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Abstract In this paper, a copula based methodology is presented for flood frequency
analysis of Upper Godavari River flows in India. By using the specific advantages of copula
method in modeling the joint dependence structure of uncertain variables, this study applies
Archimedean copulas for frequency analysis of flood characteristics annual peak flow, flood
volume and flood duration. To determine the best fit marginal distributions for flood
variables, few parametric and nonparametric probability distributions are examined and
the best fit model is adopted for copula modeling. Four Archimedean family of copulas,
namely Ali-Mikhail-Haq, Clayton, Gumbel-Hougaard and Frank copulas are evaluated for
modeling the joint dependence of annual peak flow-volume, and flood volume-duration
pairs. The performance of two parameter estimation methods, namely method-of-moments-
like estimator based on inversion of Kendall’s tau and maximum pseudo-likelihood estima-
tor for copulas are investigated. On performing Monte Carlo simulation to assess the
performance of copula distributions in modeling the joint dependence structure of flood
variables, it is found that the developed copula models are well representing the observed
flood characteristics. From standard statistical tests, Frank copula has been identified as the
best fitted copula for both bivariate models. The Frank copula function is used for obtaining
joint and conditional return periods of flood characteristics, which can be useful for risk
based design of water resources projects.

Keywords Archimedean copulas . Flood flows . Frequency analysis . Multivariate
probability distributions . Return period

1 Introduction

The flood frequency analysis is one of the most important and widely studied subjects in the
field of hydrology and water resources. Since, floods have become most common natural
hazards, increasingly posing a significant risk to human life and environment. At the
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drainage basin scale, consideration of flood risk plays an important role in planning of water
infrastructure projects, for example in design of hydraulic structures (e.g., dam spillways,
diversion canals, dikes and river channels), urban drainage systems, cross drainage struc-
tures (e.g., culverts and bridges), reservoir management, flood hazard mapping etc.

In general, a flood means inundation caused by rivers overflowing their banks on account
of heavy rainfall and/or melting of large amounts of snow (Rakhecha and Singh 2009). The
occurrence of hydrological extreme event, flood, involves lot of uncertainty, and its prop-
erties being stochastic in nature, are characterized by mutually correlated random variables
such as flood peak, volume and duration of the flood hydrograph. Since flood is a
multivariate stochastic phenomenon, so risk analysis of flood flows has to be modeled by
an effective multivariate probabilistic approach.

Although single variable flood frequency analysis has been widely used in the past
(Cunnane 1987; Bobée and Rasmussen 1994), it may not provide effective risk analyses
to handle the associated risks of correlated flood properties. By recognizing the limitations
of single variable flood frequency analysis, the multivariate frequency analysis was
addressed by several researchers using conventional probability distributions. For example,
bivariate generalized extreme value distribution (Raynal and Salas 1987; Yue et al. 1999;
Yue and Wang 2004; Nadarajah and Shiau 2005; Escalante 2007), bivariate gamma distri-
bution (Yue 2001), bivariate normal distribution (Goel et al. 1998; Yue 1999), bivariate
lognormal distribution (Yue 2000), bivariate exponential distribution (Choulakian et al.
1990) etc. Most of these studies applied the bivariate probability distributions to obtain
joint and conditional distribution of flood peak and volume. Some of these studies have
considered the dependence among flood variables, but with restrictive assumptions, such as,
assuming all flood properties were well represented by a single probability distribution (e.g.,
normal distribution). But in practice, the flood variables may follow different distributions
and needs to be modeled separately. Also other issue is applying data transformations, such
as taking natural logarithms or applying Box-Cox transformations to the flood variables,
with an assumption of the transformed series will be invariant. But this may not be case all
the time, as transformed marginals may deviate from original distributions. Moreover,
several conventional multivariate distributions do not allow full coverage of dependence
structure between the variables and they can represent only a very limited range of
distributional shapes.

For modeling point of view, lower the dimensionality of the model, higher the reliability
of the estimates. In this respect, any modeling approach that could decompose the multi-
variate estimation procedure into separate marginal distributions and functional form of
dependence between the variables can effectively increase the reliability of the estimation
process (Ané and Kharoubi 2003). Also, sometimes conventional methods are mathemati-
cally complicated and multivariate models may require linking to Pearson’s linear correla-
tion coefficient as the dependence parameter. However, Pearson’s correlation coefficient is
not an efficient measure of association when the dependence between the variables is
nonlinear. Another classical approach to model joint distribution of random variables is
the product of marginal and conditional distributions (Clemen and Reilly 1999). But the
complexity of estimation process grows as the number of random variables increases. Thus
conventional multivariate distributions are not flexible enough, and there is a greater
necessity of sophisticated methods for flood frequency analysis.

In recent times, the use of copulas have become popular for multivariate analysis in
various fields, viz., in financial studies (Frees and Valdez 1998; Cherubini et al. 2004), in
hydrology and water resources for rainfall analysis (De Michele and Salvadori 2003; Shiau
et al. 2006), for flood flow analysis (Favre et al. 2004; De Michele et al. 2005; Zhang and
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Singh 2006; Grimaldi and Serinaldi 2006; Genest and Favre 2007; Karmakar and Simonovic
2009; Wang et al. 2009; Klein et al. 2010; Chowdhary et al. 2011), for drought analysis (Kao
and Govindaraju 2010; Song and Singh 2010; Janga Reddy and Ganguli 2012a), for
groundwater analysis (Bárdossy 2006; Janga Reddy and Ganguli 2012b), and hydro-
climatic variable analysis (Maity and Kumar 2008; Janga Reddy and Ganguli 2012b) etc.
In the following, brief details of copula applications with relevance to the present study are
discussed.

