
Dam- Breach Hydrograph Modelling: An Innovative
Semi- Analytical Approach

George Tsakiris & Mike Spiliotis

Received: 7 December 2011 /Accepted: 28 March 2012 /
Published online: 5 May 2012
# Springer Science+Business Media B.V. 2012

Abstract The delineation of the areas exposed to flood hazard caused by a dam existence
upstream and its possible failure needs a thorough analysis of the hypothetical dam break
incident. The study presented in this paper focusses on the simulation of the dam breach
formation and the calculation of the resulting outflow hydrograph using a semi- analytical
approach. More specifically the method presented addresses the dam break incident of an
embankment dam caused by overtopping. The analysis is based on the assumptions of
constant vertical erosion rate for the formation of the breach and the parabolic shape of the
breach. Two solutions are presented dependent on whether the capacity of the reservoir is
considered prismatic or it is a power function of the water depth in the reservoir. Finally the
proposed method is illustrated through the analysis of a hypothetical dam break incident.

Keywords Embankment dam . Dam break . Parabolic breach . Dam failure . Outflow
hydrograph . Risk assessment

1 Introduction

Risk assessment studies are often carried out at the design stage for the construction of a new
dam or during the testing of the health of an existing dam. Recent dam failures and the
anticipated changes in climatic extremes indicate that more emphasis should be given by the
scientific community to the causes of such failures and the accurate simulation procedures of
dam failure.

In particular in case of embankment dam failure two common causes of failure can be
studied in depth based on the findings of the last decades. These causes are the overtopping
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and the piping. It has been now understood that the most crucial cause mainly with respect to
time of failure is the overtopping.

Two are the main processes are of great importance when simulating the failure of an
embankment dam: the simulation of breach formation and subsequently the development of
outflow hydrograph from the breach. Once this hydrograph is obtained, the peak outflow
through the breach and the corresponding critical time are also known. Then the outflow
hydrograph is routed through the downstream valley up to the final receptor.

This paper deals with the mathematical simulation of the breach formation and the
calculation of the resulting outflow hydrograph through the breach of an embankment
dam caused by overtopping. The paper presents a semi-analytical procedure for calculating
the outflow hydrograph based on the parabolic shape of the breach and several consider-
ations concerning the breach formation derived from the analysis of historic embankment
dam failures.

Embankment breach formation by overtopping has been simulated by complex two-
dimensional flow models combined with soil erosion and slope failure algorithms or by one
dimensional flow calculations combined with various soil erosion and sediment transport
formulations.

Representative efforts of the above latter approach are the works of Christofano (1965);
Brown and Rogers (1981); Lou (1981); Ponce and Tsivoglou (1981); Nogueira (1984);
Fread (1984) and others.

The increased computational capabilities which are available during the last few decades
enabled researchers to use these models in practical applications. This gave the opportunity
to formulate physically-based algorithms for simulating the breach formation and the
resulting hydrograph. The models BREACH (Fread 1988) and BEED (Singh and Quiroga
1987a, b) belong also to this category of analytical physically-based models.

In order to facilitate the calculation procedure, the National Weather Service of USA
presented the package DAMBRK (Fread 1984) and later FLDWAV (Fread 1993) which
were widely accepted and used as standard methods in risk assessment studies throughout
the world. The main features which made the above software packages popular are that a)
they include the breach formation and the outflow hydrograph development together with
the routing procedure of the outflow hydrograph through the downstream valley, b) In order
to reach a practical solution simplified equations are used which describe the phenomenon
without detailed representation of the complex hydrodynamic and erosion procedures.

A detailed review of the methods proposed for describing the breach formation and the
development of the outflow hydrograph is included in the book «Dam breach modelling
technology» (Singh 1996).

Recently the emphasis of the researchers was focussed on the statistical analysis of some
basic parameters using real historic dam failures. Froehlich (1995, 2008), Walder and
O’Connor (1997), Wahl (2004), Tsakiris et al. (2010) derived useful conclusions on the
range of values which can be examined in risk assessment studies related to dam failures.
Given the usefulness of the results of these studies it should be stressed that in most of the
cases the conclusions were derived either from a small number of failure events or from
incidents under very diverse conditions. Therefore when these recommendations are to be
used they should be used with caution.

Apart from the above assistance the need for simulating the process of breach formation
and the development of outflow hydrograph remains. Therefore analytical or semi-analytical
methods are of importance in the light of the findings of the previous studies.

