
Multicriteria Decision Support System for Regionalization
of Integrated Water Resources Management

Ana Carolina Coelho & John W. Labadie &

Darrell G. Fontane

Received: 20 July 2011 /Accepted: 13 December 2011 /
Published online: 11 January 2012
# Springer Science+Business Media B.V. 2012

Abstract Successful implementation of integrated water resources planning and manage-
ment (IWRM) requires delineation of regions that are relatively homogeneous with respect
to multiple criteria, including hydrographic, physical-environmental, socioeconomic, and
political-administrative aspects. The water resources planning and management (WAR-
PLAM) DSS is presented as tool for regionalization in support of IWRM through: (1) GIS
processing of spatial data related to multiple criteria for defining the homogeneity of
clustered base units (e.g., catchments) with respect to multiple criteria; (2) application of
fuzzy set theory to development of composite measures of homogeneity over all criteria for
alternative clustering of adjacent base units; and (3) development of a modified dynamic
programming clustering algorithm that guarantees consistent optimal solutions based on user
preferences on the relative importance of the suite of criteria considered for regionalization.
The viability of WARPLAM DSS as a tool for regional delineation in support of IWRM is
demonstrated through a case study application to the Tocantins-Araguaia River Basin, the
second largest in Brazil.

Keywords Decision support systems . Fuzzy sets . Multicriteria methods . Clustering
methods . Dynamic programming . Integrated water resources management . Geographic
information systems

1 Introduction

Integrated Water Resources Management (IWRM) is a new paradigm for water resources
planning and management that has been defined by the Global Water Partnership (2000) as
“…a process which promotes the coordinated development and management of water, land,
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and related resources in order to maximize the resultant economic and social welfare in an
equitable manner without compromising the sustainability of vital ecosystems.” Reflected in
this statement is the realization that water is a multidimensional resource which cannot be
confined to a hydrological context, but requires consideration of socioeconomic, political-
administrative, and environmental impacts for sustainable water resources development and
management.

With IWRM comes the recognition that the traditional fractured water management
approaches must be replaced with holistic, coordinated decision making across multiple sectors
and scales that promotes efficiency, equity, and environmental sustainability. IWRM is a
multidisciplinary approach to water resources development and management that focuses on
participatory methods for gaining a “shared vision” among competing interests that is flexible
and adaptable to changing conditions, such as long-term global warming impacts.

A key element in the successful implementation of IWRM is the delineation of regions for
cooperative water management that are relatively homogeneous with respect to multiple
criteria. This is related to the concept of problemsheds proffered by Allan (2005), with
boundaries established based on the predominant water management problems confronting
the region that may transcend natural watershed boundaries. Ideally, these regional subdivisions
should be sufficiently large to promote coordinated interregional water resources decision
making, and yet small enough to foster integrated intraregional management among local
public, private, and other interests. Unfortunately, attempts at such regionalization for the
purposes of achieving IWRM are often carried out without sufficient scientific support or
commonly agreed upon principles, and are overly biased by the political and historical context.

Mostert et al. (2008) affirm the central importance of boundaries in water resources
management, recognizing they should be based on multiple criteria and not solely on watershed
and river basin limits. Wiering et al. (2010) addressed the incentives and obstacles to region-
alization as a means of fostering cross-border collaboration for IWRM, concluding that
although regionalization planning is plausible, the actual implementation may be problematic.
Allende et al. (2009) integrated a geographic information system (GIS) with cluster analysis for
delineating regions in the Cuitzeo Lake Watershed of Central Mexico. Multicriteria decision
analysis was applied to ranking the importance of the clustered subwatersheds based on
specified ecological and geographical attributes of the clusters for the purpose of designing a
hydrometeorological monitoring network. This study focused primarily on regionalization for
the purpose of hydrologic analysis rather than integrated water management.

The Water Resources Planning and Management (WARPLAM) decision support system
(DSS) is presented herein as a tool for federal and state governments, international com-
missions, and water councils in defining appropriate territorial limits for water resources
planning and management that reflect multiple interests and criteria. Although river basin
boundaries are generally considered to be the most suitable to achieve IWRM goals,
WARPLAM provides the option for decision makers to include socioeconomic, political,
and environmental aspects into the analysis. The result is improved dialog between multiple
users and opportunities for integration of the water-related sectors as a means of overcoming
the hurdles that interfere with strategic water uses. Application of the proposed DSS also
improves understanding of the most critical water-related problems and priorities, as well as
identification of the key stakeholders and interests groups in each region. WARPLAM
facilitates analysis of the most suitable scale for water resources planning and management
to encourage better integration among local, regional and national interests, particularly in
federated countries and transboundary river basins. Public participation in the water resour-
ces planning and management process is also enhanced by the realization that the region-
alization process may better reflect public interests.
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The steps in the decision analysis process for IWRM regionalization as incorporated in
WARPLAM DSS are presented, followed by a description of the GIS processing required
for developing the measures of homogeneity of cluster alternatives. Multicriteria measures
of homogeneity of clusters of the planar partitions (e.g., catchments) are derived as mem-
bership functions of fuzzy sets. Optimal clustering algorithms are then surveyed, with
selection of a modified dynamic programming algorithm as the most suitable for this
purpose. The clustering algorithm performs a multiobjective optimization based on subjec-
tive preference weights assigned by the decision makers and water planning experts to the
various criteria, including physical-environmental, political-administrative, hydrographic,
and socioeconomic categories. The viability of WARPLAM DSS for regional delineation
in support of IWRM is demonstrated through a case study application to Tocantins-Araguaia
River Basin, the second largest in Brazil in terms of drainage area and annual discharge
exceeded only by the Amazon.

