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Abstract There is increasing trend in the use of multi-objective genetic algorithms
(GAs) to estimate parameter sets in the calibration of hydrological models. Multi-
objective GAs facilitate the evaluation of several model evaluation objectives, and
the examination of massive combinations of parameter sets. Typically, the outcome
is a set of several equally-accurate parameter sets which make-up a trade-off surface
between the objective functions, usually referred to as Pareto set. The Pareto set is a
set of incomparable parameter sets as each solution has unique parameter values
in parameter space with competing accuracy in the objective function space. As
would be required for decision making purposes, a single parameter set is usually
chosen to represent the model calibration procedure. An automated framework for
choosing a single solution from such a trade-off surface has not been thoroughly
investigated in the model calibration literature. As a result, this study has outlined
an automated framework using the distribution of solutions in objective space and
parameter space to select solutions with unique properties from an incomparable set
of solutions. Our Pareto set was generated from the application of Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) to calibrate the Soil and Water Assessment
Tool (SWAT) for simulations of streamflow in the Fairchild Creek watershed in
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southern Ontario. Using cluster analysis to evaluate the distribution of solutions in
both objective space and parameter space, we developed four auto-selection methods
for choosing parameter sets from the trade-off surface to support decision making.
Our method generates solutions with unique properties including a representative
pathway in parameter space, a basin of attraction (or the center of mass) in objective
space, a proximity to the origin in objective space, and a balanced compromise
between objective space and parameter space (denoted BCOP). The BCOP method
is appealing as it is an equally-weighted compromise for the distribution of solutions
in objective space and parameter space. That is, the BCOP solution emphasizes
stability in model parameter values and in objective function values—in a way that
similarity in parameter space implies similarity in objective space.

Keywords Hydrological calibration model · Multi-objective genetic algorithms ·
NSGA-II · Pareto set · Robust

1 Introduction

As mathematical simplifications of watershed processes, majority of hydrological
models are calibrated through parameter estimation. Estimation of model parame-
ter values improves the performance of the model to match observed watershed
responses. Calibration may be manual or automated depending on whether the
matching between simulated and observed values are evaluated manually, based
on a physical adjustment of parameter sets, or computer algorithms are used to
search for best model parameter values. Manual adjustment of parameter sets is
time intensive and the assessment of the goodness of fit can be subjective. Manual
parameter adjustment can be complicated by the effects of model parameter inter-
correlations which usually result in compensating errors (Leavesley 1994). As a
result of limitations in manual calibration, extensive research and a growing body
of literature (Duan et al. 1993; Gupta et al. 1998; Yapo et al. 1998; Beven 2001)
have focused on the development of automated parameter adjustment methods.
Automated (or computer based) methods employ the speed and power of a com-
puter to search for optimal parameter sets. However, a recurring theme in the model
calibration literature has been finding a robust approach to search for an optimum
model parameter set during model calibration, and a subsequent evaluation of the
distribution of solutions in objective space and parameter space.

In the past, studies (Liang et al. 1994; Young and Beven 1994; Tabrizi et al. 1998)
have employed different function optimization techniques such as multiple input
transfer functions (Ahsan and O’Connor 1994) to automate parameter estimation
for hydrological models. These traditional optimization methods use deterministic
transition rules to find the optimum solution for an optimization problem. But the
assumption of deterministic transition rules may be difficult to satisfy for most prac-
tical model calibrations procedures, which often include several model parameters
that exhibit nonlinearities and complex relationships. In addition, traditional opti-
mization methods use different initialization methods to guide the search process
which usually result in different optimal solutions. Some methods use direct objec-
tive functions and constraint variables while others employ the first and second
derivatives of the objective functions and constraints to initiate the search procedure.
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Several of the automated approaches such as hill-climbers often get stuck on a local
optimum or a sub-optimal solution, particularly in multimodal problems where there
are several peaks on the search surface.

Recently, the use of genetic algorithms (GAs) for automated model calibration
(Confesor and Whittaker 2007; Gill et al. 2006; Khu and Madsen 2005; Madsen
2003; Wöhling et al. 2008; Tang et al. 2006) has emerged as an important opti-
mization technique in hydrology. GAs constitute a particular class of a large body
of computational techniques called evolutionary algorithms (EAs). EAs mimic the
concept of natural evolution to address problems that are based on stochastic trial-
and-error or generate-and-test problems (Eiben and Smith 2003). GAs consider
problem solving as an evolution of a population of individuals in an environment
with limited resources. Given that there are limited resources, individuals compete
among themselves and are selected to reproduce for the next generation (or the
new population). As a result, individuals are selected and undergo reproduction to
generate a new population which evolves as a whole. In other words, the competition
based selection and variation among members of the population result into a fitter
population (or a better solution to a problem).

Recent studies (Khu and Madsen 2005; Gill et al. 2006; Nazemi et al. 2006; Tang
et al. 2006; Bekele and Nicklow 2007; Shafii and Smedt 2009) have employed multi-
objective GAs to calibrate hydrological models for generating trade-off surface
between several objectives. While these studies have progressed from evaluating
single objective to multiple objectives the outcomes usually comprise several pa-
rameter sets that fit the hydrograph in different ways (Gupta et al. 1998) to form
the trade-off surface. As a set of incomparable solutions, the trade-off surface does
not have a single definitive solution for decision making but rather a suite of solu-
tions for different trade-offs between the objectives. Selecting a single solution for
decision making is a natural follow-up step after generating a trade-off surface for
hydrological model calibration. But a definitive or an automated method of selecting
solutions from such a trade-off surface is limited in the model calibration literature.
It is desirable, for decision making purposes, to evaluate the resulting parameter
sets on the trade-off surface for their distributions in objective space and parameter
space and thereby identify solutions with unique properties. Additionally, the choice
of solution from the trade-off surface can be made on the basis of the level of
uncertainty associated with each solution.