Previous analytical models were based on two assumptions: a)the reservoir is prismatic
and b) the shape of the breach is rectangular or trapezoidal. The proposed methods in this
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paper examine apart from the prismatic reservoir also the reservoir in which the capacity is a
power function of the water depth in the reservoir. Also the paper adopts the assumption of
recent findings in the subject underlining that the breach shape is parabolic. For instance
Coleman et al. 2002 suggested that cross sections along the developing breach channel are
curved in elevation below the waterline. Based on a number of experiments, Coleman et al.
2002 proposed the use of the parabolic breach shape.

2 Basic Notions

2.1 Breach Formation

The simulation of the breach formation of an embankment dam due to overtopping is a very
complicated task since it depends on a large number of factors including the dam and the
weir geometry, the construction materials and methods, the slope protection cover, the
reservoir dimensions, and the inflow hydrograph during the dam failure. Now it is under-
stood that the embankment failure is realised in three phases. In the first phase the flow
overtops the dam and may erode the downstream slope of the dam without creating a breach
through the dam. Since the erosion starts from the downstream slope it is of outmost
importance to protect this slope against erosion. Several materials have been used in practice
for reinforcing the downstream slope of the embankment dams.

In the second phase a breach is formed and enlarged through erosion vertically and
horizontally. The second phase ends when the breach reaches its final dimensions. The time
required for the final formation of the breach is referred to as time of failure. From the
analysis of historical and few experimental data it is concluded that for large embankment
dam failure the final level of the bottom of the breach is expected to reach the base of the
dam (Tsakiris et al. 2010). According to Froehlich (2008) the maximum height and width of
the breach are reached simultaneously. It is also expected that the time of failure is
approximately equal to the time of peak outflow from the breach.

Most investigators have agreed that the shape of the breach of an embankment dam can
be approximated successfully by a trapezoidal cross-section, the side slopes (1:m) of which
vary from 1:1 to 1:2 (v:h). The variables involved in the trapezoidal dam breach approxi-
mation appear in Fig. 1. Hb is the height of the breach, B is the mean width and H0 is the
initial level of the water in the reservoir with respect of the level of the bottom of the final
breach (Zmin).

B
1 

      m 

Hb H0 

(initial 
condition) 

Fig. 1 Final dimensions of a trapezoidal dam breach approximation
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2.2 The Hydraulics of the Breach

The flow through the breach can be approximated as a flow over a broad crest weir (e.g.
Powledge et al. 1989). The broad-crested weir has a finite crest length parallel to the flow. In
addition the crest is long enough that parallel flow and critical depth occur at some point
along the crest (Sturm 2001) (Fig. 2).

The critical conditions are derived by differentiating the total energy head H (which is
equal to the specify energy at the critical section according to Fig. 2- where datum level for
Energy Equation is the dam crest level):

dH

dy
¼ 1� u2cBc

gAc
¼ 0 ð1Þ

In which Bc is the width at the water surface, Ac is the wetted area and uc is the velocity
for the critical conditions.

If energy losses and the kinetic head are considered negligible the conservation of energy
leads to the following equation:

Q ¼ Ac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g h0 � ycð Þ

p
ð2Þ

in which h’ (“hydraulic head”) is the upstream water depth above the level of breach bottom
Z, (h΄ 0 h – Z) and yc is the critical depth.

In case of a parabolic shape of the cross-section the geometric parameters are linked with
the following formula:

x2 ¼ 2pyc ð3Þ
in which p is the characteristic parameter of the parabola.

Finally for the parabolic section according to Bos (1977) the keys determinants are
calculated as follows (Fig. 3):

Ac ¼ 2

3
Bcyc;Bc ¼ 2

ffiffiffiffiffiffiffiffiffi
2pyc

p
;
u2c
2g

¼ Ac

2Bc
¼ 1

3
yc; yc ¼

3

4
h0;Q ¼

ffiffiffiffiffiffiffiffiffi
3

4
pg

r
h� Zð Þ2 ð4Þ

In reality the uniform velocity distribution and the absence of energy losses do not hold and
therefore a discharge correcting coefficient Cd should be inserted. In addition another coeffi-
cient CV is inserted to account for the negligence of the upstream velocity head (Bos 1977).

Q ¼ CdCV

ffiffiffiffiffiffiffiffiffi
3

4
pg

r
h� Zð Þ2 ð5Þ

Fig. 2 Flow regimes in embankment overtopping
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It should be noted that for a variety of conditions, Cd Cv approaches one and for
simplicity may be omitted in the previous equation.

