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Abstract This technical note introduces a reservoir operation model based on
implicit stochastic optimization (ISO) in which the release policy is guided by the
forecast of the mean inflow for a given future horizon rather than by the prediction
of the current-month inflow, such as in typical ISO models. The model also does
not require the forecast of all inflows for the future horizon and shows to be more
efficient in finding less vulnerable release policies when compared to several other
explicit and implicit stochastic procedures.

Keywords Reservoir operation · Stochastic optimization ·
Long-term inflow forecast

1 Introduction

Implicit stochastic optimization (ISO) has been frequently applied to derive reservoir
operating rules as an alternative to the classical stochastic dynamic programming
methodology (SDP) (Celeste and Billib 2009; Celeste et al. 2009; Mehta and Jain
2009; Mousavi et al. 2005). ISO takes the uncertainties of reservoir inflows into
account in an implicit way whereas SDP explicitly incorporates probabilistic inflow
methods into the problem. ISO and other implicit stochastic techniques such as
parameterization-simulation-optimization (PSO) (Rani and Moreira 2010; Celeste

A. B. Celeste (B)
Department of Civil Engineering, Federal University of Sergipe, Cidade Universitária
Prof. José Aloísio de Campos, Av. Mal. Rondon, S/N, Jardim Rosa Elze,
49.100-000 São Cristóvão, Sergipe, Brazil
e-mail: geimes@yahoo.com

M. Billib
Institute of Water Resources Management,
Hydrology and Agricultural Hydraulic Engineering,
Leibniz University of Hanover, Appelstr. 9A, 30167 Hanover, Germany



2444 A.B. Celeste, M. Billib

and Billib 2009; Koutsoyiannis and Economou 2003) are able to provide rule curves
in an arguably simpler way than SDP and, as such, might be more attractive
to operators who are skeptical to use sophisticated optimization approaches as a
replacement to easier-to-understand simulation procedures.

In a recent paper (Celeste and Billib 2009), the authors have evaluated several
ISO and PSO schemes and found that all of them performed better than SDP and
provided release rules similar to the ones produced by perfect forecast optimization.

To develop the ISO-based release policies in the aforementioned paper, data
of release, storage and inflow obtained from previous runs of a deterministic opti-
mization model were grouped month-by-month and used to adjust regression-based
curves, interpolation-based two-dimensional surfaces, and parameters of fuzzy rule-
based systems. To decide the reservoir release at a given month, each of these three
different ISO models only needed to know the initial reservoir storage together
with the inflow predicted for the month, which is usual in reservoir ISO models.
As pointed out by Shih and ReVelle (1994), the use of storage augmented by the
expected inflow may bring more reasonable behavior as compared to using only the
storage information in order to decide whether hedging (release reduction) should
be triggered.

Among all ISO, PSO and SDP models applied by Celeste and Billib (2009), the
ISO model that interpolated “rule surfaces” to the data was found to provide the best
policies. The authors recognize, however, that the fitted curves and surfaces in these
models still cannot account for all the nonlinearities present in the data. This happens
mainly because the current-month release is not only a function of the current inflow
but also depends on the inflow pattern for the next months. This suggests that taking
long-term inflow prediction into account may improve the performance of the ISO-
derived rule curves.

The use of long-term inflow forecast has been already dealt with in previous
studies. Because of forecast inaccuracy, Shiau and Lee (2005) have proposed to
use the deciles of monthly inflows to substitute for future inflows and devised a
procedure to determine the optimal forecast lead-time. You and Cai (2008) also
presented theoretical and numerical analysis to determine the best forecast horizon,
beyond which current decisions on releases are not affected by forecast.

This technical note outlines new developments in the research by Celeste and
Billib (2009) by introducing an ISO model that uses the prediction of the long-
term mean reservoir inflow rather than the current-month inflow forecast or the
forecast of a sequence of future inflows. This model, named ISO-LTF (for long-term
forecast), is compared to all previously used models and the results indicate superior
performance even though the rule curves are fitted to the data by just using classical
regression analysis.

2 ISO-LTF Model

Implicit stochastic optimization uses a deterministic optimization model to operate
the reservoir under several equally likely inflow scenarios and then examines the
resulting set of optimal operating data to develop the rule curves. The inflow
scenarios may be selected from the historical data (when the series is long enough)
but are usually obtained by means of synthetic streamflow generation models.
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Table 1 Categories of the
predicted mean inflow
for the next Hfcast months

Category k Percentage of normal mean

Very low 1 0%–35% of normal mean
Low 2 36%–70% of normal mean
Normal 3 71%–105% of normal mean
High 4 106%–140% of normal mean
Very high 5 ≥ 141% of normal mean

For each inflow ensemble, a different operating policy is found. The set of all
policies is then examined in order to construct the release rules. Typically, the data
are grouped by month (January to December) and a correlation of reservoir release
as a function of initial storage and current inflow is sought. Depending on the data
scattering, the operating policy for the month may be a simple linear equation or a
high-order polynomial, whose parameters are calibrated by regression techniques.
When the correlation is highly nonlinear, however, the release rule is perhaps better
described by a neural network or a fuzzy rule-based system. These types of ISO
models were all tested by Celeste and Billib (2009).