Note that each solution on the trade-off surface is valid in itself and different
solutions could be preferable to different users or even the same user at different
times. If user dependent preferences are not a dominant factor or if these preferences
are focused on properties of the Pareto frontier then an auto-selection method
can be applied to choose solutions based on properties of the trade-off surface,
natural clustering in solution space of solutions in the Pareto set, or a combination of
the two.

The decision making process in multi-objective genetic algorithms are generally
categorized into three subgroups based on when the decision is made. These cate-
gories are decisions made before, after and during the search (Coello Coello et al.
2002; Marler and Arora 2004). Decision made before the search allows the user
to rank the objectives in an order of preference/importance (Weinert et al. 2009;
Xuebin 2009; Vamvakeridou-Lyroudia et al. 2006; Miyamoto et al. 2006). Decisions
made during the search are referred to as interactive searches where the user is
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allowed input to guide the search (Hee-Su and Sung-Bae 2000; Tappeta et al. 2000).
Decision making after the search allows the generation of non-dominated solutions
from which the user can select one solution. This paper focuses on this category
of decision making after search by providing four methodologies to select solutions
from the non-dominated set.

Various studies (Crispim and de Sousa 2009; Taboada and Coit 2006) have applied
cluster analysis to select compromise solutions from Pareto frontier. The study by
Khu and Madsen (2005) have applied preference ordering and compensation be-
tween model objectives to screen through Pareto-optimal solutions and select fewer
solutions. Other researches have randomly selected one non-dominated solution
which does not degrade the objectives (Tang et al. 2006; Bekele and Nicklow 2007;
Ferreira et al. 2007; Grierson 2008). However, a formal methodology to selecting
solutions using properties of the Pareto frontier is limited in the literature.

The objective of this paper is to provide an automated framework for selecting
solutions from a trade-off surface based on the distribution of parameter sets in
objective space and parameter space. To achieve this objective, we use the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002) to calibrate
the Soil and Water Assessment Tool (SWAT) for streamflow simulations based on
two conflicting objectives: root mean square error (RMSE) and model bias. The
modeling approach determines several parameter sets that have competing accu-
racies of matching simulation to observed streamflows. The resulting solutions con-
stitute a trade-off surface between RMSE and bias, while the parameter values for
the solutions represent points in parameter space.

As a follow-up step, the decision making procedure selects one solution from the
trade-off surface with a unique property using patterns observed in both objective
space and parameter space. The method generates solutions with unique properties
including a representative pathway in parameter space, a basin of attraction (or the
center of mass) in objective space, a proximity to the origin in objective space, and a
balanced compromise between objective space and parameter space. In this analysis,
we used cluster analysis (CA) to facilitate this decision making process. The CA
evaluates the distribution of solutions on the trade-off surface to find relationships in
both objective space and parameter space.

The rest of the paper is organized as follows. Following is the materials and
methods section which outlines an automated framework for selecting solutions with
unique properties from a trade-off surface. This section also introduces the study
area and describes datasets used in the study and the SWAT model. The application
of the NSGA-II framework to calibrating SWAT for simulations of streamflow is
reported in the results and discussion section. The results section implements the
automated framework for selecting solutions from the trade-off surface. The paper
concludes with a discussion about the utility of selecting unique solutions through the
evaluation of parameter sets in both objective space and parameter space.

2 Materials and Methods

This section describes the study region, datasets and their sources, the SWAT model
and its set-up, and the NSGA-II framework to calibrating the model for simulations
of streamflow.
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2.1 Automated Framework for Selecting Unique Solutions
from a Trade-off Surface

As would be required for decision making purposes a single solution is usually chosen
from the trade-off surface (also called Pareto frontier). The choice of a solution on
the Pareto frontier can be a daunting task because the solutions are incomparable
and have competing accuracies as no one solution is better than the other. The Pareto
frontier is, therefore, a decision front where a solution can be selected on the basis of
a property that is considered important for the problem at hand. Usually, a user may
specify a problem-specific property emphasizing the relative importance between the
objectives. However, if user preference is focused on the properties of the trade-
off surface, a natural clustering of solutions in parameter space and objective space,
or a combination of the two then an automated method for choosing solutions can
be applied.

In this section, we outline four auto-selection methods to evaluate the distribution
of solutions on the Pareto frontier. The distribution of solutions encompasses the
clustering of parameter values in parameter space and the spread of solutions in
objective space. Since the solutions on the Pareto frontier are incomparable, the
selection methods do not in any way provide indication if one solution is better than
the other, rather the methods aim to find solutions which have unique properties on
the Pareto frontier.

We measure the distribution of solutions in parameter space by clustering the
model parameter values of the solutions found on the Pareto frontier. An application
of a specific distance function is used to compare parameter vectors, which can
be weighted to emphasize one parameter over another. As we have no preference
towards one parameter over another, we normalize each parameter and take the
Euclidean distance between the normalized vectors. We call the clusters thus formed
“parameter clusters” (PC), and index them so that the ith parameter cluster is
denoted as PCi.

Similarly we cluster the distribution of solutions in objective space using a distance
measure which combines the model evaluation functions (bias and RMSE in this
study, that is, solutions discovered on the Pareto frontier). Specifically, Euclidean
distance was used to combine bias and RMSE, although any distance measure
tailored to the system under investigation could be used. These clusters are called
“fitness clusters” (FC) and the jth fitness cluster is denoted as FCj.