One of the early applications of copulas in hydrology is for rainfall analysis by De
Michele and Salvadori (2003). They applied for a case study in Bisagno drainage basin,
Italy, and modeled different combinations of negatively associated average storm intensity
and duration using Frank Archimedean copula with heavy tailed Generalized Pareto as the
marginal distribution for both storm duration and intensity data. Favre et al. (2004) inves-
tigated applicability of Clayton, Gumbel-Hougaard and Frank copulas for flood flow
analysis for case studies in Québec, Canada. They found that Frank copula as the best
model to capture dependence between flood variables. De Michele et al. (2005) employed
Gumbel-Hougaard copula to model joint distribution of annual maximum flood peak and
volume in Anza catchment, Northern Italy. They generated large number of synthetic
observations with GEV marginals to check the behavior of reservoir during its expected
design life and tested adequacy of dam spillways. Shiau et al. (2006) analyzed bivariate
distribution of flood peak and volume in Jhuoshuei River basin, Taiwan using Ali-Mikhail-
Haq, Clayton, Frank, Galambos, Gumbel-Hougaard and Plackett copulas. A comparative
study is carried out between joint return period and univariate return period, and stressed the
necessity of copulas for estimation of joint return periods.

Zhang and Singh (2006) modeled bivariate joint distributions of flood peak-volume, and
flood volume-duration combinations using Archimedean copulas and applied to flood data
from two different gauging stations, Ashuapmushuan River at Saguenay in Canada and
Amite River at Denham springs in US, with marginal distribution as Extreme Value Type I
and Log-Pearson Type III distributions. They found that Gumbel-Hougaard copula provides
better fit to the both combinations of flood variables. Also the copula derived distributions
were compared with Gumbel mixed model and Box-Cox transformed normal distributions,
and found that copula derived distributions were much efficient to that of conventional
multivariate distributions. Genest and Favre (2007) presented a comprehensive review of
copula with their parameter estimation and inference procedures, with an application to a
case study in Harricana watershed, Québec, Canada. Among various copula models con-
sidered in their study, they found that extreme value class of copulas—Gumbel-Hougaard,
Galambos, Husler-Reiss, BB1 and BB5 as the plausible models for modeling flood peak and
volume data. Karmakar and Simonovic (2009) applied three Archimedean copulas namely,
Ali-Mikhal-Haq, Clayton and Gumbel-Hougaard for bivariate flood frequency analysis of
flood flows of Red River at Grand Forks, Dakota, and found that Gumbel-Hougaard copula
as the best model for representing flood properties.

Wang et al. (2009) presented copula method to estimate flood quantiles for a river at the
downstream confluence point considering flood flows at two upstream tributaries, and
demonstrated through an application to a case study in Des Moines River basin, Iowa and
hinted that Frank copula performed satisfactorily. Klein et al. (2010) presented copula based
bivariate probability analyses of flood flows in Unstrut River basin, Germany. In first
application the spatial distribution of flood events within river basin is analyzed by joint
probability of inflow peaks at two reservoirs located at the downstream of the main tributary.
In second application copulas are used to obtain joint distribution of flood peak and volume
in Unstrut catchment for risk assessment of individual flood detention structures.
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Chowdhary et al. (2011) employed Archimedean families of copulas namely Ali-Mikhail-
Haq, Clayton, Farlie-Gumbel-Morgenstern, Frank, Galambos and Gumbel-Hougaard cop-
ulas to obtain joint distribution of flood peak and volume of Greenbrier River basin at
Alderson, West Virginia, and found that Clayton copula was the best model for representing
the flood properties.

Flood is a common phenomenon in many parts of India and studies have conducted for
flood frequency analysis (FFA) using conventional probabilistic approaches in different
parts of India. For example, L-moments based regional flood frequency analysis for devel-
oping flood frequency relationship for both gauged and ungauged catchments (Parida et al.
1998; Kumar et al. 2003; Kumar and Chatterjee 2005), LH-moments approach (Bhuyan et
al. 2010). Most of these studies analyzed regional flood frequency relationship taking into
account only annual maximum peak flow of the flood. Few studies considered bivariate
analysis, for example bivarate FFA using bivariate normal distribution (Goel et al. 1998). As
discussed in the above paragraphs regarding the limitations of conventional approaches,
there is a greater necessity to adopt effective multivariate probabilistic approaches to
properly assess the risks associated with the floods.

To overcome the problems associated with univariate probability analysis, which may
lead to over and under estimation of associated hydrological risks, in this study, bivariate
copula approach is presented for frequency analysis of floods in upper Godavari River basin
in Maharashtra, India. The study aims to address the following issues: (i) evaluating the
performance of parametric and non-parametric probability distributions for representing
flood characteristics; (ii) Evaluating the performance of two types of parameter estimation
methods for copula models; (iii) Testing the performance of four Archimedean copulas for
flood frequency analysis by applying to a case study, and estimating joint return periods and
conditional return periods of flood characteristics.

In the following, first brief details on theoretical aspects of copulas, procedure for
estimation of copula parameter, and goodness-of-fit test and performance measures
used for selection of best copula are presented. Afterward, copula methodology is
applied to a case study and the obtained results are presented in a systematic way,
which includes analysis of dependence structure of flood characteristics, selection of
marginal distributions, fitting copulas, determining joint and conditional distribution of
flood characteristics at various return periods. Finally a brief summary and conclusion
is presented.

2 Theoretical Aspects of Copula

Copula is a function for capturing the dependence of two or more random variables. The
Sklar’s theorem (Sklar 1959) states that the joint behavior of random variables (X, Y) with
continuous marginals u 0 FX(x) 0 P(X ≤ x) and v 0 FY(y) 0 P(Y ≤ y) can be characterized
uniquely by its associated dependence function or copula C. For 2-dimensional case, for all
(u, v) 2 [0,1]2 the relationship can be written as,

FX ;Y x; yð Þ ¼ C FX ðxÞ;FY ðyÞ½ � ¼ C u; vð Þ; 8x; y 2 < ð1Þ
where FX,Y(x,y) is joint cumulative distribution function (CDF) of random variables X and Y.