Needless to say that Z (the level of the bottom of the breach) is a function of time
determined by the rate of vertical erosion.

3 Methodology

The proposed methodology is based on two phases:

(i) The breach is increasing up to its final size. The hydrograph through the breach is
produced based on the integration of the differential equation between the level of water
in the reservoir behind the dam and the level of the breach bottom, both dependent on
time t (t < tf) .

(ii) The outflow continues after the final formation of the breach up to the total depletion of
water from the reservoir. During this phase the remaining part of the hydrograph is
produced based on the integration of the differential equation between the instanta-
neous level of the water in the reservoir and the constant level of the bottom of the final
breach.

3.1 Phase I : Breach Development

3.1.1 Prismatic Reservoir

To simplify the entire simulation of breach development we assume that the measure of the
rate of vertical erosion v (starting from the top of the breach) is constant and can be
expressed by the following equation:

v ¼ � dZ

dt
¼ Hb

tf
; or ð6Þ

Z ¼ Z0 � vt ð7Þ
where Z is the level of breach bottom at time t after the beginning of breach formation, Hb is
the elevation difference from the crest of the dam up to the final level of the breach bottom, tf
is the time period required for the final formation of the breach, and Z0 is the elevation of the
crest. All these symbols appear in Fig. 3.

Zmin

H0 

(initial condition)   Hb 
h(tf) 

hydraulic  head at 
time of failure    

Fig. 3 The dimensions of a parabolic dam breach approximation
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By applying the water- balance equation, the following equation can be written:

Asdh ¼ �Qdt ð8Þ
provided that we neglect the additional inflow in the reservoir and that the water surface area
remains constant during the breach formation.

As explained in the previous paragraph the flow through the breach can be described as
the flow through a broad-crested weir. The system of equations to be solved comprises the
Eqs. (6), (8) and (5). Solving the first two equations we derive:

dh

dZ
¼ CdCV

3
4 pg
� �0:5
v As

h� Zð Þ2 ð9Þ

By using the “hydraulic head” h’, the above equation is written:

dh0

dZ
¼ M � h02 � 1 , dh0

M h0ð Þ2 � 1
¼ dZ ð10Þ

in which M stands for the fraction of the left hand side of the equation.
The general solution of the above equation is:

� arctanh
ffiffiffiffiffi
M

p � h0� �
ffiffiffiffiffi
M

p ¼ Z þ C,ð7Þ h0 ¼ tanh � ffiffiffiffiffi
M

p
Z0 � vtð Þ þ Cð Þ� �
ffiffiffiffiffi
M

p ð11Þ

Taking into account the initial condition Z 0 Z0, h 0 H0 for t00, the constant C is
calculated as follows:

C ¼ � arctanh
ffiffiffiffiffi
M

p � H0 � Z0ð Þ� �
ffiffiffiffiffi
M

p � Z0 ð12Þ

Therefore the final solution is derived as follows:

Z ¼ Z0 � vt

h0 ¼
tanh � ffiffiffiffi

M
p

Z0�vtð Þ�arctanh
ffiffiffi
M

p � H0�Z0ð Þ½ �ffiffiffi
M

p �Z0

� �h i
ffiffiffiffi
M

p ; h ¼ h0 þ Z

M ¼ CdCV
3
4pgð Þ0:5

v As

9>>>=
>>>;

ð13Þ

3.1.2 Reservoir Capacity as a Function of Water Depth

The above methodology was based on the simplifying assumption that the reservoir is
prismatic (AS 0 constant). However it is generally accepted that such a simplification is
not sufficiently realistic. In general the capacity of a reservoir can be expressed as a power
function of the water depth. It is observed that in the majority of cases the reservoir capacity
can be approximated by a cubic function of the water depth. This can be written:

V ðhÞ ¼ kh3 ð14Þ
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Following the same procedure as before we derive:

dh

dZ
¼

CdCV

ffiffiffiffiffiffiffiffi
3
4 pg

q
v3k

h� z

h

	 
2

ð15Þ

The above differential equation is homogeneous and therefore the standard transforma-
tion can be applied:

u ¼ h
Z ) h ¼ uZ ) dh

dZ ¼ du
dZ Z þ u; N ¼ CdCV

ffiffiffiffiffi
3
4pg

p
3vk

h i
ð16Þ

ð15Þ ,ð16Þ du
dZ

Z þ u ¼ N 1� 1

u

	 
2

,

, u2

Nu2 � 2Nuþ N � u3
du ¼ dZ

Z
ð17Þ

The latter is a differential equation with separable variables. The difficulty for solving this
equation is focused on the integration of the left-hand side which can be determined
analytically as an integration of explicit functions.