Other classifiers different from cluster analysis could be applied to analyze the
distribution of solutions, so clustering should not be thought of as the only approach.
One suggestion is that cluster analysis should be used to analyze the distribution
of solutions if and only if a pattern of clustering is observed following the test of
clustering outlined in Thorndike (1953). The procedure shown in Thorndike (1953)
also illustrates the ‘knee’ approach to determine the appropriate number of clusters
to be used in clustering a specific dataset based on the relative size of reduction of
variance introduced by increasing the number of clusters.

2.1.1 Parameter Based Clustering: CAP Method

The first auto-selection method focuses on the distribution of solutions in parameter
space. The method applies a clustering analysis based on parameter values (denoted
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CAP) to identify persistent sub-categories for parameter clusters by evaluating the
trade-off between parameter values. The PCi with the largest membership (denoted
PCk) is chosen as it represents an area of maximum concentration of solutions (i.e.
a representative pathway in parameter space) or a unique region on the Pareto
frontier with respect to the parameter space. The cluster center for PCk is defined
as a parameter set that has the minimum averaged Euclidean distance to each of the
other members in the cluster (computed after normalizing the parameter values) for
the set of solutions in the cluster PCk. This solution at the cluster center of PCk is
chosen as the CAP solution, that is, a representative pathway in parameter space.
Note that the parameter values are weighted equally when computing the Euclidean
distance, as a result, no weighting factors are assigned to the parameter values. Since
CAP solution is chosen from PCk, a level of uncertainty around the CAP solution is
the interval between minimum and maximum values for objectives (RMSE and bias
in this study) for all solutions in PCk.

2.1.2 Objective Based Clustering: BAPF and IPO Methods

The second auto-selection method focuses on the distribution of solutions in objec-
tive space. The method is based on the concept of basin of attraction (or center of
mass) on the Pareto frontier (denoted BAPF) to evaluate the trade-off between the
objectives (e.g. RMSE and bias). The purpose of the BAPF method is to select a
compromise solution whose RMSE and bias values represent the center of mass on
the Pareto frontier where mass is a function of the objective function values. The FCi

with the largest membership (denoted FCk) is chosen as it captures the dominant
variability in objective space (i.e. a dominant cluster in objective space) or a unique
region on the Pareto frontier with respect to objective space. The cluster center for
FCk is defined as a parameter set that has the minimum averaged Euclidean distance
to each of the other member in the cluster for the set of solutions in cluster FCk. The
solution at the cluster center of FCk is chosen as the BAPF solution. Like the CAP
solution, the level of uncertainty around the BAPF solution is the interval between
minimum and maximum values for RMSE and bias for all solutions in FCk.

The third auto-selection method also focuses on the distribution of solutions in
objective space. The method evaluates all solutions on the Pareto frontier based on
their index of proximity to the origin of the objective function values. We referred to
this technique as index of proximity to the origin (IPO) method. The minimum of all
the maximum values for solutions on the Pareto frontier represents the parameter
set with the least distance to the origin. This method of computing IPO uses a dis-
tance based on L∞ norm which takes the maximum value of a vector just as the
Euclidean distance is based on the L2 norm, which sums the squared values of
a vector. It is important to note that this method of finding the IPO parameter
set is similar to computing the Euclidean distance between the origin and each ith

solution
(

i.e.

√
RMSE2

i + Bias2
i

)
, where RMSE and Bias are the objectives applied

in this study. The solution with the minimum Euclidean distance is chosen, and will
frequently return the same point. Note that the IPO method has been applied in past
studies (Bekele and Nicklow 2007; Tang et al. 2006), and is formalized in this study
with the aim to compare its properties to the other selection methods.
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2.1.3 Linking Parameter Space and Objective Space: BCOP Method

The fourth auto-selection method, denoted BCOP, determines a balanced compro-
mise between objective space and parameter space. The above three methods of
selecting solutions from the trade-off surface have independently considered the
distribution of solutions in either objective space or parameter space. Although a
dominant pathway in parameter space, the CAP method has no linkage to objective
space. Similarly, the BAPF method focuses on the dominant variability in objective
function values with no reference to parameter space. The CAP and BAPF solutions
are compromise solutions in either parameter space or objective space but these
solutions do not represent a compromise for the distribution of solutions in both
spaces. The linkage between the two spaces—that is, a dominant pathway in parame-
ter space and the center of mass in objective space—describes the level of robustness
for parameter sets. Hence we determine BCOP solutions by evaluating the linkages
between the patterns observed in objective space and those in parameter space.

To achieve this, we find a cluster with the largest membership in both objective
space (FCk) and parameter space (PCk). A solution has the BCOP property if it
belongs a representative pathway in parameter space and also in a dominate cluster
in objective space. A BCOP solution is chosen by finding the parameter set at the
center of the overlapped region between PCk and FCk using model parameter values.
The uncertainty around the BCOP solution is the interval between minimum and
maximum values for RMSE and bias for all solutions in the overlapped region
between PCk and FCk. Note that if no solution exists in the intersection between
PCk and FCk then PCk is overlapped with clusters in objective space until solution(s)
are found in the overlapped region. The process starts with clusters with high mem-
berships to clusters with the lowest membership. The chosen BCOP solution rep-
resent a compromise between PCi and FCi in a way that similarity in parameter
space implies similarity objective space. Note that selections methods presented in
this paper can apply to a trade-off surface (Pareto front) that is generated using any
algorithm. As a result, the selection methods are independent of the algorithm used.