2 Decision Analysis Process for IWRM Regional Delineation

The decision analysis process for delineation of water resources planning and management
regions in support of IWRM is conducted in WARPLAM through five general steps, as
illustrated in Fig. 1. The first step is the application of GIS for definition of a base planar
partition defined over the entire region designated for implementation of IWRM. For
example, partitions may be defined as catchments and watersheds of a specified minimum
threshold size represented as polygons in a geospatial database such that the union of the
partitions represents the entire region with no gaps or overlaps (Haunert and Wolff 2010).

Fig. 1 Five step decision analysis process for delineation of water management regions
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Conversely, for highly developed regions, the adoption of elemental areas based on extents
of municipal/industrial zones and political-administrative boundaries may provide the basis
for analysis. The base planar partition serves as the starting point for performing regional-
ization through clustering and data segmentation procedures to delineate more generalized
regions amenable to implementation of IWRM.

The second step is selection of a set of criteria reflecting the multiple interests and
factors governing successful implementation of IWRM, such as hydrographic, political-
administrative, socioeconomic, cultural, and environmental aspects. This is followed by
development of a hierarchy of more detailed sub-criteria with associated weights
reflecting user preferences. Selection of appropriate criteria and sub-criteria is aided
by heuristic IF-THEN rules derived from international surveys and interaction with a
broad spectrum of decision makers and experts in water resources planning and
management from both the public and private sectors (Coelho 2010). This heuristic
knowledge guides the user in selection and prioritization of various criteria, such as
suggesting land use as an important socioeconomic factor influencing IWRM within a
planar partition comprised of catchments.

As seen in Fig. 2, a land use map is represented as a classified GIS map layer, where the
various land use categories are assumed to have the same priority within the general land use
designation. For example, if agriculture is considered to be more important than the other
land use categories in defining IWRM regions, then agriculture can be removed from the
land use map and represented in a separate map layer with higher priority assigned.
ArcGIS™ Desktop (ESRI, Inc.) is employed as the GIS platform for this study, with criteria
maps maintained in the ESRI geodatabase framework for convenient geospatial data storage
and management within in the decision analysis process for multicriteria delineation of
IWRM regions.

The third step in the decision analysis process involves GIS operations of intersect-
ing the criteria/sub-criteria map layers with the base planar partition and performing
polygon-to-line operations, as illustrated in Fig. 3. These operations are required for
defining measures of closeness or homogeneity with respect to each criterion for each
adjacent pair of territorial units contained in the base planar partition. Each of these
pairs constitutes a single clustering alternative, where each base unit may be included
in more than one clustering alternative. Results of these GIS operations are stored in an
ESRI personal geodatabase as a Microsoft Access database with sets of attribute tables
designed for holding geodatabase metadata along with the feature geometry. In order to
support the creation of a more functional and user-friendly interface, ESRI Model-
Builder is employed as a visual programming tool available in ArcGIS for automating
the geospatial intersection and polygon-to-line processes and storing the results in a
geodatabase (Fig. 4).

The fourth step in the decision analysis process is defining and applying measures of
homogeneity for every alternative clustered pair with respect to each criterion based on
results of the GIS operations stored in the geodatabase. This is followed by development and
application of total weighted measures of homogeneity over all criteria for each clustering
alternative using the Euclidean distance norm as scaled by the maximum and minimum
measures of homogeneity for each criterion over all clustering alternatives. The fifth and
final step is the application of an efficient clustering algorithm based on dynamic program-
ming to define various clustering alternatives representing regionalization alternatives for
implementation of IWRM. Included in this step is application of fuzzy logic to quantify the
degree of uncertainty associated with the computed regionalization scenarios since the
criteria are highly subjective. In addition, the polygon features of certain criteria, such as

1328 A.C. Coelho et al.



soil maps, are represented as elements with precise boundaries, but are in fact continuously
varying phenomena with indistinct borders.

These steps in the regionalization decision analysis process are embodied in
WARPLAM, which is a spreadsheet-based DSS utilizing Excel™ (Microsoft, Inc.)