It should be noticed that the general solution of Eq. 17 is dependent upon the N factor
which changes from case to case.

3.2 Phase II: Water Depletion After the Final Formation of the Breach

3.2.1 Prismatic Reservoir

In this second phase the breach has reached its final dimensions. Therefore the following
equations can be written:

Asdh ¼ �Qdt
CdCV

3
4 pg
� �0:5

h� Zminð Þ2 ¼ Q
Zmin ¼ const

9=
; , dh

dt
¼ � h� Zminð Þ2 CdCV

3
4 pg
� �0:5
As

, dh

� h� Zminð Þ2 CdCV
3
4pgð Þ0:5

As

¼ dt ð18Þ

then by integrating the above equation we conclude that:

P
1

h� Zminð Þ þ C ¼ t;P ¼ As

CdCV
3
4 pg
� �0:5 ð19Þ

The constant of integration C can be calculated from the initial condition for this phase; that
is for t 0 tf, h 0 h(tf). Finally after some algebraic operations the following equation is derived:

h ¼ P

t � tf þ P 1
h tfð Þ�Zminð Þ

	 
 þ Zmin ð20Þ
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3.2.2 Reservoir Capacity as a Function of Water Depth

If the reservoir capacity is represented by a function of the third power of the water depth
V(h) 0 kh3, a similar procedure as previously may be followed:

dV
dt ¼ �Q , �3kh2 dh

dt ¼ Q , dt ¼ �3kh2 dh
Q

CdCV
3
4 pg
� �0:5

h� Zminð Þ2 ¼ Q
Zmin ¼ const

9>=
>; ð21Þ

which is equivalent to:

dh

dt
¼ CdCV

3
4 pg
� �0:5
�3k

h� Zminð Þ2
h2

ð22Þ

Further as explained earlier for a large number of cases V(h) can be approximated by a
cubic function of h. Assuming that Zmin00, the following simple linear relationship between
the h and t is derived:

h ¼ CdCV
3
4 pg
� �0:5
�3k

t þ C ð23Þ

The constant of integration C can be calculated from the initial condition for the second
phase. That is for t 0 tf, h(tf) 0 known and therefore for t ≥ tf :

h ¼ h tf
� �� CdCV

3
4 pg
� �0:5
3k

t � tf
� � ð24Þ

4 Application and Discussion

4.1 Data

The proposed methodology was applied in a risk assessment study of a new embankment
dam at the design stage. The data concerning the dam geometry are:

& Capacity of the reservoir at the crest of the dam: 56.7×106 m3

& Height of the dam: 72 m
& Mean surface water area in the reservoir: 787,500 m2

& Elevation of the bottom of the final breach: +0 m

For the simulation of breach formation the following assumptions were adopted:

& The final breach height is equal to the height of the dam.
& One meter head above the crest is initially assumed.
& The shape of the breach is parabolic with p calculated for B=Hb ¼ 3
& Constant rate of vertical erosion is assumed throughout the breach formation 84 m/h.

4.2 Estimation of Parameter p of the Parabola

Since most of the models presented in the past used a trapezoidal shape of the breach it
would be wise to adapt the parabolic shape to the corresponding best fit trapezoidal section.
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Among the criteria which can be used in this case is that both shapes the area remains the
same. This means that the unique determinant p of the parabola can be calculated based on
the equal area between trapezoidal and parabolic section.

According to Tsakiris and Spiliotis (2012) the value of the parameter p of the parabolic
shape of the breach can be determined based on the relationship of B and Hb. From the
review of the historical dam failures it was concluded that 2Hb � B � 5:5Hb (Tsakiris et al.
2010). Further there is the recommendation of the Bureau of Reclamation 1982, for B ¼
3Hw , in which Hw is the height of water above the final breach bottom at the time of failure.
For this application we assumed B ¼ 3Hb and the determinant p was calculated equal to
182.25 m.

4.3 Phase I (Prismatic Reservoir)

The phase 1 finishes when the time t reaches the failure time tf. For each time step the flow is
calculated using Eq. 5: The maximum hydraulic head (h-Z) is achieved when the failure time
is reached. The procedure of the analysis is shown at Table 1.