The proposed ISO-LTF model works exactly like described above with the
exception that the current-month inflow is replaced by the forecast of inflow for the
next couple of months (forecast horizon). One potential problem with this approach,
though, is that long-term inflow forecast is rarely accurate, especially in semiarid
regions, where this study is applied. However, instead of including a prediction of the
actual inflow values for the following few months (or season), one may simply use
the forecast of the expected mean inflow for the period. For example, the forecast
might inform if the mean inflow for the next season will be lower or higher than
the historical average inflow for the same period.1 In this way, the rule curves can
be developed by grouping the data of releases conditioned on initial storage and
expected mean inflow for the coming few months. Thus, for every month, there
would be several curves each with a different category of forecast, e.g., a curve
conditioning release to storage and low future inflow, another rule conditioning
release to storage and high future inflow, etc.

In this preliminary study, the operating data of each month obtained by deter-
ministic optimization are grouped into five categories. Each category correlates the
monthly reservoir release with the reservoir storage in the beginning of the month
and the predicted mean inflow for the next Hfcast months, where Hfcast is the forecast
horizon. Such mean inflow must be in one of the five categories listed in Table 1.

With the data clustered into categories, the model applies regression analysis to
fit the following nonlinear equation to the data:

R(t) = dk(τ )

[
S(t − 1) − Sdead

Smax − Sdead

]mk(τ )

(1)

1Note that the use of mean inflow will not increase the accuracy of the forecast but its value will
be arguably easier to estimate. It should be less problematic to estimate a single value than a good
sequence of inflow values.
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in which R(t) is the reservoir release in month t; S(t − 1) is the reservoir storage at
the beginning of month t; Sdead and Smax are, respectively, the dead storage and the
storage capacity of the reservoir; and dk(τ ) ≥ 0 and mk(τ ) ∈ [0, 1] are the regression
parameters, fitted to each category k (k = 1, 2, . . . , 5) and each month of the year τ

(τ = 1, 2, . . . , 12). Note that the index t = 1, 2, . . . , N is different from τ since t varies
along the operating horizon of N months. The month of the year τ corresponding to
t is calculated by τ = rem

( t
12

)
, which has the meaning that t is divided by 12 and the

remainder is taken as the value for τ . If rem
( t

12

) = 0, then τ = 12.
Thus, to determine the release R(t) of a given month t, the mean inflow in the next

Hfcast months is first predicted, then the category k to which it belongs is verified, and
finally R(t) is calculated by means of the above equation using the parameters dk(τ )

and mk(τ ) corresponding to category k and month τ .

3 Brief Description of the Models used for Comparison

The deterministic optimization model used by the ISO algorithm to operate the
reservoir under the several inflow realizations is the one described by Celeste
and Billib (2009) which uses the solution procedure refined by Celeste and Billib
(2010). The objective function is the sum of squared deviations between releases
and demands and the constraints are the reservoir continuity equation together with
lower and upper bounds for storages, releases and spills. Evaporation losses are also
taken into account.

The ISO, PSO and SDP models used by Celeste and Billib (2009) are briefly
described below for convenience:

ISO-REG Model: The data resulting from the deterministic optimization is
grouped conditioning release, R(t), as a function of initial
storage, S(t − 1), and current-month inflow, I(t), and non-
linear regression is applied to fit the following nonlinear
equation (hyperbola) to the data:

R(t) = D(t)
√[

S(t − 1) − Sdead
]2 + I(t)2

m(τ ) +
√[

S(t − 1) − Sdead
]2 + I(t)2

(2)

where m(τ ) (τ = 1, 2, . . . , 12) are the parameters to be cal-
ibrated. The two-dimensional domain S × I is also divided
into three regions and the data corresponding to each region
are fitted independently. These regions are delimited by two
lines having slopes of 30° and 60° from the axis of I.

ISO-SURF Model: Instead of fitting an equation, this model interpolates a two-
dimensional surface of the form z(x, y) to the data, where z,
x and y represent release, initial storage and current-month
inflow, respectively.

ISO-ANFIS Model: Uses the so-called adaptive neuro-fuzzy inference sys-
tem (ANFIS) (Jang 1993) in order to develop a set
of “IF-THEN” operating rules of the form IF S(t−1)

is A AND I(t) is B THEN R(t) = f (S(t − 1), I(t)), where
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A and B are linguistic values defined by fuzzy sets and f
is a function of the inputs.

PSO-HDG Model: PSO models first predefine a shape for the rule curve based
on some parameters and then apply heuristic strategies to
look for the combination of parameters that provides the
best reservoir operating performance under possible inflow
scenarios. The PSO-HDG model calibrates hedging para-
meters applied to the well-known standard operating policy
(SOP). The SOP produces the simplest reservoir operating
rule that prioritizes immediate water release up to the target
demand (Draper and Lund 2004). The objective function of
all PSO models is the same as used by the ISO models.