Fig. 2 Classified land use map for the Tocantins-Araguiaia River Basin, Brazil
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as the platform selected for integrating the user interface (dialog) subsystem, database
management subsystem, and model base management subsystem. Figure 5 displays the
user interface for WARPLAM in Excel, where the user sets preference weights for
each main or sub-criterion, is alerted for any missing information, and directed to
instructions on use of the DSS. The subsystems of WARPLAM DSS are illustrated in
Fig. 5, where the database management system integrates geospatial data processed in
ArcGIS™ Desktop GIS software (ESRI, Inc.) with nonspatial data maintained in MS
Excel spreadsheets. All geospatial information is stored in ESRI geodatabase format
and can be accessed and visualized through the ArcMap™ interface to ArcGIS. The
ESRI geodatabase format provides an integrated structure for combining input data
and output results from GIS spatial analysis and Excel data processing. The model-
base subsystem is also implemented in Excel, with VBA scripts developed for data
import, calculating measures of homogeneity for each clustered pair and each criteri-
on, and execution of the external dynamic programming optimal clustering module.
Results from the decision analysis processes are managed and stored in Excel, as well
as exported to ArcMap for visualization and spatial analysis of regionalization
scenarios.

Fig. 3 Illustration of GIS operations in step 3 of the decision analysis process
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3 Multicriteria Measures of Homogeneity for Clustering Alternatives

As mentioned previously, each pair of adjacent base units constitutes a single alter-
native for the cluster analysis. The clustered pairs are evaluated in order to determine
a measure of homogeneity with respect to each criterion, which is assumed to be
related to the areal extent of each criterion within each of the paired base units. In
addition, it is assumed that the measure of homogeneity should increase with the arc
length of the shared boundary between the adjacent units, indicating a stronger
geographic connection between the adjacent pairs. Guided by these principles, the
following equation was proposed by Coelho et al. (2005) as the measure of homo-
geneity for cluster analysis:

Hc
jk ¼

2 � Ljk
Lj þ Lk

� A
c
j

Aj
� A

c
k

Ak
for j; k ¼ 1; :::; n; j 6¼ k; c ¼ 1; :::;C ð1Þ

where Hc
jk is the measure of homogeneity for the adjacent pair j, k of base units with

respect to criterion c; Ac
j is the area of the intersection of criterion c with base unit j;

Aj is the area of base unit j; Ljk is the arc length of the shared boundary between
adjacent base units j and k; Lj is the length of the perimeter of base unit j; n is the
total number of units in the planar partition; and C is the total number of criteria/
subcritera.

Fig. 4 WARPLAM DSS user interface
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Since the measures of homogeneity Hc
jk vary between 0 and 1, they can be

considered as membership functions of the fuzzy set of homogeneous adjacent pairs,
where a value of 1 represents 100% truth to the assertion that the adjacent units are
homogeneous with respect to criterion c, and 0 represents no truth to that assertion.
The data used for calculating the measures of homogeneity are the result of the GIS
intersection and polygon-to-line operations in ArcMap as stored in the ESRI
geodatabase.

The next task is to combine the fuzzy membership functions for each adjacent pair ( j, k)
in order to create a composite measure of homogeneity that considers all the criteria/
subcriteria c01,…,C. The weighted Euclidean distance norm is utilized for calculating the
composite measure of homogeneity Hjk for all order-dependent distinct pairs ( j, k), excluding
( j0k), as normalized by the absolute difference of the maximum and minimum measures of
homogeneity over all adjacent pairs ( j, k) for each criterion c:

Hjk ¼
XC
c¼1

ac

Hc
jk � H��

Hc� � Hc��

� �2
for j; k ¼ 1; :::; n; j 6¼ k ð2Þ

where

Hc� ¼ max
ð j;kÞ

j;k¼1;:::;n

Hc
jk c ¼ 1; :::;Cð Þ

Hc�� ¼ min
ð j;kÞ

j;k¼1;:::;n

Hc
jk c ¼ 1; :::;Cð Þ

and weights αc represent the subjective relative importance of the criteria/subcriteria as
specified by the users.

Since the homogeneity calculations are based on adjacent pairs of units in the planar
partition, a means of calculating the intra-cluster measure of homogeneity is required based

Fig. 5 Database Management and Model Subsystems in WARPLAM DSS
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on the composite homogeneity matrix Hjk. Only the upper triangle of the matrix is used for
these calculations since pair ( j, k) has the same composite measure of homogeneity as pair
(k, j), so the focus is on unique combinations of pairs rather than permutations. Let the
positions with value 1 in binary string si represent the set of base planar units comprising
cluster i. The intra-cluster homogeneity benefit Bi is defined as the average of the measures
of homogeneity of each order-dependent unique pair of base elements in cluster i represented
in the upper triangle of the Hjk :

Bi ¼

P
j 2 Si;

j 6¼ n

P
k 2 Si;

k > j

Hjk

car Sið Þ ð3Þ

where Si is the set of positions in cluster string s(i) with values of 1, car(Si) is the cardinality
of set Si (i.e., the number of elements in the set).

If a cluster is comprised of a single element, then no pairs can be defined in that
cluster and the intra-cluster measure of homogeneity in that case is set to zero.

Fig. 6 Tocantins-Araguaia River Basin. Brazil
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Although these singleton cluster alternatives could be removed from the feasible set,
they are retained to guarantee the feasibility of clustering alternatives, but with the
assurance that there is little chance they would be included in the final clustering
solution. The inter-cluster homogeneity for combining the intra-cluster measures of
homogeneity for distinct clusters is a simple operation of averaging the (averaged)
intra-cluster homogeneity values to provide an overall measure of homogeneity to a
clustering solution.

