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Abstract In recent years, significant changes in precipitation regimes have been
observed and these manifest in socio economic and ecological problems especially
in regions with increased vulnerability such as the Mediterranean region. For this
reason, it is necessary to estimate the future projected precipitation on short and
long-term basis by analyzing long time series of observed station data. In this
study, an effort was made in order to forecast the monthly maximum, minimum,
mean and cumulative precipitation totals within a period of the next four consecu-
tive months, using Artificial Neural Networks (ANNs). The precipitation datasets
concern monthly totals recorded at four meteorological stations (Alexandroupolis,
Thessaloniki, Athens, and Patras), in Greece. For the evaluation of the results
and the ability of the developed prognostic models, appropriate statistical indexes
such as the coefficient of determination (R2), the index of agreement (IA) and
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the root mean square error (RMSE) were used. The findings from this analysis
showed that the ANN’s methodology provides satisfactory precipitation totals in four
consecutive months and these results are better results, than those obtained using
classical statistical methods. A fairly good consistency between the observed and the
predicted precipitation totals at a statistical significance level of p < 0.01 for the most
of the examined cases has been revealed. More specifically, the Index of Agreement
(IA) ranges between 0.523 and 0.867 and the coefficient of determination (R2) ranges
between 0.141 and 0.603. The most accurate forecasts concern the mean monthly and
the cumulative precipitation for the next four consecutive months.

Keywords Precipitation forecast · Artificial Neural Networks · Greece

1 Introduction

Global warming, due to the enhanced greenhouse effect, influences precipitation
variability and trends. Warming relates to higher water content in the atmosphere
(Douville et al. 2002; Trenberth et al. 2003), which results in an increase in the
probability of severe convective weather. Anagnostopoulou et al. (2006), studying
projected intensity and number of cyclones for the Mediterranean region, observed
a future decrease of the frequency of the severe cyclones (<1,000 hPa) at sea level
pressure level (SLP), but the future cyclones will be more intense, especially at the
500 hPa level.

Recent studies have concluded that, heavy storms of convective nature in the
developed mega-cities could be attributed to the urban heat island (UHI; Nastos and
Zerefos 2007, 2008; Paliatsos et al. 2005; Philandras et al. 2010). On the other hand,
water scarcity and decreasing run off appear as adverse consequences of climatic
change in vulnerable regions such as the Mediterranean region (IPCC 2007). Water
scarcity combined with high precipitation intensity is likely to drive in desertification
of large areas and therefore change in land use, having as a consequence social–
economic impacts.

The majority of the Mediterranean region presents decreasing winter precipita-
tion during the last few decades, mostly starting in the 1970s (Schonwiese et al. 1994;
Palutikof et al. 1996; Piervitali et al. 1997; Schonwiese and Rapp 1997). Decreasing
precipitation is also evident in large parts of the eastern Mediterranean area (Mantis
et al. 1994; Schonwiese et al. 1994). Brunetti et al. (2004), found negative significant
trend in the number of wet days all over Italy, and a positive trend in precipitation
intensity, which is significant only in the northern regions. Nastos and Zerefos (2009)
concluded that the temporal variability of consecutive wet days shows statistically
significant (confidence level of 95%) negative trends, mainly in the western region
of Greece, characterized by large orographic precipitation amounts (Metaxas et al.
1999). Insignificant positive trends for consecutive dry days appear almost all over
the country with emphasis in the southeastern region. The observed decreasing trend
in winter and annual precipitation in Greece (Repapis 1986; Nastos 1993; Feidas et al.
2007) is linked mainly to a rising trend in the hemispheric circulation modes of the
NAO, which are connected with the Mediterranean Oscillation Index.

The prediction of precipitation is of great importance for agriculture, socio-
economic activities and planning/management of water resources in a region. According
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to the literature several attempts have been carried out in order to forecast precipitation
using statistical methods. Juneng et al. (2010) compared the skills of four different
forecasting approaches in predicting the one-month lead time of the Malaysian
winter season precipitation. The results showed that the appropriate downscaling
technique and ensemble of various regional climate models (RCM) forecasts could
result in some skill enhancement, particularly over peninsular Malaysia, where other
models tend to have lower or no skills. Fernández-Ferrero et al. (2009) compared
several statistical downscaling methods for the development of an operational short-
term forecast of precipitation in the area of Bilbao (Spain). Results showed that the
use of statistical downscaling methods improves the ability of the mesoscale and
coarse resolution models to provide quantitative precipitation forecasts. Valverde-
Ramirez et al. (2006) developed linear and nonlinear downscaling to establish
empirical relationships between the synoptic-scale circulation and observed rainfall
over southeastern Brazil. Fox and Wilson (2005) presented an overview of the
state of very short period quantitative precipitation forecasting (QPF). What they
demonstrated is that there are a number of powerful and practical approaches to the
problems of very short-period (QPF), and, as these methods reach maturity, they can
be applied in an operational setting.