PSO-ZON Model: Divides the reservoir into six parameterized zones. Depend-
ing on the zone at which the initial storage level is located, a
different fraction of the demand is released. The zone levels
and the demand fractions are the parameters of the model.

PSO-2dHDG Model: Uses a rule that establishes a two-dimensional correlation
of release, initial storage and current inflow so that hedging
is applied only when a combination of active storage, S(t −
1) − Sdead, and inflow is below a given parameter.

SDP Model: The recursive function F of the employed stochastic dynamic
programming model is:

Fn
t (S(t − 1), I(t))

= minimize
feasible S(t)

⎡
⎣Z (t)+

∑
I(t+1)

PI(t+1) Fn−1
t+1 (S(t), I(t+1))

⎤
⎦ (3)

where t is the current month and n is the total number
of remaining months. Initial storage, S(t − 1), and current
inflow, I(t), are the state variables, while final storage, S(t),
is the decision variable. Z (t) is the sum of squared deviations
between releases and demands over all months from now
on into the future and PI(t+1) is the unconditional inflow
transition probability (no correlation between consecutive
inflows).

4 Application of the ISO-LTF Model

The ISO-LTF model was applied to operate the Epitácio Pessoa reservoir (412 hm3)
located in the state of Paraíba, a semiarid region of Northeastern Brazil. Twenty
ensembles of 26-year monthly inflow series were synthetically generated in order
to calibrate the model. During the calibration, after operating the reservoir under
each inflow scenario via deterministic optimization (with an operating horizon of
N = 26 × 12 = 312 months), the first and last three years of data were rejected to
avoid the influence of starting and ending reservoir storages. Thus, only the resulting
20 years of data were used to fit the rule curves. The water demand assumed was the
reservoir yield at 85% reliability (Celeste and Billib 2009).
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The ISO-LTF model was used with Hfcast values of 0, 6, 12 and 36 months.
For Hfcast = 0, each monthly curve was adjusted to all data, with no division into
categories. In this case, the inflow is the value expected for the current month (i.e.,
the value of inflow is known and equal to the forecast for the current month),
just like in typical ISO models that do not consider long-term forecast. Due to
space limitations, only the parameters calibrated for Hfcast = 12 are presented here
(Table 2).

After calibration, the ISO-LTF release rules were applied to operate the reservoir
under 20 validation scenarios of monthly inflows (named valid-1, valid-2 up to valid-
20), different from the calibration series. It must be mentioned that, during the these
operations, the forecast of the mean inflow for the next Hfcast months was based on
their real values, i.e., perfect forecasts.

The validation scenarios were also individually used as perfect forecast inputs to
the deterministic optimization model and the operating policies obtained were taken
as benchmark.

Taking N as the operating horizon (size of each series), a vulnerability index
equal to

Vul = 1
N

N∑
t=1

[
R(t) − D(t)

D(t)

]2

(4)

was applied to compare the performance of the ISO-LTF model against all models
listed in Section 3 (see Table 3). Since no model gave the best results for each and
every scenario, the same ranking approach used by Celeste and Billib (2009) was
applied. This approach provides highest points to the model whose vulnerability is
closest to the one found by perfect forecast optimization. The final ranking (1 =
best) is shown in the last row of Table 3.

The operations under the SOP caused several short-time failure periods with
high vulnerabilities.2 The perfect forecast optimization model applied hedging prior
to these shortage periods in order to mitigate the potential high deficits. All ISO
(including the ISO-LTF) and PSO models allocated water in a similar way. Without
applying the ISO-LTF model, Celeste and Billib (2009) found that the ISO-SURF
and the PSO-2dHDG were the best models overall. Now, Table 3 shows that the
ISO-LTF model with Hfcast values of 36, 12 and 6 yields (in this order) even better
performance. The more the forecast is accurate, the better the operation becomes. It
must be remembered that the forecast is only for the mean inflow value for the next
Hfcast months and not all 36, 12 or 6 values of future monthly inflows. It must be also
noted that the ISO-LTF model assumes that the forecast information is accurate. If
it is not, the ISO model as well as any other model using that information would give
inappropriate results. Thirty six months may be too long for practical meteorological
forecasts. The results for Hfcast = 36 is included to show that, in the uncommon case
of accurate forecast estimates for such a horizon, one might get better reservoir
operating rules.

2This was already expected since the SOP maximizes the reliability (percentage of non-failure
periods) at the expense of providing more vulnerability (magnitude of failures) (Hashimoto et al.
1982).
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5 Conclusions

This paper proposed a reservoir operation model based on implicit stochastic
optimization that used the long-term forecast of the mean inflow rather than the
prediction of all monthly inflow values for a given future horizon. Based on this
forecast and on the observed current storage, the reservoir release could be estimated
by means of the rule-curves calibrated by the model. The ISO-LTF model was
applied to operate a reservoir in semiarid Brazil and its release policy performed
better than those from various other explicit and implicit stochastic models such
as PSO, SDP and ISO-ANFIS. Refinement of this model may still be possible by
using more sophisticated approaches to correlate release as a function of storage and
forecasted inflow rather than simple regression analysis, as was the case here.
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