As an example of these calculations, Table 1 gives the composite homogeneity
matrix Hjk for an eight element base partition. Notice that the matrix is symmetrical
and values along the diagonal relate to non-applicable ( j, j) pairs. For this example,
the intra-cluster homogeneity of each of three clusters is evaluated according to

Table 1 Example composite homogeneity matrix Hjk for an eight element base partition

Base unit k

Base unit j 1 2 3 4 5 6 7 8

1 0.2 0.4

2 0.2 0.8

3 0.4 0.7 0.5

4 0.8

5 0.5

6 0.6 0.1 0.5

7 0.1

8 0.5

Table 2 Calculation of intra-cluster measure of homogeneity Bi

(j, k) pairs Hjk Cluster 1 {1, 2, 3, 4} string si
1 1 1 1 0 0 0 0

(1,2) 0.2

(1,3) 0.4

(2,4) 0.8

(3,4) 0.7

sum 2.1

B1 (ave.) 0.525

(j, k) pairs Hjk cluster 2 {5, 6, 7} string si
0 0 0 0 1 1 1 0

(5,6) 0.6

(6,7) 0.1

sum 0.7

B2 (ave.) 0.35

(j, k) pairs Hjk cluster 3 {8} string si
0 0 0 0 0 0 0 1

(8,8) 0

B3 0

∑Bi 0.875

ave. 0.292 Inter-cluster measure of homogeneity
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Table 2, based on the composite homogeneity matrix Hjk in Table 1. The final inter-
cluster homogeneity is calculated as the average of the Bi values, but with the intra-
cluster homogeneity for single element cluster 3 assigned a value of 0.

4 Optimal Clustering Algorithm

4.1 Alternative Clustering Methods

The composite measures of homogeneity over all criteria for each adjacent pair provide the
basis for grouping the clustering alternatives into regional delineations that enhance the
viability of IWRM. The hierarchical agglomerative approach, often referred to as a bottom
up clustering method, begins with the pairing of similar elements as initial clusters, which
are then successively merged or agglomerated with similar clusters until a single cluster of
all elements is produced (Everitt et al. 2001). A disadvantage of this approach is the
requirement of specifying a threshold parameter T representing the maximum distance or
degree of dissimilarity between elements that should be clustered, where varying the T
threshold values can produce nonunique clustering strategies. In addition, use of differing
metrics for measuring distances between clusters can also generate different results. Hierar-
chical dissociative or divisive clustering is a top–down approach to clustering which,
according to Xu and Wunsch (2009), is less popular than the hierarchical agglomerative
approach due to the increased computational burden.

K-means clustering is a popular partitioning method with the advantage of a priori
selection of the number of clusters K, rather than the less intuitive specification of a
threshold parameter T as with the agglomerative hierarchical approach (Kaufman and
Rousseeuw 1990). An additional advantage is the computational efficiency of the method,
particularly for the analysis of large datasets. However, although a priori specification of K
is an advantage of the method, it can also be considered a disadvantage since it may be
difficult to predict what the correct value of K should be. In addition, different dataset
partitions can be generated with each run of the algorithm due the dependence on an initial
random specification of cluster means, with no assurance that globally optimum clustering
has been achieved.

Optimization-based clustering methods include applications of evolutionary methods
such as genetic algorithms (Maulik and Bandyopadhyay 1999) and dynamic programming
(Esogbue 1986). Since evolutionary algorithms rely on heuristic operators and random
processes, it is not possible to guarantee attainment of global optima or even convergence
to consistent solutions. In addition, the number of clusters K must generally be specified a
priori. On the other hand, dynamic programming (DP) solves the clustering problem as a
sequential decision process which, if properly formulated, guarantees convergence to the
global optimum while automatically determining the optimal number of clusters, as well
families of optimal solutions for a wide range of K. For these reasons, the DP method is
applied in this study using the generalized dynamic programming software package CSUDP
developed by Labadie (2003).

An attempt was made to solve the optimal clustering problem using the dynamic program-
ming (DP) formulation suggested by Bellman (1973) and Esogbue (1986). In the forward-
looking DP recursion over stages i01,…,N (assuming K<N), stage i represents the number of
clusters generated at that stage of the sequential decision process, state variable xi+1 is the total
number of elements clustered through stage i, and decision variable ui is the number of elements
in the i-th cluster. The optimal number of clusters K is determined as that stage where the
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maximum average of the intra-cluster measures of homogeneity over all K clusters occurs with
all elements included in a cluster. This implies that forcing more than K clusters actually reduces
the clustering benefit.

As described in Coelho (2010), uniqueness problems emerge with this formulation whereby
solutions in intermediate stages of the DP algorithm result in ties that required an arbitrary tie-
breaking procedure. Unfortunately, all possible nonunique solutions cannot be carried forward
in the sequential decision process due to the explosive increase in combinations of nonunique
solutions over several stages. Although the optimal clustering decision at an intermediate stage
is among the set of nonunique solutions, the likelihood of its selection in the arbitrary tie-
breaking procedure is low, ultimately resulting in suboptimal solutions to the clustering problem
A modified DP algorithm is proposed that guarantees unique solutions at each stage, and
therefore assures attainment of the global optimal solution.