Let I0[0,1]. A bivariate copula is distribution function C 0 I2 → I, which normally
satisfies the following basic properties:

& the boundary conditions: C(t, 0) 0 C(0, t) 0 0 and C(t, 1) 0 C(1, t) 0 t, 8t 2 I
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& 2-increasing property: C u2; v2ð Þ � C u2; v1ð Þ � C u1; v2ð Þ þ C u1; v1ð Þ � 0 , 8u1; u2; v1; v2;
2 I such that u1 ≤ u2 and v1 ≤ v2

The bivariate copula density c(u, v) is the double derivative of C with respect to its

marginals and can be written as, c u; vð Þ ¼ @2C u;vð Þ
@u@v .

2.1 Archimedean Copulas

The copula function C: [0, 1]2→ [0, 1] is called bivariate Archimedean copula, if it holds the
representation (Nelsen 2006),

C u; vð Þ ¼ f�1 fðuÞ þ fðvÞð Þ u; v 2 0; 1½ � ð2Þ
where ϕ(•) is known as generator function of the copula and ϕ−1 is the inverse of ϕ(•). The
generator f : I ! <þ is a continuous, decreasing, convex function such that ϕ(1)00 and
fð0Þ ¼ 1 .

In this study, four Archimedean families of copula functions are applied, namely, Ali-
Mikhail-Haq, Clayton, Gumbel-Hougaard and Frank copula. The expressions for these
copula families, generator functions, and other properties are given in Table 1 (Nelsen
2006). The applicability of each copula family is constrained by the association of the flood
variables (e.g., by using the Kendall’s rank correlation (t) dependence measure).

& The Ali-Mikhail-Haq family of copula is applicable for both negative and positive
dependence, but has limitation that the copula parameter θ does not cover the entire
range [−1, 1] of association measures, the dependence parameter is restricted for
Kendall’s tau, tθ 2 [−0.1817, 0.3333].

& Clayton copula and Gumbel-Hougaard copula are applicable only for positive depen-
dence between random variables, tθ≥0.

& Frank copula can model both negative and positive dependence structure for entire range
of association measures, tθ 2 [−1, 1].

2.2 Estimation of Copula Parameter

The estimation of copula parameters is performed using two procedures: (1) method-of-
moments-like (MOM) estimator based on inversion of Kendall’s t (Genest and Rivest 1993)
and (2) maximum pseudo likelihood (MPL) estimator (Genest et al. 1995).

Table 1 Copula function, parameter space, generating function ϕ(t) and functional relationship of Kendall’s
tθ with copula parameter for various Archimedean copulas

Copula family Cθ(u, v) Generator
ϕ(t)

Parameter
θ 2

Kendall’s tθ

Clayton max u�θ þ v�θ � 1
� ��1

θ ; 0
� �

1
θ t�θ � 1
� � �1;1½ Þ% 0f g θ/(θ+2)

Gumbel-Hougaard exp � � ln uð Þθ þ � ln vð Þθ
h i1

θ

� 	
(−ln t)θ 1;1½ Þ (θ−1)/θ

Ali-Mikhail-Haq uv
1�θ 1�uð Þ 1�vð Þ ln 1�θ 1�tð Þ

t �1; 1½ Þ 3θ�2
3θ � 2 1�θð Þ2

3θ2
ln 1� θð Þ

Frank � 1
θ ln 1þ e�θu�1ð Þ e�θv�1ð Þ

e�θ�1ð Þ

� 	
� ln e�θt�1

e�θ�1 �1;1ð Þ% 0f g 1þ 4
θ

*D1 θð Þ � 1
� �

*DkðxÞ is the Debye function, for any positive integer k, DkðxÞ ¼ k
xk

R x
0

tk

et�1 dt
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2.2.1 Estimation Based on Inversion of Kendall’s t

In MOM estimation, the relationship between sample rank correlation and the copula

parameter θ is used. If there exists one-to-one correspondence between copula parameter bθ
and rank correlation, then by substituting the empirical values of the rank correlation into the

relation bθ ¼ f btð Þ will yield the estimate of copula parameter.
For Archimedean family of copulas, the following relationships between Kendall’s t,

copula and the generator function holds (Nelsen 2006),

t ¼ 4
R
0;1½ �2 C u; vð Þ dC u; vð Þ � 1; and t ¼ 1þ 4

R1
0

fðtÞ
f 0ðtÞ dt ð3Þ

Where ϕ (•) is the generator function of Archimedean family of copula; ϕ′ (•) is first
derivative of the generator function. For Archimedean family of copulas, there exists explicit

expressions for Kendall’s t as a function of copula parameter bθ , which are given in Table 1
(Nelsen 2006).

The Kendall’s t is defined as the difference between the probability of concordance and
the probability of discordance. Let n paired samples (x1, y1), …, (xn, yn) be observations of

independent identically distributed random variables X and Y. Among the
n

2

 !
distinct

paired samples, two paired samples (xi, yi) and (xj, yj) are concordant if [(xi-xj)(yi-yj)>0] and

otherwise those are discordant. The sample version of Kendall’s t is defined as, t ¼

c� dð Þ n

2

 !,
, where n is sample size; c and d denote the number of concordant and

discordant pairs respectively. The range of t is [−1, 1], where 1 represents total concordance,
−1 represents total discordance, and 0 represents zero concordance. Thus, the copula

parameter bθ can be estimated by using the given Kendall’s t functional relation with θ
for Archimedean family of copulas (Table 1).

2.2.2 Maximum Pseudo-Likelihood (MPL) Method

The MPL estimation method does not require any prior assumptions regarding marginal
distributions of the dependent variables. The procedure consists of transforming the mar-
ginal variables into uniformly distributed vectors using its empirical distribution function.
Then the copula parameters are estimated using maximization of pseudo log-likelihood
function.

