TmpMM5, RfMM5, PrsMM5, RhMM5, SolarMM5] with RMSE
value of 0.967 m/s and 0.969 m/s during the training and testing phase respectively. The
optimum nonlinear regression model is given in Eq. 10. This generalisation of the model is
assessed based on its performance on the testing dataset as shown in Table 3 and Fig. 7a.

Y ¼ 9:9537:WndMM51:0303 � TmpMM5þ 10

10

� ��0:2715

� RfMM5þ 1ð Þ�0:1111

� Pr sMM5

100

� ��1:1056

� RhMM5

10

� ��0:1327

� SolarMM5þ 1

100

� ��0:0093

. . . . . . :: ð10Þ

The performance of each model is indicated by the RMSE value on the training and
testing (see Table 2). Generalization of the model is assessed based on its performance on the
testing dataset. In the case of the multi linear regressive function model, [WndMM5,
TmpMM5, RhMM5, SolarMM5, PrsMM5] input combination has shown better perfor-
mance with RMSE value of 0.962 m/s and 0.978 m/s during training and testing periods
respectively. The optimal multi linear regression model with five input variables and the
corresponding parameters are shown in Eq. 11. In general, the negative terms in Eq. 11
indicates that those particular input parameters decrease while the output increases.

Y ¼ 6:8047þ 0:5338:WndMM5� 0:2460� TmpMM5þ 10

10

� �
� 0:1201

� RhMM5

10

� �
�0:0493� SolarMM5þ 1

100

� �
� 0:5203� Pr sMM5

100

� �
. . . . . . : ð11Þ

The values of RMSE and bias obtained after wind speed corrections based on MLR are given
in Table 4 and 5 corresponding to the training and testing phases respectively. The time series plot
after error correction with multiple linear regression model on training set is given in Fig. 8 (top).
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The corresponding plots on testing data set are given in Fig. 8 (bottom). Before error correction,
the MM5 derived wind velocity has shown higher values of bias and RMSE in comparison to
the observed wind velocity for both selected training and testing sets. During 1995–1996 period
(training period for the correction techniques) theMM5 simulated wind velocity has shown bias
value of 1.58 m/s (91.3 %) and corresponding values for RMSE were 2.00 m/s (115.7 %). The
MM5 simulation results during the year 1998 (testing period for the error correction models)
have shown higher bias and RMSE values of 1.53 m/s (83.1 %) and 1.95 m/s (105.9 %)
respectively. After the MLR modelling, bias values were considerably reduced to 0.007 %
during the training period and −6.516% (slight under estimation) during the testing period. The
corresponding RMSE values are reduced to 55.6 % and 49.0 % during the training and testing
periods respectively.

The results obtained from the nonlinear regression model are also given in Table 4 which
emphasizes the close performance of the NLR model to that of the linear regression model.
However for better visual understanding of the model accuracy, line plots between measured
and NLR model error corrected wind velocity are shown in the Fig. 9 corresponding to training
and testing phases.

3.2.2 Modelling with ANN Model

This study also makes an evaluation of the use of artificial neural network models to correct the
distorted wind velocity time series data obtained from the MM5 simulation in the Brue
catchment. The four member input structure (WndMM5, SolarMM5, RfMM5, RhMM5) is
identified as the optimal, i.e. MM5 derived wind speed, solar radiation, rainfall and relative
humidity. Just like the previous two models, the ANNmodel has used the data from years 1995
and 1996 (5,904 data points) for training and year 1998 data (2,032 data points) for testing. The
time series plots of LM algorithm based ANN model results obtained in this error correction
study during training and testing are given in the Fig. 10. The ANN model produced the wind
speed with RMSE values of 0.898 m/s (51.9 %) during the training phase and 1.11 m/s

Table 4 Statistical indices showing performance of wind speed error correction models in training phase

MM5 MLR (5VAR)
(normalised data)

NLR (6VAR)
(normalised data)

ANN (4VAR)
(de-normalised)

SVM (1VAR)
(unscaled)

(m/s) % (m/s) % (m/s) % (m/s) % (m/s) %

1995 and 1996 data (training phase)

Bias 1.5797 91.324 0.000 0.007 0.009 0.536 0.000 −0.003 0.005 0.311

RMSE 2.0020 115.733 0.962 55.607 0.967 55.928 0.898 51.890 0.963 55.658

Table 5 Statistical indices showing performance of wind speed error correction models in testing phase

MM5 MLR (5VAR) NLR (6VAR) ANN (4VAR) SVM (4VAR)

(m/s) % (m/s) % (m/s) % (m/s) % (m/s) %

1998 data (testing phase)

Bias 1.5254 83.066 −0.130 −6.516 −0.155 −7.750 −0.079 −3.935 −0.015 −0.770
RMSE 1.9452 105.927 0.978 49.018 0.969 48.577 1.111 55.696 1.074 53.839
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(55.70 %) during the testing phase. The bias values observed in the ANN model during the
training phase were very close to zero, whereas during the testing phase, mean bias error (MBE)
were observed as −0.079 m/s, which is −3.94 % of the mean observed HYREX wind speed
during that study period. The analysis results in comparison with other models are given in
Table 4 and Table 5 for the training and testing phases respectively. The bias values were 91.3%
for the MM5 simulation results during 1995–1996 in comparison to the mean observed wind
velocity. The ANNmodelling has considerably reduced this higher bias values to −0.003% and
a similar trend could also be observed in the training phase. Albeit the ANN gave better training
results than the regression models, it slightly failed to show better skills in comparison with
MLR and NLR function models during testing. The ANN model was trained using the same
training data set and testing set as used for the regression models, so the reason for the disparity
could be associated with inputs used for the model. The MLR model (5 input) gave better
testing results than NLR model (6 input, the extra input is MM5 derived rainfall) and ANN