On the other hand, numerical models have been used successfully for long-
term climate prediction (Zwiers and von Storch 2004). In recent years, Artificial
Neural Networks (ANNs) have become a desirable model in rainfall–runoff mod-
eling (Nourani et al. 2009), management of floods (Ahmad and Simonovic 2006),
surface water level fluctuations (Altunkaynak 2007), ground water level fluctuations
(Mohanty et al. 2010) and precipitation forecast (Bodri and Cermak 2000; Sahai et al.
2000; Luck et al. 2000; Silverman and Dracup 2000; Sakellariou and Kambezidis 2004;
Cigizoglou and Alp 2004).

Artificial Neural Networks (ANNs) are based on the structure and function of the
human brain. Neurons are basic components of the brain. They are essential nerve
cells which create a dense network. The first ANNs models were introduced during
the decades of 1940 and 1950 with the basic artificial neuron model of McCulloch and
Pitts (1943), along with the first ANNs training algorithm of Rosenblatt (1958). In the
following decades the use of the ANNs showed significant decline, due to high com-
puting power requirements, which were not available from the computers of that era.
The recession was followed by regeneration of ANNs with the introduction of the
Hopfield’s model (1982, 1987). These are known as Multi-Layer Perceptron (MLP)
ANNs, which along with the training algorithm of back-propagation, proposed by
Werbos (1974), attract the interest of the scientific community again. Figure 1 shows
the architecture of a MLP artificial neural network as well as the training algorithm
of back-propagation. The first layer is the input layer with one or more neurons,
depending on the number of necessary input data for the proper training of ANN.
One or more hidden layers follow with a number of artificial neurons that are
necessary for the processing of the input signals. Each neuron of the hidden layer
communicates with all the neurons of the next hidden layer, if any, having in each
connection a typical weight factor (Fig. 1). Finally, the signal reaches the output
layer, where the output value from the ANNs compares with the target value and the
error is estimated. Thus, the values of the weight factors are appropriately improved
and the training cycle is repeated until the error is acceptable, depending on the
application.
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Fig. 1 Typical artificial neural
network architecture (Caudill
and Butler 1992)

In general, ANNs models can be applied in many different scientific topics such
as air pollution levels, bioclimatological parameters, water quality, precipitation
prediction, and climate analysis (Melas et al. 2000; Papanastasiou et al. 2007; Freiwan
and Cigizoglu 2005; Zwick and Canarelli 1996; Moustris et al. 2009).

The goal of this study is to examine the possibility of long term precipitation
forecast (four consecutive months) by the application of ANNs, using long monthly
precipitation time series of four meteorological stations in Greece. This research aims
to evaluate the ANNs capacity to predict precipitation totals within much longer time
with better results than other researchers have done and not to prove that ANNs can
predict precipitation better than other classical statistical methods, a subject that has
been carried out by many researchers.

2 Data and Methodology

2.1 Case Study and Area

In this study, the monthly precipitation totals recorded at National Observatory
of Athens (NOA) for a 115-year period (1891–2005) were used. This time series
of NOA is the longest available record of monthly precipitation totals in Greece.
Monthly precipitation totals recorded in three meteorological stations of the Hellenic
National Meteorological Service (HNMS), with long datasets of monthly precipita-
tion totals (Alexandroupolis 1947–2003; Thessaloniki 1931–2003 and Patras 1901–
1993), were also used in the analysis. The list of the stations used, together with their
geographical coordinates and altitude above the mean sea level, are presented in
Table 1, while the network distribution is shown in Fig. 2.