4.2 Modified Dynamic Programming Clustering Algorithm

The modified DP formulation is initiated by creating a table of all possible clustering
alternatives at any stage i as a list of binary strings sj ( j01,…,N) of length n, where n is
the number of elements to be clustered and N is the total number of unique binary strings
with a maximum of m (< n) elements with bit values01, representing the elements included
in the cluster. The total number of combinations of binary strings with a maximum of m
nonzero elements is:

M ¼
Xm
k¼1

k
n

� �
ð4Þ

The pre-calculated intra-cluster measures of homogeneity Bj associated with string sj. is
included as a column in the table. The rows are ordered in relation to strings with a single
nonzero bit value to strings with m nonzero bits, where the ordering within each cluster of
strings with the same number of nonzero bits is arbitrary. All infeasible strings with Bj00
(i.e., nonadjacent elements included) are then removed from the table, except for those
strings with a single element in the cluster. The latter are allowed primarily as means of
insuring feasible solutions during initial stages of the DP algorithm. Further processing of
the table involves removal of any strings sj such that the number of elements in the cluster
exceeds a user specified limit on the number of elements allowed in any cluster, followed by
sequential renumbering of the integer codes for the remaining strings. Table 3 is a sample of
feasible clustering alternatives represented as nine element bit strings s(u) with associated
unique integer code u and pre-calculated intra-cluster measures homogeneity B(u), assuming
a maximum of four nonzero elements in each cluster.

The objective function for the optimal clustering problem is:

max
K;ui;

i¼1;:::;K

1

K

XK
i¼1

Bi uið Þ ð5Þ

subject to:

XK
i¼1

s‘ðuiÞ ¼ 1; for ‘ ¼ 1; :::; n ð6Þ
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XK
i¼1

ui � xmax ð7Þ

where the integer code ui selected in stage i (i01,…,K) is associated with bit string s uið Þ ¼
s1ðuilÞ; :::; snðuinÞð Þ representing a unique cluster alternative; Bi(ui) is the intra-cluster mea-
sure of homogeneity for the bit string represented by integer code ui ; n is the total number of
elements to be clustered; K is the total number of clusters; and xmax is an arbitrary upper
bound on the total accumulated integer codes for binary strings selected over each stage.
Solution of Eq. 5 is subject to the constraint that each of the n elements is a member of
exactly one cluster. This formulation is complicated by K being considered as a decision
variable, as well as the objective function defined as the average of the intra-cluster
measures of homogeneity over all clusters. A reasonable initial estimate is xmax is N

2 � K,
but this can be increased if results indicate that the selected value for xmax is over-
constraining the solution. Equation 6 specifies that all elements must be included in exactly
one cluster and Eq. 7 simply requires that the accumulation of the integer codes selected for
all stages cannot exceed xmax.

Table 3 Sample table of feasible
cluster alternatives as binary
strings assigned a unique integer
code

Integer
code u

Intra-cluster
homogeneity B(u)

No. of
Elements

Binary string s(u)

1 0.000 1 0 1 0 0 0 0 0 0 0

2 0.000 1 0 0 1 0 0 0 0 0 0

3 0.000 1 0 0 0 1 0 0 0 0 0

4 0.000 1 0 0 0 0 1 0 0 0 0

5 0.000 1 0 0 0 0 0 1 0 0 0

6 0.000 1 0 0 0 0 0 0 1 0 0

7 0.000 1 0 0 0 0 0 0 0 1 0

8 0.000 1 0 0 0 0 0 0 0 0 1

9 0.800 1 1 1 0 0 0 0 0 0 0

10 0.700 2 0 1 0 1 0 0 0 0 0

11 0.700 2 0 0 1 1 0 0 0 0 0

12 0.600 2 0 0 0 0 0 0 1 0 1

13 0.500 2 0 0 0 0 1 1 0 0 0

14 0.500 2 0 0 1 0 1 0 0 0 0

.

.

.

36 0.533 4 1 0 1 1 1 0 0 0 0

37 0.533 4 0 0 1 0 1 1 0 1 0

38 0.533 4 0 0 0 0 1 1 1 0 1

39 0.500 4 1 0 1 0 1 1 0 0 0

40 0.467 4 0 0 1 0 1 1 1 0 0

41 0.467 4 0 0 0 0 1 1 0 1 1

42 0.467 4 0 0 0 0 1 1 1 1 0

43 0.450 4 0 0 0 0 0 1 1 1 1
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Defining state variable xi as the accumulation of integer codes of binary strings selected in
stages 1,…, i−1, Equation 7 is equivalently represented as a state equation for solution by
dynamic programming:

xiþ1 ¼ xi þ ui for i ¼ 1; :::;N ð8Þ

where and x100 , xK+1≤xmax , and the total number of stages N for the dynamic programming
recursive calculations is assumed to be >K. A reasonable estimate is to set N0INT(n/2), where
N is an upper bound on the number of clusters such that each unique pair of base units defines a
minimal cluster. If n is an odd number, then the lone unclustered base element is not included in
the N count.