Let X1 0 (X1,1, X1,2), …, Xn 0 (Xn,1, Xn,2)be n sample of observations in 2-dimensional
space. The empirical CDF of variable Xk, for k 2 {1,2} can be computed by,

Fk Xi;k

� � ¼ Ri;k

nþ1
; i 2 1; . . . ; nf g; k 2 1; 2f g ð4Þ

where Ri,k is rank, which is given by Ri;k ¼
Pn
j¼1

I Xj;k � Xi;k

� �
. Here I(A) is a logical indicator

function results in either 1 (if A is true) or 0 (if A is false).
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The empirical distribution function is used as a surrogate for the unknown marginals.
Substituting empirical CDFs into copula density and applying logarithm to the likelihood
function of the copula yields the following form,

‘ θð Þ ¼
Xn
i¼1

log cθ F1 Xi;1

� �
;F2 Xi;2

� �
 �� � ð5Þ

Then the copula parameter bθ can be obtained by maximizing this pseudo log-likelihood
function ‘ θð Þ .

From a computational perspective, estimation based on inversion of Kendall’s t is
generally faster than MPL method. However, in recent studies, it was noted that for the
asymptotic relative efficiency point of view with finite samples, the MPL estimation method
is more efficient (Kojadinovic and Yan 2010).

2.3 Selection of Appropriate Copula Family

Generally, there are more than one copula families that can model the dependence structure
between the random variables. To identify the most appropriate copula family (among
different copulas) for joint distribution of the flood variables, graphical methods as well as
analytical goodness-of-fit tests are adopted in this study.

2.3.1 Graphical Methods

Graphical plots or comparison of the superimposed scatter plots of observed and simulated
data (from copula) is a qualitative approach to assess the suitability of the assumed copulas.
This method is more appropriate for bivaraite cases only, as visual inspection may become
difficult for higher dimensional cases. The data generation is performed as Monte Carlo
simulation, where it involves employing the conditional distributions for simulating fairly
large number of samples (Nelsen 2006). The procedures for simulating random samples for
chosen family of copulas are given in appendix A.

2.3.2 Statistical Test

Apart from graphical plots, an analytical goodness-of-fit (GOF) test is employed to formally
test the adequacy of the hypothesized copulas. The test is based on parametric bootstrapping
procedure and makes use of the Cramer-von Mises statistic Sn:

Sn ¼
Z

0;1½ �2
n Cn u; vð Þ � Cθn u; vð Þf g2dCn u; vð Þ ð6Þ

Where Cn is the empirical copula calculated using n observational data, and Cθn is the
parametric copula (estimation under the null hypothesis). Genest et al. (2009) carried out a
power study to evaluate the effectiveness of various GOF tests and recommended it for
Archimedean copulas.

The GOF test helps to examine whether the unknown copula C actually belongs to the
chosen parametric copula family Cθ or not. It involves testing null hypothesis H0:C 2 C0, C0 0
{Cθ:θ 2 O}; against H1 : C=2C0 . Where O is an open subset of <q for some integer q≥1.

The step-by-step procedure for parametric bootstrap based GOF test is given below.

1. Compute empirical copula Cn from the pseudo-observations (U1,n, V1,n),…, (Un,n, Vn,n),
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Cn u; vð Þ ¼ 1
n

Pn
i¼1

1 Ui;n � u;Vi;n � v
� �

; u; vð Þ 2 0; 1½ �

Where 1(•) is a logical indicator function; and (Ui,n, Vi,n) are pseudo-observations from C
computed from the data (X1, Y1), …, (Xn, Yn),

Ui;n ¼ 1
nþ1

Pn
j¼1

1 Xj � Xi

� �
; Vi;n ¼ 1

nþ1

Pn
j¼1

1 Yj � Yi
� �

; i 2 1; . . . ; nf g;

and estimate dependence parameter θ using suitable estimator

2. Compute the Cramer-von Mises statistic

Sn ¼
Z

0;1½ �2
n Cn u; vð Þ � Cθn u; vð Þf g2dCn u; vð Þ

¼
Xn
i¼1

Cn Ui;n;Vi;n

� �� Cθn Ui;n;Vi;n

� �
 �2 ð7Þ

3. For some large integer N, repeat the following steps for every k 2 {1,…,N}:
(a) Generate a random sample Uk

1 ;V
k
1

� �
; . . . ; Uk

n ;V
k
n

� �
from copula Cθn and deduce the

associated pseudo-observations Uk
1;n;V

k
1;n

� �
; . . . ; Uk

n;n;V
k
n;n

� �
(b) Let CðkÞ

n and θðkÞn stand for the versions of Cn and θn derived from the pseudo

observations Uk
1;n;V

k
1;n

� �
; . . . ; Uk

n;n;V
k
n;n

� �
.

(c) Form an approximate realization of the test statistic under null hypothesis H0 as

SðkÞn ¼
Xn
i¼1

CðkÞ
n U ðkÞ

i;n ;V
k
i;n

� �
� C

θðkÞn
U ðkÞ

i;n ;V
k
i;n

� �n o2
ð8Þ

4. An approximate p-value for the test is finally given by p ¼ 1
N

PN
k¼1

1 SðkÞn � Sn
� �

If the p-value is larger than a particular significance level (α), then the null hypothesis is
accepted; otherwise, it is rejected. The larger the p-value, the more strongly the test accepts
the null hypothesis.

2.4 Estimation of Return Periods

The return period of flood events is usually associated with a certain exceedance probability.
For univariate case, the return period (T) is expressed as

TX ¼ 1

P X � xð Þ ¼
1

1� FX ðxÞð Þ ð9Þ

M.J. Reddy, P. Ganguli



2.4.1 Joint Return Period

For bivariate case, the joint return period can be characterized in two ways: (i) return period
for X ≥ x AND Y ≥ y, let the corresponding return period represented by TX,Y; (ii) return
period for X ≥ x OR Y ≥ y, let the corresponding return period represented by T

0
X ;Y .

Accordingly the joint return periods for copula based flood events can expressed (Shiau et
al. 2006) as:

TX ;Y ¼ 1
P X�x ANDY�yð Þ ¼ 1

1�FX ðxÞ�FY ðyÞþFX ;Y x;yð Þ
¼ 1

1�FX ðxÞ�FY ðyÞþC FX ðxÞ;FY ðyÞ½ �
ð10Þ

T
0
X ;Y ¼ 1

P X � xORY � yð Þ ¼
1

1� FX ;Y x; yð Þ ¼
1

1� C FX ðxÞ;FY ðyÞ½ � ð11Þ

2.4.2 Conditional Return Period

The concern in flood risk analysis is not only just to determine whether flood peak flow,
volume, and/or duration simultaneously exceed certain thresholds. But also to determine the
probability of flood peak (or volume) given flood duration exceeding a certain threshold is
vital, which can be estimated by copula modeling. The conditional probability for bivariate
models can be expressed as:

P X � xjY � yð Þ ¼ P X � x; Y � yð Þ
P Y � yð Þ ¼ FX ;Y x; yð Þ

FY ðyÞ ¼ C FX ðxÞ;FY ðyÞð Þ
FY ðyÞ ð12Þ

PðX � xjY � yÞ ¼ PðX � x; Y � yÞ
PðY � yÞ ¼ FX ðxÞ � FX ;Y ðx; yÞ

1� FY ðyÞ

¼ FX ðxÞ � CðFX ðxÞ;FY ðyÞÞ
1� FY ðyÞ

ð13Þ

By using above conditional distributions the corresponding return periods can be
obtained (for given flood characteristics) by using the standard convention for return period
(Eq. 10). In present study the capability of copula function to model joint dependence
between annual flood peak flow, volume and/or duration has been evaluated for Godavari
River basin near Nasik in India. By using copula based joint distributions of correlated flood
variables, the joint and conditional return periods of flood events are computed, which can
be useful for hydrologic design of water infrastructure.

3 Application

3.1 Study Area Details

The River Godavari ranks 34th and 32nd in terms of catchment area and water discharge
respectively, amongst the 60 major rivers of the world. Figure 1 presents location map of the
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study region upper Godavari River basin. The River originates near Nasik at an elevation
of 1,065 m in the Western Ghat, about 80 Km from the Arabian Sea. After descending
from Western Ghats, it takes a South-Easterly course across the Southern part of Indian
Peninsula and flows through 1,230 Km and falls into Bay of Bengal. The catchment area
drained by the river is over an area of 31.3 Mha, which is nearly 9.5 % of the total
geographical area of the country. Godavari basin is located between the latitudes of 16°
16′ N and 22°36′N; longitudes of 73°26′E and 83°07′ E. The principal tributaries of the
River are Manjara, Pranhita, Indravati, and Sabri. The Godavari basin receives an
average rainfall of about 92.3 cm during monsoon season (June to September), which
is about 85 % of the total annual rainfall (Rao 2001). The mean annual water discharge
of Godavari River is 1.1×105Mm3, of which 93–96 % occurs during monsoon season.
The flow in the river is mainly ephemeral in nature with high stream flow in monsoon
season due to heavy rainfall. In non-monsoon season, there is low stream flow in the
River and remains almost in dry state. Floods in Godavari are mostly associated with
heavy rain in monsoon season.

Geographical location of Nasik is 20°01′–20°02′ N and 73°30′–73°50′ E. Due to heavy
rains, Nasik is frequently affected by floods in the monsoon season. In present study, stream
gauge station located near Nasik City is considered, which is one of the heavy flood affected
area in Nasik district. Daily stream flow data is collected from Hydrology Project Circle,
Nasik for the period of 22 years (1987–2008). Due to sampling problem no measurements
were available for the year 1995, 1998, 2000 and 2001. Hence those years are not considered
and a total of 18 years daily stream flow record is available for the present analysis. The
average monthly discharge data for monsoon period shows that stream flow is highest during
the month of August (1255.65 m3/s).

Fig. 1 Location map of upper Godavari River basin
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3.2 Flood Characteristics

The flood characteristics such as flood peak (Q), flood volume (V) and flood duration
(D) are obtained from daily stream flow data. The flood peak is defined as the
maximum daily flow during the flood event; flood duration is defined as the total
number of days the flood event occurred; while the flood volume is defined as the
cumulative flow volume during the flood period. These are obtained for annual scale,
which means that for each year there will be one flood characteristic. Other issue,
which needs proper attention, is base flow consideration. The start of the surface runoff
is marked by the sharp rise of the hydrograph and end of the flood runoff is identified
by the inflection point on the receding limb of the hydrograph. If time of rise of the
flood hydrograph is denoted by SD (day) and fall by ED (day), the flood volume (V) of
each flood event is estimated as (Yue 2001):

Vi ¼ V total
i � Vbaseflow

i

� �
¼
ZED
SD

qijdt � Di

2
� qis þ qieð Þ

¼
XED
j¼SD

qij � Di

2
qis þ qieð Þ 8i ¼ 1; 2; . . . ; n ð14Þ

where, qij is the jth day observed stream flow value for ith year, qis and qie are observed
daily stream flow values on start and end day of the flood hydrograph for ith year.

The annual flood peak series is constructed by:

Qi ¼ max qij; j ¼ SDi; SDi þ 1; . . . ;EDi


 �
i ¼ 1; 2; . . . ; n ð15Þ

where SDi and EDi are start and end day of a flood event during the ith year.
The flood duration series is given by:

Di ¼ EDi � SDi; i ¼ 1; 2; . . . ; n ð16Þ
Once the flood characteristics are obtained from daily stream flow data, which can be

used for flood frequency analysis.

3.3 Step-Wise Procedure for Copula Based Flood Frequency Analysis

The steps involved in copula-based flood frequency analysis are given below:

1. Quantify the strength of dependence between the flood variables using standard depen-
dence measures. Test whether the dependence is statistically significant using standard
two-tailed t-test.