The short-cut Bartlett test of homogeneity of variance was applied on annual
precipitation totals of all the examined time series. This test is performed by dividing
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Table 1 Bartlett test (short-cut). Results for precipitation in the considered stations

ID Station Longitude Latitude Altitude (m) Period S2
max/S2

min

1 Athens 23◦ 58′E 37◦ 58′N 107 1891–2005 3.187
2 Alexandroupolis 25◦ 53′E 40◦ 51′N 3 1947–2003 1.579
3 Mikra 22◦ 58′E 40◦ 31′N 5 1931–2003 1.091
4 Patras 21◦ 44′E 38◦ 15′N 30 1901–1993 1.237

the time series into k equal sub-periods, where k ≥ 2. In each of these sub-periods,
the sample variance S2

k for k sub-period was calculated using the following formula:

S2
k = 1

n

⎡
⎣

n∑
i=1

x2
i − 1

n

(
n∑

i=1

xi

)2
⎤
⎦

From the values of S2
k, the largest, denoted by S2

max, and the smallest, denoted by
S2

min, were selected. The homogeneity of the examined time series was confirmed
by comparing the ratio (Table 1, last column) with the theoretical values at 0.05
significance level (Mitchell et al. 1966). Concerning the four examined stations,

Fig. 2 Map of Greece with the four examined sites



1984 K.P. Moustris et al.

Athens has exhibited the greatest precipitation homogeneity due to its unchanged
position since 1891.

In the process, for each month of the year a periodic component (PC) was given
according to the mean monthly precipitation total (Table 2; Freiwan and Cigizoglu
2005). More specifically, for each station, the mean monthly precipitation during
the examined period was calculated (Table 2, columns 2–5). After that, the mean
monthly values of the four stations were averaged (Table 2, column 6) and based
on these averages, four classes were extracted corresponding in four particular PC
values; that is, PC = 0 for 11.0–22.2 mm, PC = 1 for 24.5–37.2 mm, PC = 2 for 48.0–
55.5 mm and PC = 3 for 65.0–84.1 mm (Table 2, column 7).

PC is a constant number for each month of the year and in other words represents
the seasonality of precipitation (Freiwan and Cigizoglu 2005). PC seems to be a
very important input data for the appropriate training of the constructed ANNs.
This conclusion is based upon repeated trials, which were made. Specifically, a large
number of different ANNs were constructed and trained. The results showed that
the ANNs using PC gave much better results than all the others constructed ANNs.

Figure 3 illustrates the PC value for each month of the year, compared to the mean
monthly precipitation totals of the examined time series.

2.2 Precipitation Prediction-Artificial Neural Networks Methodology

In this work, 16 ANNs (ANN#1–ANN#16) were constructed in order to predict
the maximum, the minimum, the mean and the cumulative precipitation totals for the
next four consecutive months. The first four (ANN#1–ANN#4) for NOA station, the
following four (ANN#5–ANN#8) for Patras’ station and the last two sets (ANN#9–
ANN#12) and (ANN#13–ANN#16) for Mikra and Alexandroupolis, respectively.
The sixteen ANNs have one input layer with seven artificial neurons (processing
elements), one hidden layer with five artificial neurons and the output layer with one
artificial neuron, which basically is the target-predicted value. Generally, there is not
a rule-algorithm for the calculation of the optimal number of hidden layers as well

Table 2 Values of mean monthly precipitation amount (mm) and values for the monthly periodic
component (PC), for the four examined cities

Athens Patras Thessaloniki Alexandroupolis Mean monthly PC
(NOA) (MIKRA) precipitation

amount (mm)

January 54.5 104.2 38.5 62.7 65.0 3
February 41.4 84.1 34.1 52.3 53.0 2
March 37.5 67.7 37.9 48.9 48.0 2
April 24.3 49.5 38.6 36.2 37.2 1
May 19.7 28.3 45.0 33.7 31.7 1
June 12.1 15.3 32.4 29.0 22.2 0
July 6.1 3.5 26.6 20.0 14.1 0
August 6.6 4.6 19.5 13.3 11.0 0
September 16.2 24.9 29.4 27.3 24.5 1
October 44.4 83.3 45.4 48.7 55.5 2
November 61.3 112.8 54.1 79.9 77.0 3
December 70.6 129.5 51.8 84.4 84.1 3
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Fig. 3 Periodic component and mean monthly precipitation totals (mm)

as the optimal number of artificial neurons in each hidden layer. Literature indicates
that the more limited the number of hidden layers and artificial neurons, the more
reliable the model is. Thus, numerous ANNs with a different number of hidden layers
and artificial neurons were trained every time and were tested until they reached the
best prognosis outcome.