2.2 Study Area

Fairchild Creek (FCr) watershed is located in the central portion of the Grand
River Basin in southern Ontario. The FCr watershed shown in Fig. 1 runs from
north to south and drains an area of about 400 km2. Physiographically, the FCr
watershed is located on the south-eastern slope of the Galt Moraine, a major moraine
system which forms part of the southern Ontario Moraines physiographic region.
The FCr watershed is a dendritic drainage system, having elevation range between
184 to 325 m and a slope interval between zero and 18.9◦. The FCr watershed, as a
dendrite stream, has a typical pathway pattern of decreasing slope downstream. The
headwater section is mostly a plain physiographic region with shallow soils, gentle-
sloping bedrocks and several wetlands. The upstream section also has a drumlin field
comprising small and isolated drumlins. The middle and lower sections have massive
deposits of fine-grained sediments such as silt and clay and are eroded by surface
runoff. The hummocky terrain accompanied with high erosion soils in this area
presents a persistent soil conservation problem. The FCr watershed is extensively
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Fig. 1 Study area − Fairchild Creek watershed

agricultural with scattered wetlands and small rural communities. Major land uses
and their respective proportions in the watershed include agriculture (64%), forest
(21%), pasture (9%), urban (5%) and open water and wetlands (1%).

2.3 Data Description and Sources

Datasets that are used in this study are shown Table 1. A description of each of the
individual datasets follows. A 30 m grid land use/cover data which was generated
from August 21, 2003 Landsat Thematic Mapper (TM) image was provided by
(Bonnycastle 2006). The dataset has specific classifications for corn, soybean and
cereal which are predominant crops in the FCr watershed. The soil dataset was pro-
vided by Ontario Ministry of Agriculture and Food, and Agriculture and Agri-Food
Canada. The dataset was extracted for the counties of Brant, Waterloo, Wellington,
and Wentworth as these counties cover different parts of the FCr watershed. The soil
data is based on the Ontario Soil Survey data model, which uses the NSDB (National
Soil DataBase) data model for CanSIS (Canadian Soil Information System) Detailed
Soil Surveys. The FCr watershed has a high proportion of fine textured soils (e.g., clay
and silt), which makes the basin very sensitive to surface runoff, particularly, during
snowmelt periods.

Meteorological information such as precipitation, temperature, wind, humidity,
and solar radiation values are used in SWAT for a number of calculations including
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Table 1 Fairchild Creek watershed data for SWAT model

Data Data uses Scale/Date Data sources

Digital elevation For computing 1:10 000; Grand River
model (DEM) hydrologic parameters 10 m resolution Conservation

Authority
Stream network For watershed 1:10 000 Grand River

delineation Conservation
Authority

Land use/cover For computing HRUs 1:1 000 000; Bonnycastle (2006)
and related parameters 30 m resolution

Soil data For computing HRUs Brant: 1:15840/1989; Grand River
and related parameters Waterloo: 1:20000/1971; Conservation

Wellington: 1:63360/1963; Authority
Wentworth: 1:63 360/1965

Weather data Include daily precipitation, Brantford MOE, Environment
solar radiation, wind Hamilton A, Millgrove, Canada
speed, temperature, Roseville, Waterloo
and relative humidity and Wellington A

Stream flow For calibrating simulated Temporal duration: Water Survey
data watershed response 1990–2003 time step of Canada:

for discharge: daily Ontario Ministry
of Environment

crop growth, snowmelt, and evapotranspiration. Specifically, SWAT requires daily
precipitation, minimum/maximum air temperature, solar radiation, wind speed and
relative humidity. Daily precipitation and temperature data from 1990 to 2003 were
provided by Meteorological Service of Canada (Environment-Canada 2006). The
streamflow data for the FCr watershed were provided by the Water Survey of
Canada (WSC) of the Ontario Ministry of Environment (MOE). The FCr watershed
outlet for the MOE station is located near the city of Brantford and has a gross
drainage area of about 360 km2. The discharge data were collected using a recording
gauge based on a continuous water level records from which discharge records are
computed. The discharge data is available from 1964 to 2005 at a daily interval but
only data from 1990 to 2003 were used in this study as temporal duration for climate
data are limited.

2.4 The Soil and Water Assessment Tool

Soil and Water Assessment Tool (SWAT) is a conceptual, continuous time step
model that was developed by United States Department of Agriculture in the early
1990s for assessing the impact of management and climate on water supplies in
watersheds and large river basins (Arnold and Fohrer 2005). SWAT is a physically-
based and spatially distributed water quality model that requires extensive input
data such as soil, land cover, and terrain information and can operate at a daily
and sub-daily time steps. During simulation, SWAT divides the watershed into sub-
basins which are grouped based upon input data categories: climate, hydrologic
response units (HRU), ponds, ground water, and main channels (Borah and Bera
2003a; Tolson and Shoemaker 2007). SWAT’s conceptual basis is the HRU which
are lumped land areas within the sub-basin comprising unique land use/cover, soil,
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and management practices (Borah and Bera 2003a, b). The partitioning of sub-
basins facilitates spatial evaluation of site characteristics such as soils or management
practices for different locations in the watershed. For example, evapotranspiration
and runoff can be computed to reflect various crops and soils for different sub-
basins. Runoff volume is calculated using either runoff curve number approach or
Green and Ampt infiltration equation (Green and Ampt 1911). SWAT has been
applied alongside with Riparian Ecosystem Management Model (REMM) in the FCr
watershed to simulate streamflow (Liu and Yang 2007). A detailed description of the
SWAT model is presented in various sources (Arnold et al. 1998; Neitsch et al. 2001;
Arnold and Fohrer 2005).