Fig. 8 The line plots of MLR corrected wind velocity and observed wind velocity at the Brue catchment
during training phase (top); testing phase (bottom)
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model (4 input). The overall performance of the regression models in the testing phase indicates
that such simple models are equally good as the ANN models to make reasonably good results
in error correction modelling.

3.2.3 Modelling with SVMs

The study has explored error correction capability of support vector machines in wind
velocity modelling on the data obtained from the MM5 simulation. The study has used four
inputs for modelling as suggested by the model selection method. The statistical perfor-
mance of support vector machine (SVM) technique with ε-SVR and linear kernel is
presented in Tables 4 and 5 corresponding to the training and testing phases. It can be
obviously seen from Table 5 that the SVMmodel approximates the measured values with the
lowest value of bias during the testing phase than that of ANN, MLR and NLR models. In

Fig. 9 The linear plots of NLR corrected wind velocity and observed wind velocity during training phase
(top); testing phase (bottom)
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the training phase, the SVM model has shown better results in bias and RMSE as compared
to the NLR model but weaker than ANN and MLR. The SVM model has better modelling
results with RMSE value of 1.074 m/s (53.8 %) and mean bias error value of −0.015 m/s
(−0.77 %) during the testing phase. The corresponding value during the training phase was
0.963 m/s (55.7 %) and 0.005 m/s (0.31 %) respectively. It was interesting to note that the
performance of the multi linear regression in terms of RMSE was better than that of the
SVM model during both the testing and training periods. The results have shown that the
performance of MLR models is closer to that of ANNs and SVMs. But the significance of
MLR is higher when we consider the modeller has to perform the tedious trial and error
procedure to develop the optimal network architecture of ANNs/SVMs, while such a
procedure is not required in developing simpler regression models. The observed and error

Fig. 10 The line diagrams of ANN corrected wind velocity and observed wind velocity at the Brue
catchment during training phase (top); testing phase (bottom)
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corrected wind speed values of the SVM model for the training and testing data are given in
Fig. 11 (top and bottom respectively). In general, these results indicate that the error
correction performance of the SVM model is better than that of the ANN model, because
of its better predictability in the testing data set.

4 Conclusions

The main aim of this study was to develop a hybrid system with the MM5 model to modify
the distorted wind speed data applied to the Brue catchment of the Southeast England. For

Fig. 11 The line diagrams of SVM corrected wind velocity and observed wind velocity at the Brue catchment
during training phase (top); testing phase (bottom)
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this purpose, two regression systems (with linear model (MLR) and nonlinear model (NLR))
and two AI systems (with ANNs and SVMs) were developed in conjugation with MM5, and
their performances were inter-compared in error correction modelling. The input vector selec-
tions for these models are tricky part of this modelling scheme, which were performed through
quantification of the statistical properties. Various outputs from the MM5 downscaling model
were analysed and optimum input structure for each model was identified. The optimisation
with the model input selection technique has identified the best input combinations for multi
linear (MLR) model as [WndMM5, TmpMM5, RhMM5, SolarMM5, PrsMM5] while that of
nonlinear form (NLR) model as [WndMM5, TmpMM5, RfMM5, PrsMM5, RhMM5,
SolarMM5]. The AI models like ANNs and SVMs have shown better performance on four
input variables [WndMM5, SolarMM5, RfMM5, RhMM5]. The exclusion of PrsMM5 could
be managed with the presence of RhMM5. The inter-comparison of different hybrid schemes
have shown that relatively simpler models like MLR have given reliable and close results to
those of complex ANNs and SVMs during the testing phases. It is observed that the NLRmodel
is capable of producing better statistical properties of the wind speed time series during the
testing phase than those of ANNs but not SVMs. The SVM based scheme was observed as
more robust than ANNs and regression models on unseen data sets, though its statistical values
during the training phases were weaker. However if we consider difficulties in trial and error
procedures associated with ANNs and SVMs, the regression based models may hold an upper
hand. The improved performance of regression models may be because of a higher number of
inputs in the model structure. In addition, this improvement is also influence from the well
performed results during training and testing phases. This study highly depended on the model
input selection approach; however, more studies using the same input series may be required to
reinforce this conclusion. Error correction studies of this kind have useful implications in
hydrology and earth sciences, especially in ungauged catchments as the inputs used for
modelling can be directly obtained from the MM5 simulation models. One weakness of the
models is their inability to capture small part of the training data near the end with significant
overestimation. The overestimation is mainly due to the overestimation by theMM5model near
the end. The correctionmodels are able to learn and correct themajority part of the training data,
but unable to learn the part which departs from the majority patterns. In general, the results of
the study are highly encouraging and suggest that all four models can provide reasonably
reliable results using the MM5 derived variables as inputs.
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