Precipitation data, concerning a specific time period for each meteorological
station, were used in the training of the sixteen ANNs. To evaluate the potential
of precipitation prediction by the trained ANNs, a different period was used than
the one used for the training for each station. For every station’s time series,
approximately the datasets of the last decade were excluded and the rest of the
time series were used as training datasets, while the datasets of the last decade
were used as validation datasets. Specifically, for NOA station, the monthly pre-
cipitation totals for the period 1891–1989 were used as training datasets, while the
monthly precipitation totals for the period 1990–2006 as cross validation datasets, for
evaluating the potential of the prediction. For Alexandroupolis station, the monthly
precipitation totals for the period 1947–1993 were used as training datasets, while the
monthly precipitation totals for the period 1994–2004 as a cross validation datasets.
For Patras station, the monthly precipitation totals for the period 1901–1979 were
used as training datasets, while the monthly precipitation totals of the period 1980–
1992 as a cross validation datasets. For Thessaloniki (Mikra) station, the monthly
precipitation totals for the period 1931–1993 were used as training datasets, and the
monthly precipitation totals for the period 1994–2004 as cross validation data sets.
Table 3 presents the input data, which were necessary for the training of the sixteen
constructed ANNs, as well as the results extracted by ANNs. Finally, the dataset
giving the best prognosis was chosen.

The cumulative PC of the four previous months was the sum of the PC monthly
values (Table 2) of these months. Similarly, the cumulative PC of the four next
months was the sum of the PC monthly values of these months. For example, in the
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Table 3 Necessary input data for the appropriate ANNs training and the predicted outputs

Inputs Outputs

Maximum monthly precipitation Maximum monthly precipitation totals
totals of the four previous months of the four next months

Minimum monthly precipitation Minimum monthly precipitation totals
totals of the four previous months of the four next months

Mean monthly precipitation totals Mean monthly precipitation totals
of the four previous months of the four next months

Standard deviation of the mean monthly Cumulative precipitation totals
precipitation totals of the four previous months of the four next months

Cumulative precipitation totals
of the four previous months

Cumulative PC of the four previous months
Cumulative PC of the four next months

case of the precipitation prediction for the period January–April, the cumulative PC
for these four months was 8 (3 + 2 + 2 + 1 = 8), while the cumulative PC of the four
previous months (September–December) was 9 (1 + 2 + 3 + 3 = 9).

2.3 Evaluation of Predicted Results

The reliability of the predictive model was demonstrated by the use of some
statistical indices. In order to establish the credibility and generally the capacity of
a good prognosis by the trained ANNs, the Root Mean Square Error (RMSE), the
coefficient of determination (R2) and the Index of Agreement (IA) were used as
statistical indices (Willmott 1982; Willmott et al. 1985; Comrie 1997; Walker et al.
1999; Kolehmainen et al. 2001).

The RMSE is a commonly used measure of the differences between the predicted
values by a predictable model and the real-observed values. The RMSE was used
as a single measure that indicates the ability of the model prediction and has the
same units as the predicted value. The smaller the numerical value of RMSE was,
the closer the real values were to the predicted values by the model.

In statistics, the coefficient of determination is used in cases of statistical models,
whose main purpose is the prediction of future outcomes on the basis of other related
information. It is the proportion of the variability in a dataset that is accounted for,
by the statistical model. It provides a measure of how well future outcomes are likely
to be predicted by the model. It takes values between zero and the unit (0 ≤ R2 ≤ 1).
The closer the value is to the unit, the better and more accurate is the prediction.

The Index of Agreement (Willmott et al. 1985) is a dimensionless measure with
values between zero and unit (0 ≤ IA ≤ 1). When IA = 0 there is no agreement
between prediction and observation, while IA = 1 denotes a perfect agreement
between prediction and observation.