The SWAT model was calibrated for streamflow using 24 parameters shown in
Table 2. The table shows the description of each parameter and their lower and upper
bounds that define their corresponding initial uncertainties. It is worth noting that
the lower and upper bounds for the parameters are predetermined by the SWAT
model, and that parameters which are changed using a relative percentage value
are restricted within their predetermined intervals. The overall parameters changed
is number of parameters changed at HRU multiplied by the number of HRUs in
one hand, plus number of parameters changed at sub-basin level multiplied by the
number of sub-basins. The model is calibrated for a six year period from 1992 to and
1997 and validated for another six year period from 1998 to 2003.

2.5 NSGA-II Framework for Calibrating the SWAT Model

Non-dominated sorting genetic algorithm II (NSGA-II) is a multi-objective genetic
algorithm that was developed by Kalyanmoy Deb and his colleagues in Deb et al.
(2000, 2002). A key concept applied in NSGA-II is non-domination which states that
a candidate solution A dominates B if and only if:

– the performance of A in every dimension (i.e., objective function) is at least as
good as the performance of B, and

– the performance of A in at least one dimension is better than the performance
of B.

However, if A and B are assigned the same non-dominance level then A does not
dominate B and B does not dominate A. In the NSGA-II, the algorithm begins by
generating a random population of solutions that is usually referred to as the parent
population, Po of size N which is sorted into different non-domination levels such
that each solution is assigned a fitness based on its non-domination level. The result
is different non-dominated fronts starting from the best non-dominated front to the
second non-dominated front and so on. A child population, Qo also of size N is
created by applying binary tournament selection, crossover and mutation operators
to Po. The generation of Qo allows a check for global non-domination for both parent
and offspring solutions (Deb 2001; Deb and Goel 2001; Deb et al. 2000, 2002).

The NSGA-II has been applied widely in several different studies (Rakesh and
Chandan 2005; Agrawal et al. 2006; Atiquzzaman et al. 2006; Jeong and Abraham
2006; Sarkar and Modak 2006; Shafii and Smedt 2009). Specifically in hydrological
model calibration studies (Bekele and Nicklow 2007; Wöhling et al. 2008; Confesor
and Whittaker 2007; Gill et al. 2006; Tang et al. 2006; Khu and Madsen 2005; Madsen
2003) have used NSGA-II to generate a trade-off surface for different objectives.
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Table 2 SWAT streamflow parameter intervals and their descriptions

Model Change Lower Upper Description
parameter type bound bound

TIMP Absolute 0.01 1.00 Snow pack temperature lag factor
SURLAG Absolute 0.00 24.00 Surface runoff lag time (days)
SFTMP Absolute −5.00 5.00 Snowfall temperature (◦C)
SMTMP Absolute −5.00 5.00 Snowmelt base temperature (◦C)
SMFMX Absolute 0.00 10.00 Melt factor for snow on Jun. 21

(mm/◦C-day)
SMFMN Absolute 0.00 10.00 Melt factor for snow on Dec. 21

(mm/◦C-day)
MSK−CO1 Absolute 0.00 10.00 Calibration coefficient used to control

impact of the storage time constant
for normal flow (km)

MSK−CO2 Absolute 0.00 10.00 Calibration coefficient used to control
impact of the storage time constant
for low flow (km)

MSK−X Absolute 0.00 0.30 Weighting factor controlling relative
importance of inflow rate
and outflow rate in determining
water storage in reach segment

CH−K1 Absolute 0.00 150.00 Effective hydraulic conductivity
in tributary channel alluvium (mm/h)

CN2 Relative −0.35 0.35 Initial SCS runoff curve number
for moisture condition II

CH−N2 Relative −0.50 0.50 Manning’s n value for main channel
CH−K2 Absolute 0.01 150.00 Effective hydraulic conductivity in main

channel alluvium (mm/h)
ALPHA−BF Absolute 0.00 1.00 Baseflow alpha factor (days)
GWQMN Absolute 0.00 5,000.00 Threshold depth of water in the shallow

aquifer required for return flow
to occur (mm)

GW−REVAP Absolute 0.02 0.20 Groundwater ‘revap’
(transfer of groundwater to upper
soil layers) coefficient

GW−DELAY Absolute 0.00 500.00 Groundwater delay (days)
RCHRG−DP Absolute 0.00 1.00 Deep aquifer percolation fraction
REVAPMN Absolute 0.00 500.00 Threshold depth of water in the shallow

aquifer for ‘revap’ to occur (mm)
CANMX Absolute 0.00 100.00 Maximum canopy storage (mm H2O)
ESCO Absolute 0.00 1.00 Soil evaporation compensation factor
EPCO Absolute 0.00 1.00 Plant uptake compensation factor
SOL−AWC Relative −0.50 0.50 Available water capacity of the soil layer

(mm H2O/mm soil)
SOL−K Relative −0.80 0.80 Saturated hydraulic conductivity (mm/h)

The calibration process of most of these studies require a large number of model
parameters. Large number of parameters means high dimensionality and likelihood
of sub-optimal solutions, for the purpose of this study, however, NSGA-II has been
found to be suitable for handling problems of this nature (Deb 2001; Deb and Goel
2001; Deb et al. 2000, 2002).
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In the NSGA-II/SWAT framework, the program begins by using the upper and
lower bounds for SWAT streamflow parameters to generate a solution space for each
model parameter. The model parameter values were encoded such that each digit
(including the whole number part and the decimal part) is represented separately
as a gene. The calibration process is designed to minimize RMSE and model bias.
Based on the initial population that is generated, each parameter set is supplied to
SWAT where model parameter values are changed to update the model output.
The simulated streamflow for the specified parameter set is used to compute its
fitness (i.e., RMSE and bias). This procedure is repeated for all parameter sets
in that population and non-dominated sorting is performed to sort parameter sets
into different fronts. Selection and reproduction operations are performed on the
population followed by recombination and mutation to create a new population of
parameter sets for evaluation. The generation of the new population incorporates
crowding operators by distributing solutions to less crowded areas in order to pro-
vide diversity among selected solutions. The process is repeated until the difference
between the fitness values for the previous and current populations are minimal.