2. Fitting marginal (univariate) distribution of each variable using suitable probability
distribution function.

3. Select copula families based on strength of dependence between flood variables.
4. Fitting copula, which requires estimating copula parameter using methods described

above.
5. Identify appropriate copula model by using graphical plots, performance measures and

statistical goodness-of-fit tests.
6. After selecting suitable copula family, the copula-based joint distribution can be used to

estimate the joint and conditional return periods of flood events.
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Table 2 Pair-wise association between flood characteristics flood peak, volume and duration

Dependence measure Flood peak -volume Volume-duration Flood peak -duration

Pearson’s correlation, r 0.81 (5.3333e-005) 0.29 (0.23) 0.23 (0.36)

Kendall’s t 0.76 (8.0418e-007) 0.46 (0.01) 0.29 (0.11)

Spearman’s rank correlation, ρ 0.91 (0.000) 0.62 (0.006) 0.45 (0.06)

p-values of the estimate is shown in bracket
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4 Results and Discussion

4.1 Dependence of Flood Variables

To measure the statistical dependence between random variables, the Pearson’s linear
correlation (r), and two non-parametric dependence measures (rank correlations) such as
Spearman’s rho (ρ) and Kendall’s tau (t) are used. The Pearson’s linear correlation, measures
the linear dependence between two random variables, but assumes that the underlying
distribution is normal, and it is not invariant under monotonic non-linear transforma-
tion. The Spearman’s rho, and Kendall’s tau are calculated using ranking of variable
values rather than actual values, so they are invariant under monotonic non-linear

Table 3 Probability density function and parameters of marginal distribution

Marginal distribution Probability Density Function (PDF) Parameters

Log-normal fX ðxÞ ¼ 1
x
ffiffiffiffiffiffiffi
2pσ2y

p exp � lnðxÞ�μyð Þ2
2σ2y

� 	
μy and σy are mean and standard
deviations of Y;

x>0, μy ¼
P

yi
n

Y 0 ln (X), �1 < μy < 1 σ2y ¼
P

y2i �ny2

n�1

Gamma fX ðxÞ ¼ abxb�1e�ax

.ðbÞ ; x � 0; a; b > 0; α 0 scale parameter,

β 0 shape parameter

. bð Þ ¼ R10 tb�1e�tdt for β>0 A ¼ ln xð Þ �
P

lnðxÞ
n

b ¼ 1
4A 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

qh i
;a ¼ b

x

Kernel density bfkðxÞ ¼ 1
nh

Pn
i¼1

K x�xi
h

� �
n 0 total length of data,

h 0 the bandwidth of kernel,

Normal kernel: KðxÞ ¼ 1ffiffiffiffi
2p

p exp �x2

2

n o
;�1 < x < 1 hopt ¼ 4

3n

� �1 5=
σ

Quadratic kernel: KðxÞ ¼ 3
4 1� x2ð Þ;�1 < x < 1 σ is the standard deviation

Table 4 Performance of various parametric and non-parametric methods for fitting marginal distributions of
flood variables

Flood variables Distribution MSE AIC K-S test statistic dmax

Peak flow Parametric Gamma 0.009 −80.29 0.164

Log normal 0.007 −83.27 0.153

Nonparametric Normal kernel 0.003 −106.63 0.134

Quadratic kernel 0.003 −105.11 0.141

Volume Parametric Gamma 0.004 −93.30 0.135

Log normal 0.004 −94.61 0.116

Nonparametric Normal kernel 0.020 −70.15 0.255

Quadratic kernel 0.003 −104.84 0.115

Duration Parametric Gamma 0.011 −77.71 0.177

Log normal 0.009 −81.29 0.171

Nonparametric Normal kernel 0.0022 −109.81 0.097

Quadratic kernel 0.0023 −109.22 0.096

best estimate is marked as bold
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transformations; also there is no assumption on underlying distributions. Hence, these
are more preferred and often used as effective dependence measures for the nonlinear
modeling in hydrology.

Table 2 presents pair-wise association among flood variables—annual flood peak, volume
and duration, along with their corresponding p-values of the estimate. It can be observed that the

Table 5 Copula dependence parameter estimates based on the inversion of Kendall’s tau (MOM) and
corresponding goodness-of-fit statistics. N 0 number of bootstrap sampling

Copula family bθ Sn N0500 N01000

Scritical p-value Scritical p-value

Flood peak -volume

Clayton 6.5 0.043 0.047 0.094 0.047 0.091

Gumbel-Hougaard 4.25 0.031 0.044 0.592 0.045 0.569

Frank 15.15 0.031 0.052 0.616 0.051 0.624

Flood volume -duration

Clayton 1.70 0.042 0.061 0.442 0.061 0.444

Gumbel-Hougaard 1.85 0.039 0.061 0.516 0.060 0.564

Frank 5.04 0.038 0.062 0.666 0.062 0.676
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rank correlations for peak flow-volume and volume-duration pairs are statistically significant at
5 % significance level. The time series plots for flood characteristics are shown Fig. 2. The
Fig. 2a and b give the visual or qualitative illustration of the dependence between annual flood
peak-volume, and volume-duration pairs respectively. But the correlation between peak flow-
duration pair is small and the estimate of corresponding Kendall’s t and Spearman’s ρ is not
statistically significant as confirmed by larger p-value of the estimate. Therefore, the null
hypothesis of there is no dependence may be accepted and concluded that the corresponding
flood variables are uncorrelated. So, in this study the dependence modeling is carried out for
flood peak-volume, and volume-duration combinations only.

4.2 Marginal Distribution of Flood Variables

For fitting marginal distributions to flood variables, two parametric and two nonparametric
probability distribution functions are tested. For parametric distributions, 2-parameter Gam-
ma and 2-parameter Log-normal are used; whereas for nonparametric distributions, kernel
density estimator with kernel type—Normal and Quadratic kernel functions are used. The
expressions for probability density functions (PDFs) with their associated parameters of
marginal distributions are presented in Table 3. The maximum likelihood estimation (MLE)
method is applied to estimate the parameters of the distributions.

In parametric methods for estimating density function, it is assumed that the sample
comes from a population with a given probability density function; whereas nonparametric
method is developed directly from the data and it can reproduce attributes represented by the
sample (Moon and Lall 1994). For validation, rank based Weibull plotting position formula
P X � xið Þ ¼ i nþ 1ð Þ= is used as an estimate of empirical cumulative probability distribu-
tion. Where ‘i’ is the rank in ascending order, and xi is the i

th largest variate in a data series of
size n.