The dynamic programming solution to this problem uses a forward recursion for calcu-
lation of the dynamic programming optimal return function Fi(xi+1) for stages i01,…, N and
for all integer xi+1≤xmax using the inverted form of the state equation:

Fiðxiþ1Þ ¼ max
0�xi�xmax

BiðuiÞ þ Fi�1ðxiÞ½ � ð9Þ

subject to:

ui ¼ xiþ1 � xi � 0 ð10Þ

s‘ðuiÞ 6¼ s‘ u�k�1ðxkÞ
� � 8‘ s‘ ðuiÞ ¼ 1

xk�1 ¼ xk � u�k�1ðxkÞ
�
for k ¼ i; :::; 1 ð11Þ

store optimal u�i xiþ1ð Þ from stage i

The recursive calculations begin with the assumed boundary conditions F0(x1)00. Since
the optimal clustering policies u�k�1ðxkÞare stored for the previous stages k0i–1,…,1,
Equation 11 represents a traceback calculation process over the stored optimal clustering
policies from the stages previous to stage i so as to insure that elements selected for
clustering in stage i are currently unclustered.

The dynamic programming optimal value function defined in the recursion relation of
Eq. 9 is inconsistent with the optimal clustering problem objective function of Eq. 5 since
Eq. 9 maximizes the total accumulated intra-cluster homogeneity, rather than maximizing
the average of the homogeneity measures over all clusters. Lee and Labadie (2007) prove
that modification of the recursion relation as given in Eq. 12 succeeds in maximizing the
average intra-cluster homogeneity over all clusters:

Fiðxiþ1Þ ¼ max
0�xi�xmax

1

i

� �
BðuiÞ þ i� 1

i

� �
Fi�1ðxiÞ

	 �
ð12Þ

In these forward computations through stages i01,…,N, termination may occur prior to
reaching the final stage N if feasible solutions cannot be found at that stage. Infeasible solutions
encountered at stage i can occur if forcing a solution comprised of exactly i clusters is
unattainable since a user-defined maximum number of elements m is allowed in any cluster.
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The optimal number of clusters K is found from the stored optimal return function values
Fi(xi+1) after solution over N stages, or up to the stage where termination occurs due to
infeasibility:

FKðx�Kþ1Þ ¼ max
i;xiþ1

Fiðxiþ1Þ ð13Þ

subject to:

XK
i¼1

s‘ðu�i Þ ¼ 1; for ‘ ¼ 1; :::; n ð14Þ

where Eq. 14 requires that each element must be included in exactly one cluster. Traceback
solutions through the optimal stored integer codes gives the optimal integer codes u�i and
associated cluster strings sðu�i Þ by sequentially retrieving the stored optimal clustering
policies for each stage i , as illustrated in the following pseudo code:

* *

1 1

For i = K,...,1 

     retrieve   ui  (xi+1)  

     table lookup  s  (ui ) 

     IF i > 1 , calculate   xi = xi +  _ ui (xi+   )

Loop end

*

* * * *

4.3 Implementation of DP Clustering Algorithm in WARPLAM DSS

The optimal clustering problem is automatically setup and executed in the MS Excel-based
WARPLAM DSS, with VBA commands transferring the necessary data files to the CSUDP
program and executing it as an external program. The CSUDP results are then automatically
imported into WARPLAM for further analysis and display. This procedure allows users to
access the powerful capabilities of CSUDP without requiring any knowledge or understand-
ing of the dynamic programming algorithm. In addition, although CSUDP produces the
optimal number of clusters K, users are also provided the optimal clustering structure for any
user-specified preference for the desired number of clusters, as well as the maximum number
of elements in any cluster. This is consistent with the decision support focus of WARPLAM
in providing suggested solutions, but also allowing users to experiment with many alterna-
tive preference weights, configurations, and parameters.

To test the efficiency of the modified DP optimal clustering algorithm, Coelho (2010)
compared it to a genetic algorithm for solving the optimal clustering problem. Several test
cases revealed that computer run times were comparable between the two methods, and both
produced the global optimal solution for each case. Global optimality of the solutions was
confirmed by performing time-consuming exhaustive enumeration procedures over all
possible clustering alternatives for cases with a limited number of elements. However,
application of the genetic algorithm, as well as other evolutionary-type algorithms, is
considered less advantageous since the DP algorithm produces optimal clustering for any
number of clusters without any additional expenditure of computer time since this is a
routine result of the stage-wise recursive solution structure. In contrast, application of the
genetic algorithm requires a priori specification of the desired number of clusters.
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After completion of the optimal cluster analysis, WARPLAM DSS provides reports on
important details about the results, such as the number of clusters created, the elements
contained in each cluster, the area of each cluster, and the most significant aspects considered
in defining each cluster. These results are also stored for providing future comparisons if further
simulations are performed. In addition, fuzzy membership values of each element to the
assigned cluster, as well as other adjacent clusters, are provided as a means of measuring the
uncertainty associated with the clustering process. Considering the use of subjective criteria and
preference weights, the elements have a continuous grade of membership to more than one
cluster, indicating that cluster boundaries cannot be considered as precisely defined.