3 Results and Discussion

This section presents and discusses the NSGA-II/SWAT outputs that comprise
several competing model parameter sets. First, we analyze model parameter clusters
on the Pareto frontier which show varying trade-off information between model bias
and RMSE to calibrating SWAT for streamflow. The massive parameter sets on the
Pareto frontier have competing accuracies in predicting the observed streamflow
given the model evaluation criteria. However, for decision making purposes it is
desirable to select a single parameter set from the Pareto frontier based on the
trade-off among the parameter sets. Second, using cluster analysis we select a mix
of parameter values for decision making by evaluating the distribution of solutions
in parameter space and the distribution of parameter sets in objective space. The
resulting parameter sets emphasize the utility of the selection methods to extracting
a mix of parameter values that improve streamflow prediction and reflects changing
conditions in the watershed.

3.1 Parameter Sets from the NSGA-II Output

The NSGA-II framework was run for 400 generations with a population of 200
parameter sets which are evaluated using RMSE and model bias. A crossover proba-
bility of 0.8 and a mutation probability of 1/ l (where l is the number of variables) as
defined in the default configuration in Deb et al. (2002) were used. RMSE and model
bias were chosen for this study because these objective functions have conflicting
relationships (Gupta et al. 1998) and they measure different aspects of the calibration
procedure. RMSE evaluates the proximity of the simulation to observations whereas
model bias assesses the over-prediction or under-prediction of observed streamflow.
The simultaneous evaluation of both objective functions generated a set of parameter
sets that represent a trade-off between RMSE and model bias. The NSGA-II output
comprises 115 parameter sets which constitute the Pareto frontier are shown in
Fig. 2. Some parameter sets have similar values for RMSE and bias and their points
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Fig. 2 A plot of solutions (left-hand side graph) explored to generate the Pareto frontier (right-hand
side graph) for bias and RMSE comprising 115 parameter sets

almost overlap (at this scale for display purposes). Based on the 115 parameter
sets on the Pareto frontier (Fig. 2), the absolute model bias ranges from 0.00003
to 0.01116 mm/day, and RMSE varies from 0.8160 to 0.8203 mm/day. The overall
Pareto frontier shows a positive model bias indicating that several parameter sets
have generally over-predicted the observed streamflow.

To examine the cluster of model parameters on the Pareto frontier, the parameter
limits were re-scaled onto a unit scale between zero and one. This re-scaling does not
change the distribution of the parameter values as the original parameter values can
be determined by applying the inverse of the re-scaling factor. The re-scaling allows
a graphical comparison between model parameters and shows the discontinuities as
well as clusters within the parameter limits. Figure 3 shows the range of parameter
values for the 115 scenarios on the Pareto frontier; each model parameter has 115
plotted values representing the Pareto frontier but some plotted values have almost
converged (at this scale for display purposes) onto a point. On top of these 115
parameter sets are three plotted parameter sets representing the minimum bias,
the minimum RMSE, and the compromise between bias and RMSE. The figure
demonstrates that some model parameters have small spread between clusters while
others have wide spread between their clusters, and that model parameter spaces are
not continuous but exhibit distinct clusters.

An apparent justification for the varying parameter clusters is that some model
parameters (e.g., TIMP, CN2, and ESCO) have almost converged onto a narrow
cluster despite the trade-off between bias and RMSE. The narrow clusters for these
model parameters can facilitate decision making when selecting optimal parameter
values. Additionally, small changes in the values for these model parameters result
into significant changes in watershed response. In contrast, model parameters with
wide clusters suggest that they are resistant to converge to a narrow cluster and
will usually require further evaluation. Additionally, the large distribution for some
parameters with wide clusters could partly be due to their spatial variation within
the watershed and the fact that SWAT modifies these parameters at watershed-
wide. Selecting parameter values for model parameters with wide cluster spaces may
be problematic but known conditions in the watershed can be used to guide the
selection. Note that parameter-by-parameter clusters maybe useful but as will be
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Fig. 3 Model parameters and their clusters on the Pareto frontier

shown in Section 3.2 evaluation of relationships between parameters using cluster
analysis have a crucial impact on response at the watershed outlet.

The resulting solutions on the Pareto frontier represent a problem-front in a way
that a solution should be chosen from the front only when a problem with a known
trade-off between the objectives has been specified. In our study, a specification
of a water-resource decision relating RMSE and bias should precede the choice
of solutions on the Pareto frontier. The choice of solutions can be a daunting task
as the trade-off between the objectives is often unknown. In the discussion below,
we examine the trade-offs between the parameter sets in order to choose a single
mix of parameter values as would be required for decision making purposes. It
is important to emphasize that the selection methods are purpose-dependent and
should be applied when specific conditions such as clustering in parameter space
or when a basin of attraction on the Pareto frontier are deemed to provide critical
information about the watershed.

3.2 Selecting Model Parameter Sets on the Pareto Frontier

The following is an implementation of the automated framework described in
Section 2.1 to select solutions with unique properties using the distribution of
solutions in objective space and parameter space.