3 Results and Discussion

Table 4 shows the values of the statistical indices of reliability, such as RMSE, R2

and IA, for the four examined stations and for each particular case of prediction.
For a better understanding of the contents of Table 3, each case of precipitation
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Table 4 Statistical indexes for
the evaluation of the
developed rainfall forecasting
models

A maximum monthly
precipitation prediction, B
minimum monthly
precipitation prediction, C
mean monthly precipitation
prediction, D cumulative
precipitation prediction

Case of prediction R2 IA RMSE (mm)

Athens
A 0.371 0.660 45.9
B 0.244 0.635 12.5
C 0.471 0.756 21.3
D 0.472 0.756 85.3

Patras
A 0.497 0.818 49.5
B 0.459 0.811 17.7
C 0.603 0.867 25.6
D 0.603 0.867 102.5

Alexandroupolis
A 0.415 0.751 31.1
B 0.251 0.663 14.3
C 0.508 0.812 17.4
D 0.508 0.812 69.8

Thessaloniki (Mikra)
A 0.240 0.586 26.6
B 0.141 0.523 9.9
C 0.362 0.695 12.4
D 0.362 0.695 49.5

prediction was matched to a letter. Specifically, for the period under examination,
letter A stands for the maximum monthly precipitation prediction, letter B stands
for the minimum one, while letters C and D stand for the mean and cumulative
precipitation prediction, respectively.

The values of the statistical indices (Table 4) showed that, the best forecast
resulted from Patras’ input datasets while the worst resulted from Thessaloniki’s
input datasets. R2 values indicated that there was a good correlation between the
recorded and the predicted precipitation totals, for all the forecasting cases at a
statistical significance level of p < 0.01. The IA values were very close to the unit
in all cases. This declares a good prediction and shows how close the forecasted
values were to the recorded ones in most of the cases. It is known from the scientific
literature (Willmott et al. 1985) that, IA is a relative measure of error and it is limited
to the range of 0–1. IA = 0 means no agreement between prediction and observation
and IA = 1 means perfect agreement between prediction and observation.

The most accurate forecasts seem to be the average monthly precipitation pre-
diction (C) as well as the cumulative precipitation prediction (D) for the next four
consecutive months. The RMSE values of 102.5 mm (case D for the city of Patras)
and 85.3 mm (case D for the city of Athens) seem to be high enough, but both cases
concern the prediction of cumulative precipitation totals for the four consecutive
months and such high values are expected and observed in both cities.

The predicted and the observed time series of the maximum (a), minimum (b),
mean (c) and cumulative (d) precipitation totals for the next four consecutive
months, for the station of Patras (best prediction) and the station of Thessaloniki (the
worst prediction) are depicted in Figs. 4 and 5, where continuous lines represent the
predicted precipitation totals and dotted lines represent the corresponding observed
ones.

Similar results have been extracted by other researchers. Sahai et al. (2000) used
ANNs for the prediction of total precipitation during the summer monsoon period
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Fig. 4 Prediction of monthly maximum (a), minimum (b), mean (c) and cumulative (d) precipitation
totals for the next four consecutive months, for the station of Patras, within the period 1980–1992

across India. As input data, precipitation totals from 306 different meteorological
stations throughout India during the June, July, August and September months
within the period 1871–1994, were used. The ANNs were programmed to give a
prediction of the total cumulative precipitation for four consecutive months (June–
September) of the current calendar year, based on the input data of the past four
years for these four months. The forecasted results were quite satisfactory (Root
Mean Square Error, RMSE: 54.2 mm), mainly due to the frequency of occurrence
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Fig. 5 Prediction of monthly maximum (a), minimum (b), mean (c) and cumulative (d) precipitation
totals for the next four consecutive months, for the Thessaloniki (Mikra) station, within the period
1994–2004