Providing an indication of the fuzzy logic-based uncertainty associated with defining an
element as a member of a specific cluster is offered to the decision makers as a means of
interpreting the results. The fuzzy membership values are calculated by evaluating the
decrease in the objective function resulting from assignment of the respective element to a
different cluster. The percentage decrease is used as a reduction factor for the measure of
homogeneity associated with the respective element and each adjacent cluster. The measures
of homogeneity of the respective elements are then balanced to represent the fuzzy mem-
bership values. For example, suppose element a is assigned to cluster Y and is adjacent to
clusters X and Z. If element a is assigned to cluster Z, instead of cluster Y, then the maximum
inter-cluster measure of homogeneity is reduced by m%. The amount m is used as the
reduction factor for the measure of homogeneity between element a and the adjacent element
in cluster Z. The reduced measure of homogeneity is then compared to the original
distribution of measures of homogeneity in order to calculate a new distribution of impor-
tance, represented again in percentage. This resultant percentage is assigned as the mem-
bership function value of element a to cluster Z.

5 Application of WARPLAM DSS to the Tocantins-Araguaia River Basin, Brazil

Tocantins-Araguaia River Basin is the second largest in Brazil with a drainage area of
918,822 km2 comprising 11% of the total area of Brazil, and a mean annual discharge of
13,800 m3/s representing 8% of the country’s total annual flow. The drainage basin of the
Tocantins-Araguaia River is covered by the important Amazon Forest and Cerrado biomes,
receives an average precipitation of 1,733 mm per year, and intersects six states: Pará,
Tocantins, Goiás, Mato Grosso, Marahão and Distrito Federal (Fig. 6).

The Tocantins-Araguaia River Basin is designated as one of the 12 National Hydrograph-
ic Regions of Brazil, with the states further subdividing territories into 43 water resources
units for planning and management purposes. The state units differ considerably in terms of
scale, ranging from second or third level subbasins to small catchment areas. An example of
the inconsistent scaling can be found in comparing the state of Pará comprised of three water
resources units, with Tocantins which is divided into 30 water resources units, despite the
fact that both states have approximately the same territorial area. This is indicative of a
common problem in Brazil, with highly disparate scaling and non-harmonized delineation of
water resources regions among the states and at the federal level.

The first step in the application of WARPLAM DSS is selection of a consistent planar
partition representing the base units for clustering and aggregation analysis for delineating
water resources planning and management regions. The Water Resources Strategic Plan of
the Tocantins-Araguaia River Basin (ANA 2009) defined 17 base units for water resources
planning considering hydrographic basin limits, available homogeneous hydrologic infor-
mation, and existing hydropower generation plants. For this case study, it was assumed that
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these units represent relatively homogeneous partitions that are the appropriate building
blocks for regionalization for the purpose of integrated water resources management

The next step is specification of the criteria used for defining the homogeneity of
alternative pairs of base units in the planar partition using the heuristic knowledge structure
provided by WARPLAM DSS. For example, considering that Brazil is a Federative country,

Fig. 7 Major criteria and associated sub-criteria for regionalization in the Tocantins-Araguaia River Basin,
Brazil
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the user is guided through an IF-THEN rule suggesting that limits on Federative States should
be considered in the analysis. For political-administrative aspects, if the federative condition
is true, then each State has its own regions for water resources planning and management that
should be taken into account in the analysis. In addition, if municipalites or other adminis-
trative levels have viable competence in water resources planning and management, these
boundaries should also be included. Heuristic rules may also guide the selection of a specific
map classification as a single subcriterion. Figure 7 shows all sub-criteria under each of the
major criteria classifications for this study, including physical-environmental, political-
administrative, hydrographic, and socioeconomic. All of these sub-criteria are defined as
polygon feature classes developed from datasets provided by ANA (2009).

The GIS intersection and polygon-to-line operations are next performed to provide the
spatial data necessary for application of Eq. 1 for calculation of measures of homogeneity
Hc

jk for all adjacent pairs (j,k) and for each criterion c. Equation 2 is then applied to

calculation of the composite measures of homogeneity Hjk over all criteria c based on
user-specified weights αc , followed by the intra-cluster homogeneity Bi of each unique pair
of base elements in cluster i. The DP clustering algorithm is then applied for various sets of
weights, thereby providing a wide range of alternative regionalization scenarios for inte-
grated water resources management.

The first scenario analyzed in this case study is based on assuming identical weights for
all categories of criteria. Figure 8a shows the results of this analysis, with the optimum
number of clusters as six and the set {6,3,2,2,2,2} representing the number of base unit
elements in each cluster. Although this scenario produces the maximum inter-cluster mea-
sure of homogeneity of 0.347, there is an imbalance in the number of elements in each

Fig. 8 a Optimal clustering for identical weights; b optimal clustering with specification of seven clusters
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cluster that may not be considered ideal by WARPLAM users. Figure 8b shows the results of
the same scenario with the equal-weighting assumption, but with extraction of the optimal
solution of the DP optimal clustering algorithm corresponding to seven clusters. Although
the optimum inter-cluster benefit is slightly reduced to 0.337 in this case, the distribution of
the number of elements in each cluster {4,3,2,2,2,2} may be preferable to water planners.
Again, the advantage of the DP-based clustering algorithm is that these alternative scenarios
are automatically produced as a part of the DP recursive solution procedure.