Further to this initial phase I, the phase II follows according to the methodology presented
above. By combining phase I and II, the resulting entire outflow hydrograph is illustrated in
Fig. 4. The corresponding hydraulic head is presented at Fig. 5.

4.4 Phase I (Non – prismatic Reservoir)

The capacity of the reservoir V is expressed as a function of the third power of the water
depth h. In this application this function is:

V ðhÞ ¼ 113:71h3 V in m3 and h in mð Þ ð25Þ
Τhe Eq. 17, taking into account the initial condition reduces to the following algebraic

equation:

Z ¼ exp
1:72774 arctan 1:19366� 0:614735uð Þ � 0:123974Ln �0:716962þ uð Þ
�0:438013Ln 6:41659� 3:88349uþ u2ð Þ þ 3:77984564

� �
ð26Þ

Starting from u(0)0(73/72) and inserting values of u, the Z values are determined from
the above equation and finally h 0 u z. The procedure of the solution is presented in Table 1.

Table 1 Equations for prismatic and non-prismatic reservoir

General Equations Z ¼ 72� 0:0234t; Q ¼ 36:62 h� Zð Þ2

Phase I t≤ tf00.857 h Prismatic
reservoir h0 ¼ h� Zð Þ ¼

tanh � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001992836

p
72�0:0234tð Þ�arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001992836

p � 73�72ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001992836

p �72

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001992836

p ;

! h ¼ h0 þ Z where M ¼ 0:001992836

maxQ018266 m3/s, max h’022.34 m at t0 tf

Phase I V0113.71 h3

t≤ tf00.857 h

u2

Nu2�2NuþN�u3 du ¼ dZ
Z ;N ¼ CdCV

ffiffiffiffiffi
3
4pg

p
v�3�k ¼ 4:60

u ! Z ! h ¼ u � Z ! h0 ¼ h� Z ! Q and
72�Z
0:0234 ¼ t

maxQ025516 m
3
/s, max h’026.39 m at t00.5 h
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As can be seen from Table 1 the maximum outflow discharge is max Q025516 m3/s, max
h’ 026.39 m at t00.5 h

The results obtained are obviously valid if the reservoir capacity can be successfully
represented by a function of the third power of the water depth. If the exponent of the

Fig. 4 The outflow hydrograph as a result of phases I and II

Fig. 5 The hydraulic head as a result of phases I and II
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function is significantly different than 3, a suitable correction could be incorporated in the
calculation of the constant k.

As can be seen if a prismatic reservoir is assumed (and the mean surface area is
calculated by dividing the total volume by the height of the dam), the peak outflow
from the breach is significantly smaller than in the case in which the reservoir
capacity is a third power of the water depth. Similar underestimation of the peak
outflow was observed for several applications of the real world. Therefore it is
concluded that the results of the «prismatic» assumption are indicative and could be
used only in preliminary studies.

As the height of the dam is getting smaller however, the results of the above two solutions
tend to be closer. Therefore the assumption of prismatic reservoir could be used for dam
breaks of small embankment dams. For large dams though, this assumption seems to
influence the results significantly.

Another remarkable point is that by considering a prismatic reservoir the peak outflow
occurs at the end of the failure time while in the latter case the peak outflow occurs before
the end of the time of failure.

Finally solving the above problem for various values of the ratio B Hb= from 2 to 5.5 it
was observed that the peak outflow was not practically influenced for the prismatic reservoir
whereas it was positively influenced for the latter case.

Apart from the hypothesis that the rate of vertical erosion is constant other more
sophisticated assumptions regarding the pattern of erosion can be further investigated. For
example, Singh and Scarlatos 1988 proposed an erosion pattern in which the erosion rate can
be considered as a function of flow velocity. However for adopting a different erosion
pattern the need of some experimental data is imperative. Unfortunately no such data are
available to support the calibration of this type of erosion models.

5 Concluding Remarks

The breach formation and the resulting outflow hydrograph are critical processes for the
flood risk assessment studies related to dam failure. This study focussed on the derivation of
a semi-analytical method for simulating the above processes in the case of an embankment
dam failure due to overtopping.

The main advantage of the method compared to the numerical solutions lies in the fact
that it is exact and fulfils the mass conservation principle. However the assumption of
«prismatic reservoir» in the case of large dam failures seems to underestimate considerably
the peak outflow.

Furthermore one of the uses of the present semi-analytical model is to provide data to test
numerical models.
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