The performance of each marginal distribution is evaluated against the empirical non-
exceedance probability (i.e.,Weibull plotting position formula) using AIC criteria (mean
square error form). The results are presented in Table 4, which provides a comparison of
performances for various marginal distributions. From Table 4, the model results indicate
that normal kernel is the best fit model for peak flow and duration, while quadratic kernel
performed well for volume. Although the difference between relative performances of
Normal and Quadratic kernel is very small, Normal kernel is chosen due to its lower AIC

Table 6 Copula dependence parameter estimates based on the Maximum Pseudo Likelihood (MPL) method
and corresponding goodness-of-fit statistics

Copula family bθ LL Sn N0500 N01000

Scritical p-value Scritical p-value

Flood peak -volume

Clayton 3.94 12.75 0.072 0.106 0.002 0.015 0.001

Gumbel-Hougaard 3.16 11.85 0.048 0.051 0.072 0.052 0.079

Frank 13.56 14.61 0.035 0.053 0.580 0.054 0.582

Flood volume -duration

Clayton 1.71 4.55 0.042 0.050 0.002 0.104 0.003

Gumbel-Hougaard 1.69 2.91 0.049 0.057 0.118 0.055 0.094

Frank 4.78 3.85 0.040 0.063 0.480 0.063 0.463

Flood Frequency Analysis using Copulas



value for fitting flood duration data. The Kolmogorov-Smirnov (KS) goodness-of-fit test is
used to detect whether the proposed models can be used to represent the observed
data. The critical value of KS test statistic for sample size of 18, at 5 % significance
level is dcritical 00.31. The maximum deviations (dmax) between observed data and the
corresponding distributions are also reported in Table 5, which indicates that all the
deviations are less than the critical value. Thus all the distributions are satisfactory.
Figure 3 illustrates the fitted marginal distributions for the three flood variables. For
empirical CDF, weibull plotting position formula is used. The PDFs, CDFs and
corresponding probability (P-P) plots for the marginal distributions of flood variables
(in Fig. 3) show good agreement between theoretical distributions and the empirical
distributions. It can be noticed that normal kernel is the best fitted model for flood
variables—peak flow and duration; whereas quadratic kernel is the best fitted model
for flood volume.
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4.3 Joint Dependence Structure of Flood Variables Using Copulas

Four Archimedean families of copulas, viz., Ali-Mikhail-Haq, Clayton, Gumbel-Hougaard
and Frank are chosen to model flood characteristics. To apply Ali-Mikhail-Haq copula for
dependence modeling, the Kendall’s τ should be within the range of [−0.18, 0.33]. But for
the present case study, the kendall’s τ of the flood variable pairs under consideration for
dependence modeling i.e., flood peak-volume and volume-duration pairs, are found to be
0.76 and 0.46 respectively. Therefore, the Ali-Mikhail-Haq copula may not be applicable,
and is not considered for further analysis.

The dependence parameter of copula families is estimated by method-of-moments-like
(MOM) estimator based on inversion of Kendall’s tau, and maximum-pseudo likelihood
(MPL) method. The copula dependence parameters estimated by MOM and MPL method
are given in Tables 5 and 6 respectively. First observed flood data are compared with large
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Fig. 5 Scatter plots of flood volume and duration, shows comparison of observed data with sets of 1,000
generated random samples based on dependence parameters obtained by MOM and MPL methods for
different copula families: a Clayton, b Gumbel- Hougaard, c Frank copula
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number of generated or simulated samples from copulas. One thousand random pairs (ui, vi)
of data are generated from each families of copulas based on dependence parameters
estimated by MOM and MPL methods, and then transformed back to their corresponding
magnitudes of flood variables using marginal distributions. Then these simulated samples
are compared with the observed flood variable data and the corresponding scatter plots, for
flood peak-volume are shown in Fig. 4; and for flood volume-duration are shown in Fig. 5.
The Kendall’s τ values of the simulated samples are also shown in the respective figures.
The scatter plots in Figs. 4 and 5 show that most of the copula families are capturing the
observed dependence of flood variables, overall Frank copula seems slightly better for
modeling the dependence structure of flood variables. However, by just with visual
illustration, it is very difficult task to make a choice on selection of a particular copula
model over others.

To statistically validate and identify best suitable copula model, a formal GOF test
statistics—Cramer von Mises distance with parametric bootstrap method is employed. The
results of GOF test for the copulas fitted using MOM and MPL methods are presented in
Tables 5 and 6 respectively. A parametric bootstrap procedure is employed for the simulated
random samples of sizes 500 and 1,000. The values of Cramer von Mises distance statistics
(Sn), p-values of the estimate and critical values at 5 % significance level are given in
Tables 5 and 6.
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From Table 5 (results of MOM based copula models), it can be seen that the GOF test
resulted in significantly higher p-values for Frank copula model as compared to other
models. From Table 6 (results of MPL based copula models), it can be noted that the smaller
p-values of GOF test for Clayton copula lead to rejection of Clayton copula at 5 %
significance level for flood variable pairs; whereas for Frank copula model the test resulted
in significantly higher p-values for peak flow-volume and volume-duration pairs (for both
N0500 and N01,000 bootstrapped samples). Hence Frank copula is found to be best copula
model for dependence modeling of bivariate flood data.