Using the CAP method, we determine the solution with the representative path-
way in parameter space. The model parameter values were re-scaled (i.e. normalized)
so that their values range between zero and unity. A k-means clustering method is
applied to the 24 model parameters for 115 parameter sets on the Pareto frontier
using Euclidean distance measure. The decision to use eight clusters was based on
the clustering condition outlined in Thorndike (1953) where the percent of variance
explained by different number of clusters k, and k = 8 provided the most suitable
number of clusters as it falls at the knee (in Fig. 4). The eight clusters and their respec-
tive sizes are: PC1 (has 14 solutions), PC2 (has 33 solutions), PC3 (has 20 solutions),
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Fig. 4 Eight clusters identified
in parameter space. Using
the ‘knee’ technique to
determining an appropriate
number of clusters for
parameter sets in parameter
space
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PC4 (has 14 solutions), PC5 (has 5 solutions), PC6 (has 10 solutions), PC7 (has 12
solutions) and PC8 (has 7 solutions). Cluster PC2 has the highest membership of 33
solutions and the CAP solution is chosen from this cluster of solutions. The para-
meter set at the cluster center for PC2 is determined and its averaged streamflow is
3.8608 m3/s, and the RMSE and model bias values are 0.8161 mm/day (uncertainty =
±0.0014) and 0.0091 mm/day (uncertainty = ±0.00941) respectively.

To determine the BAPF solution, Eq. 1 was applied to normalize the objective
functions (RMSE and bias). Using clustering analysis on the Pareto frontier, six
unique clusters are readily identified in the objective space (in Fig. 5). Again,
k-means clustering was applied using the Euclidean distance measure. The six
clusters and their cluster sizes are ‖FC1‖ = 60, ‖FC2‖ = 7, ‖FC3‖ = 18, ‖FC4‖ =
13, ‖FC5‖ = 10 and ‖FC6‖ = 7. The solution at the cluster center for FC1 is deter-
mined and it’s averaged streamflow is 3.8634 m3/s, and the RMSE and model
bias values are 0.8190 mm/day (uncertainty = ±0.00083) and 0.00004 mm/day
(uncertainty = ±0.00086) respectively.

RMSE j = RMSEi − RMSEmin

RMSEmax − RMSEmin
; Biasj = Biasi − Biasmin

Biasmax − Biasmin
(1)

The IPO solution is the parameter set closest to the origin of zero RMSE and
zero bias. The IPO solution is a balanced compromise between the objectives as
it equally reduces the objectives as aggressively as possible without damaging
the response of the other objective(s). The chosen IPO solution has an averaged
streamflow of 3.8376 m3/s, and the RMSE and model bias values are 0.8167 mm/day
and 0.0018 mm/day respectively.

A BCOP solution is determined by finding the parameter set at the center of the
set of solutions in the overlapped region between PC2 and FC1. The overlapped
region between PC2 and FC1 has four solutions. The solution at the center of
these four solutions has an averaged streamflow of 3.8666 m3/s, and the RMSE and
model bias values with uncertainty are 0.8187 mm/day (uncertainty = ±0.0022 and
0.0004 mm/day (uncertainty = ±0.0078) respectively.
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Fig. 5 Six solution clusters
identified in objective space.
Using the ‘knee’ technique to
determining a suitable number
of clusters in objective space
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3.3 Comparison Between Selection Methods for Choosing Solutions
on the Pareto Frontier

The CAP, BAPF, IPO and BCOP parameter sets have similar values for averaged
streamflow, model parameter values and their associated RMSE and bias values
when using the FCr watershed data set. Nevertheless, the four approaches are dif-
ferent and they have their own advantages on how they arrive at selecting a single
mix of model parameter values to facilitate decision making. The CAP, BAPF, IPO
and BCOP methods evaluate four different types of trade-offs between parameter
sets on the Pareto frontier.

A comparison between model evaluation results for the chosen solutions are
shown in Table 3 for model calibration and validation results. For these solutions,
model bias has increased to about one order of magnitude and is consistently posi-
tively biased during the validation period while RMSE values have remained in
the same order of magnitude as in the calibration period. There are more extreme
streamflow events in the calibration period than there are in validation period.

Table 3 Model calibration and validation results for daily streamflow for CAP, BAPF, IPO and
BCOP auto-selection methods

Evaluation Auto-selection methods RMSEbest BIASbest

parameter CAP BAPF IPO BCOP

Calibration period: 1992–1997
Model bias (mm/day) 0.00910 0.00004 0.00180 0.00040 0.01120 0.00003
RMSE (mm/day) 0.8161 0.8190 0.8167 0.8187 0.8160 0.8191
Nash–Sutcliffe efficiency 0.6059 0.6088 0.6062 0.6082 0.6089 0.6060

Validation period: 1998–2003
Model bias (mm/day) 0.0816 0.0826 0.0780 0.0823 0.0836 0.0820
RMSE (mm/day) 0.6864 0.6794 0.6865 0.6795 0.6792 0.6866
Nash–Sutcliffe efficiency 0.5180 0.5080 0.5286 0.5092 0.5186 0.5078

Validation results are determined by using parameter sets obtained from the calibration period:
1992–1997
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This condition influences model evaluation measures, for example, the validation
period shows an improved RMSE values compared to the calibration period. For
illustration purposes, Fig. 6 is used to illustrate differences/similarities between
generated streamflows for CAP, BAPF, IPO and BCOP methods.