As a type of sensitivity analysis, WARPLAM DSS also calculates fuzzy membership
functions representing the “degree of truth” that a base unit element should belong to a
particular cluster. This provides a measure of the uncertainty associated with the clustering
decision, considering the subjective criteria and the qualitative specification of relative
weights to each criterion. It is clear, in this context, that the elements have a continuous
grade of membership within clusters, representing situations that do not completely fulfill
the quantitative results or have no sharp boundaries. For the 17 element example under equal
weighting, the table shown in Fig. 9 is generated following execution of the clustering
algorithm, providing the fuzzy membership values associated with assigning elements to
alternate clusters. It is interesting that Fig. 9 suggests the alternate distribution {4,3,2,3,3,2}
of the number of elements in each cluster by clustering elements based on the highest fuzzy
membership value, even though this gives a lower overall inter-cluster measure of
homogeneity.

The next scenario again applies equal weighting for all criteria, but allows user specified
limits to the number of elements per cluster to four (Fig. 10a) and five (Fig. 10b). For these
cases, it is evident that reducing the maximum number elements in any cluster produces

Fig. 9 Fuzzy membership values of each element to alternate clusters
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more uniformly sized clusters. In these cases, the inter-cluster homogeneity measure is only
slightly reduced by limiting the maximum number of clusters to four (reduced from 0.347 to
0.344), as well as for a maximum of five elements per cluster (reduced from 0.347 to 0.337).

In order to test the influence of changes in the weighting factors reflecting the relative
importance of each primary criterion, weights are assigned for the next scenario that
emphasize socioeconomic aspects, as shown in Fig. 11a. In this case, the optimal number
of clusters is seven, but with a relatively low inter-cluster homogeneity measure of 0.284
occurring for a distribution of {3,2,2,4,2,2,2} of the number of elements in each cluster.
Emphasizing political-administrative aspects results in the clustering shown in Fig. 11b, with
a distribution of elements {6,5,2,2,2} and an optimum inter-cluster measure of homogeneity
of 0.403.

6 Summary and Conclusions

The lack of uniform and integrated water resources regions that support integrated water
resources planning and management (IWRM) within a river basin is a critical issue.
Presented herein is the water resources planning and management (WARPLAM) DSS that
has been developed with recognition of the multidimensional character of regionalization in
support of IWRM. Although it is important to define appropriate territorial units with
consideration of the capacity, articulation, and needs of the existing institutional structure,
there is also the necessity of incorporating more comprehensive hydrographic, physical-
environmental, socioeconomic, political-administrative, and cultural-historical criteria in the
regionalization decision process.

Fig. 10 a Maximum number of elements per cluster04; b maximum number of elements per cluster05
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The spatial extent and distribution of the selected criteria as to how they overlap adjacent
pairs of base units in the planar partition (e.g., delineated catchments) is efficiently processed
in WARPLAM using a geographic information system. The GIS processed information
provides the basis for defining measures of homogeneity with respect to all relevant criteria
for alternative clustering decisions of the base planar partition. Measures of homogeneity for
all possible clustered pairs of base elements are defined as membership values in a fuzzy set,
which are than combined as composite measures of homogeneity over all criteria as ranked
by the planners and decision makers in order of importance to the regionalization process. A
modified dynamic programming algorithm is then applied to providing multiple families of
clustering solutions based on these subjective preferences, including determining the optimal
number of clusters under specified limits on the number of elements assigned to any cluster.
The term “optimal” is used in a limited sense as reflecting the best solutions under subjective
preferences and priorities associated with user specified criteria governing regionalization
decisions.

Results of the Tocantins-Araguaia River Basin case study application provide clear
evidence of GIS as an essential spatial processing element of WARPLAM allowing an
interdisciplinary focus considering physical-environmental, political-administrative, hy-
drographic, and socioeconomic criteria with numerous associated subcriteria. The
application of fuzzy set theory was advantageous in representing the uncertainty
associated with the clustering decisions stemming from the qualitative ranking of
the subjective criteria without requiring application of probability measure theory.
The contribution of the modified dynamic programming algorithm for optimal clus-
tering solutions offers a distinct advantage over other alternative clustering methods in

Fig. 11 a Optimal clustering under socioeconomic emphasis; b optimal clustering under political-
administrative emphasis
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providing consistent, global optimal solutions for multiple clustering scenarios based
on user preferences.

Finally, it is believed that in addition to development of new regionalization scenarios in
support of IWRM, WARPLAM DSS can be useful as a critiquing DSS in that existing
regionalization plans can be analyzed as a means of evaluating the underlying logic behind
the decision processes employed. This can provide a better understanding of which criteria
were implicitly weighted the highest in the regionalization decisions, and afford a degree of
confirmation of the validity of those decisions. On the other hand, it might pinpoint certain
important criteria that were neglected in the analysis, or perhaps identify less important
criteria that played an inordinate role. Future work on WARPLAM DSS will include
development of a more robust user interface that is fully integrated with ArcGIS™.
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