Further to evaluate the performance of parameter estimation methods (MOM and
MPL), the performance is evaluated in terms of root mean square error (RMSE)
between the Frank copula CDF and the empirical non-exceedance probability or
empirical CDF (ECDF) of flood variables. The ECDF is computed using Gringorten’s
plotting position formula (Zhang and Singh 2006). For flood peak-volume, the resulting
RMSE are 0.0441 and 0.0436 for MOM and MPL methods respectively; whereas for
flood volume-duration dependence modeling, the resulting RMSE are 0.063 and 0.062
for MOM and MPL methods respectively. This shows that MPL based estimator gives
slightly better performance over MOM method. Therefore, Frank copula model and the
copula parameters obtained using MPL method are adopted for further analysis of flood
characteristics.
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4.4 Joint Return Periods

The joint return period of flood variables of interest, such as flood peak flow-volume pair
(TV,Q and T

0
V ;Q ), flood volume –duration pair (TV,D and T

0
V ;D ) can be obtained using Eqs. 10

and 11. Here it should be noted that for a given joint probability (or return period), there may
exist more than one possible flood variable combinations (e.g., flood volume and duration).
Hence, the contour line of each particular return period is illustrated in Figs. 6 and 7. The
contour plots of bivariate joint return periods associated with Eqs. 10 and 11 for flood
characteristics are shown in separate figures. Figure 6a and b show the joint return periods of
peak flow-volume pair for ‘AND’ and ‘OR’ cases respectively. Similarly, Fig. 7a and b show
the joint return periods of flood volume-duration pair for ‘AND’ and ‘OR’ cases respective-
ly. The contour lines for specific joint return periods, in which both peak flow and volume
exceeded (TVQ), has inward bounds (Fig. 6a), whereas the joint return period, in which either
peak flow or volume exceeded (T

0
VQ ) has outward bounds (Fig. 6b). Similar inferences can

be made from Fig. 7 for joint return periods of flood volume and duration pair.
From Fig. 6, it can be noticed that for the same values of peak flow and volume, the joint

return period of TVQ is much greater than that of T
0
VQ. For example, in the year 1997, for

annual peak flow of 39.523 Mm3/day the corresponding flood volume was 107.2 Mm3. The
joint return periods for this flood event TVQ estimated using Eq. 10 and T

0
VQ using Eq. 11 are

5.36 and 3.38 years respectively. Similar results are observed for joint return periods of
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volume and duration (i.e., TV,D is greater than that of T
0
V ;D ). These results can be very useful

for decision making in hydrologic design of water resource projects.

4.5 Conditional Return Periods

The conditional return periods of the flood volume V given the flood peak Q (TV|Q≤q), and
return period of the flood peak Q given the flood volume V (TQ|V≤v) are computed by using
the conditional probabilities estimated from Eq. 12, and the resultant conditional return
periods are presented in Figs. 8 and 9. From Fig. 8(a-b), it is easy to know about return
periods of the flood volume (flood peak) for a given value of flood peak (flood volume).
Similarly, from Fig. 9(a-b), it is easy to determine return periods of the flood volume (flood
duration) for a given value of flood duration (flood volume).

From Fig. 8a(b), it can be noticed that the curves indicate smaller conditional return
period of flood events at higher conditional peak flow values (volume) as compared to the
lower conditional peak flows (volume) for the same specified value of flood volume (flood
peak). At the same time, higher the flood volume (flood peak), higher is the return period of
flood event. Similar kind of trend can be seen from Fig. 9, which shows conditional return
period plots for flood volume and duration.
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These results can be useful in hydrological risk assessment and design of hydraulic
structures, such as design of spill way and construction of flood protection structures such
as, levees, flood walls, diversion works and taking non- structural safety measures to control
flood damage and developing flood mitigation strategies. Thus, the copula based method-
ology can be used as a potential tool for frequency analysis of flood flows.

5 Summary and Conclusions

In this study, a copula based methodology is presented for frequency analysis of flood flows and
applied for a case study of Upper Godavari River flows in India. For bivariate frequency
analysis, the flood flow characteristics such as annual flood peak flow (Q), flood volume (V)
and flood duration (D) are considered. The correlation for flood peak flow-flood volume pair,
and flood volume—duration pair are found to be statistically significant and considered for
flood frequency analysis. Parametric and nonparametric methods are evaluated for fitting
marginal distributions to flood variables and the best fit model is selected for copula modeling.
Four Archimedean families of copulas namely, Ali-Mikhail-Haq (AMH), Clayton, Gumbel-
Hougaard (GH), and Frank copula have been evaluated to model the joint distributions of
correlated flood variables. The estimation of copula parameters is carried out using method-of-
moments-like (MOM) estimator based on inversion of Kendall’s t, and maximum pseudo
likelihood (MPL) method. Based on dependence measures of flood data, it is noticed that Ali-
Mikhail-Haq copula is not applicable for the data (as the correlation of flood variable pairs
exceeded its allowable Kendall’s t range). The remaining three copulas (Clayton, GH, Frank)
are fitted for flood variables and evaluated their performances using graphical methods and
goodness-of-fit (GOF) tests. Then, the best fit copula model is employed to obtain the joint and
conditional return periods of flood characteristics.

The following specific conclusions can be drawn from the present study:

& The nonparametric kernel density functions are found to be best fit marginal distribu-
tions for flood variables.

& On performing standard goodness-of-fit tests for the Clayton, GH, Frank copula models,
it is found that Frank copula is the best fitted copula for flood peak flow-volume, and
flood volume-duration pairs.

& While comparing the copula parameter estimation methods, it is found that MPL method
provided better estimates as compared to MOM method.

& The copula based joint distribution is found to be effective in preserving the dependence
structure of flood variables and helping in better estimates of joint and conditional return
periods of flood characteristics, which can be very useful for decision making in
hydrologic design of water resource projects.

Appendix

A1 Simulation of Random Samples from Bivariate Archimedean Copulas

The generation of random variates (u, v) from Clayton and Frank copulas involves the
following steps:

1. Generate two independent uniform U(0,1) random variates u and q.
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2. Set v ¼ C�1
u qjuð Þ , where C�1

u qjuð Þ is the inverse of conditional distribution CuðvÞ ¼
@C u; vð Þ @u= . The functional relationships are given in Table 7.

& Clayton and Frank copulas have closed form relationships for C�1
u qju; θð Þ , whereas

Gumbel-Hougaard (G-H) copula does not has closed form relation, hence C�1
u qjuð Þ

is solved numerically.

3. The pair (u, v) forms the random vector drawn from the respective copula family C(u, v;
θ).
4. The desired (simulated) sample is given by x; yð Þ ¼ F�1

X ðuÞ;F�1
Y ðvÞ� �

, where F�1
X �ð Þ and

F�1
Y �ð Þ are inverse of marginal distributions FX (x) and FY (y) respectively.
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