of heavy precipitation during the summer monsoon in India, as well as the large
number of data used for ANNs training. A physical phenomenon appearing high
frequency of appearance within time series has impressed a particular experience.
The ANNs have the ability to “learn” and get this experience resulting in satisfactory
prediction of the phenomenon. Chantasut et al. (2004) developed ANNs in order
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to predict precipitation using the monthly precipitation values of the period 1941–
1999 from 245 different stations along the area of the river Chao Phraya (Thailand).
The aim was to predict the precipitation totals for the next month, using as input
data the monthly precipitation from each one of the ten previous months. The
predicted precipitation totals resulted in RMSE: 0.18 mm. Furthermore, Freiwan and
Cigizoglu (2005) developed a number of different Multi-Layer Perceptron (MLP)
ANNs, which were trained with the method of back-propagation algorithm in order
to predict precipitation for the next month. As input data they used the precipitation
totals of the previous two months and a periodic component for each month. The
precipitation prediction concerned the area of the airport in Amman, Jordan, during
the period 1924–2000. The predicted results were fairly satisfactory in most cases with
R2 between 0.112 and 0.466, and RMSE between 25.8 and 33.6 mm, depending on
the ANNs type used in each case. The predicted results were very satisfactory with
a coef f icient of determination (R2) between 0.112 and 0.466, and RMSE between
25.8 and 33.6 mm, depending on the ANNs type used in each case. Iseri et al.
(2005) constructed different types of predictive models, including ANNs, in order
to predict the precipitation in the Fukuoka-Japan. Prediction was based on data
recorded during the period 1901–1997. Their prediction was based on the August
precipitation totals. The change of the sea surface temperature and three different
climate indices of the previous three to twelve months before the predicted month
were used as input data for ANNs training. Between all the models, ANNs showed
the best forecasting ability, with a coefficient of determination between 0.147 and
0.366. Finally, Mar and Naing (2008) used ANNs in order to predict the monthly
precipitation totals in Yangon (Myanmar-South East Asia). For this purpose they
used, as input data, monthly precipitation totals, covering the period 1970–2006.
They developed different set of ANNs with a different number of artificial neurons
in each one, and the predicted precipitation totals resulted in RMSE between 9.9 and
22.9 mm, depending on the ANNs type.

A limitation of our study is that, the developed ANNs did not have the ability to
forecast the peaks in all cases. This means that in order to predict the peaks, more
data are necessary for ANNs’ training. It is likely that, the ANNs could not gain
the necessary experience for the correct prediction of the peak of the precipitation
totals. This is because the extreme precipitation cases occur with low frequency in
all stations and in random sequence, in contrast to high frequency of occurrence
of heavy precipitation during the summer monsoon in India (Sahai et al. (2000).
Greece, located in the Eastern Mediterranean is not characterized by high frequency
of extreme precipitation events. Nastos and Zerefos (2008), using wavelet analysis
for the time series of the annual number of days (%) with precipitation greater than
30 mm, in Greece, showed that decadal cycles (10 to 16 years), statistically significant
(0.05 c.l.), dominate in the western and eastern regions of Greece. Moreover,
2–10 year periods are exhibited all over the country with less or more significance
with respect to time. Therefore, if a phenomenon such as extreme precipitation does
not occur with high frequency, then it is difficult to be forecasted successfully by
ANNs or other statistical methods. Using only precipitation datasets, the performed
ANNs showed that they can forecast the maximum (a), minimum (b), mean (c) and
cumulative (d) precipitation totals for the next four consecutive months, satisfacto-
rily. This indicates the usefulness of these ANNs compared to the classical methods
already available. Furthermore, the methodology developed in this research could
be implemented by other researchers interested in predicting future high intensity
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storms and cyclones in regions with higher frequency (e.g. summer monsoon in
India), than that in Greece. However, an adequate training of the ANNs, based on
additional meteorological parameters of the middle and upper atmosphere, such as
air temperature, relative humidity, wind speed and direction, barometric pressure,
and condensation level, is required.

4 Conclusions

The time series of monthly precipitation totals from four meteorological stations
in Greece were used, in order to forecast the monthly maximum, minimum, mean
and cumulative precipitation totals for the next four consecutive months by the
application of ANNs models. The extracted results showed that the predicted mean
monthly as well as the cumulative precipitation totals were in very good agreement
(p < 0.01) with the respective observed ones concerning all four examined sites. On
the other hand, the developed ANNs did not have the ability to forecast the peaks in
all cases and this is a limitation of the study, which could be removed by using more
data for ANNs’ training. Further study could result in more efficient ANNs in the
case of precipitation forecast for other stations distributed over the Greek region.
In general we could say that the ability of ANNs as a precipitation predictive tool
seemed to be quite satisfactory. ANNs could be used in forecasting the seasonal and
monthly precipitation totals and this is very important for planning and management
of the water sufficiency, which is necessary for life, especially in arid and semi-arid
areas.

As it has been mentioned before, during the recent years, many relevant scientific
studies have been published, concerning the prediction of precipitation totals, but not
enough in the long term prognosis i.e. for four consecutive months. More research
is needed in order to improve the capacity of ANNs to forecast precipitation within
long-term period.
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