The CAP method is distinct because it selects a parameter set which describes
the persistent/dominant cluster in the parameter space. The parameter values in the
CAP parameter set represent the maximum likelihood values given the distribution
of the parameter values on the Pareto frontier. The CAP method is considered
a ‘back end’ approach because model parameter values are explored to select a
persistent parameter cluster that gives a competitive streamflow prediction. Since
the CAP selection is based on persistent model parameter cluster, model parameter
values can be easily verified on the basis of how closely they reflect the watershed
condition under investigation. The computed model parameter spaces are useful to
specifying parameter values during future calibration operations as well as to further
investigate individual model parameter values for accurate watershed description
and characterization, beyond the evaluation of watershed responses at the outlet.

Similarly, RMSE and bias values in the BAPF parameter set represent maximum
likelihood values given the distribution of RMSE and bias values on the Pareto
frontier. The BAPF parameter set is equivalent to the center of mass representing
the most commonly found compromise solution with respect to the concentration of
solutions, and minimum and maximum values of RMSE and bias. The IPO parameter
set is also distinct because it represents the most balanced compromise solution with
the same magnitude of RMSE and bias, and is closest to the origin.

The BAPF and IPO methods are useful, particularly in streamflow prediction
scenarios that are usually focused on watershed responses at the outlet. That is,
the BAPF and IPO methods narrow-mindedly focus on predictability of watershed
response but ignores the distribution of parameter values. The BAPF and IPO
methods are considered a ‘front end’ approach as the parameter set selections
are based on a compromise between RMSE and bias for predicted streamflows of

Fig. 6 Log transform of discharge for generated streamflows for CAP, BAPF, IPO and BCOP
methods
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several parameter sets that do not necessarily have similar parameter pathways.
Since the BAPF and IPO methods evaluate the compromise between RMSE and
bias to select a solution, the methods are useful to adjusting model estimates if
the model persistently has predictions very far from observations. For example, in
data assimilation operations the predicted streamflow from BAPF and IPO methods
can be compared to the observed streamflow in order to penalize parameter sets to
partially align the model to the observed streamflow.

The CAP, BAPF and IPO solutions are compromise solutions in either parameter
space or objective space but these solutions do not capture a compromise for the
distribution of solutions for both spaces. The BCOP solution is an equally-weighted
compromise for the distribution of solutions in both objective space and parameter
space. The BCOP solution captures the representative pathway in parameter space
and the dominant variability in objective space; hence the desired solution to be
determined.

4 Summary and Conclusion

This study has demonstrated the selection of solutions from an incomparable set
of parameter sets that are generated from calibrating SWAT for simulations of
streamflow using NSGA-II. The NSGA-II/SWAT integration results include trade-
off information between model bias and RMSE and their corresponding competing
solutions which make up the Pareto frontier. Analysis of solutions in parameter
space demonstrates the stability of parameter clusters for some model parameters in
achieving competing accuracies for parameter sets. Additionally, the trade-off infor-
mation and the numerous parameter sets on the Pareto frontier emphasize the rele-
vance of evaluating the Pareto frontier to select a parameter set for decision making.
Evaluation of solutions on the Pareto frontier is important because the Pareto
frontier is a trade-off surface where no one solution is better than the other unless
a specific problem is able to quantify the relevance of one objective in relation to
the other. However, solutions with unique properties on the Pareto frontier can be
derived based on the distribution of solutions in objective space and parameter space.

Using cluster analysis to evaluate the distribution of solutions in objective space
and parameter space, we have demonstrated four auto-selection methods: CAP,
BAPF, IPO and BCOP—to choose solutions with unique properties on the Pareto
frontier. The BAPF and IPO methods focus on the distribution of solutions in objec-
tive space. These two methods of evaluating the trade-off between bias and RMSE
uses a ‘front end’ approach by finding a streamflow with a moderate RMSE and bias
from several competing streamflow predictions. The BAPF and IPO approaches are
useful in data assimilation contexts where streamflow predictions from the model can
be used to align the model to better predict the observed streamflow for the future.

The CAP method examines the distribution of solutions in parameter space. In
contrast to BAPF and IPO, the CAP method is tagged a ‘back end’ approach as
it evaluates the parameter values themselves other than the predicted streamflows
based on RMSE and bias to select a single parameter set. The CAP method uses sev-
eral competing parameter sets and computes for each model parameter a persistent
parameter cluster. An advantage of the CAP method is that it could be most suited
for watershed characterization as model parameter values are thoroughly evaluated
on their basis of representing known conditions in the watershed. Furthermore, the
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CAP solutions describes a representative pathway in parameter space. The computed
model parameter cluster for the CAP method can provide information for specifying
model parameter values for future model parameter estimation operations.

The fourth auto-selection method, BCOP, determines a robust-type solution
by finding a compromise for the distribution of solutions in objective space and
parameter space. That is, the BCOP is a compromise between the representative
pathway in parameter space (CAP) and the dominant variability in objective space
(BAPF). The auto-selection method for BCOP solution emphasizes stability of
model parameter values and objective function values in a way that similarity in
parameter space implies similarity in objective space.

In sum, the key finding shown in the generation and analysis of the trade-off
surface is the automated technique of selecting solutions with unique properties from
a Pareto-optimal front. Following the generation of the trade-off surface between
RMSE and bias we applied cluster analysis to develop four auto-selection methods to
find parameter sets with unique properties on the trade-off surface. These properties
on the trade-off surface include a representative pathway in parameter space (using
CAP), a basin of attraction or the center of mass in objective space (using BAPF) and
a proximity to the origin in objective space (using IPO). Finally, a BCOP solution
which captures the properties of both CAP and BAPF is determined as it represents
a compromise for the distribution of solution in objective space and parameter space.
It is worth emphasizing that the solutions chosen by the auto-selection methods are in
no way better than the remaining solutions on the Pareto frontier; rather the chosen
solutions only possess unique properties in objective space and parameter space.
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