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Abstract This paper presents an inflow-forecasting model and a Piecewise Stochastic
Dynamic Programming model (PSDP) to investigate the value of the Quantitative
Precipitation Forecasts (QPFs) comprehensively. Recently medium-range quanti-
tative precipitation forecasts are addressed to improve inflow forecasts accuracy.
Revising the Ertan operation, a simple hydrological model is proposed to predict 10-
day average inflow into the Ertan dam using GFS-QPFs of 10-day total precipitation
during wet season firstly. Results show that the reduction of average absolute errors
(ABE) is of the order of 15% and the improvement in other statistics is similar,
compared with those from the currently used AR model. Then an improved PSDP is
proposed to generate monthly or 10-day operating policies to incorporate forecasts
with various lead-times as hydrologic state variables. Finally performance of the
PSDP is compared with alternative SDP models to evaluate the value of the GFS-
QPFs in hydropower generation. The simulation results demonstrate that including
the GFS-QPFs is beneficial to the Ertan reservoir inflow forecasting and hydropower
generation dispatch.
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1 Introduction

The Ertan hydropower station is one of the key power sources in the Sichuan electric
network, located in the lower reaches of the Yalong River, in Sichuan province,
southwest China. Currently used medium-range inflow forecasts are based on
ARMA-type model (Auto-Regressive Moving Average model or Auto-Regressive
model, Maceira et al. 1997), but rainfall, whether observed or forecasted, is not
used. From the statistics of forecasting, ARMA-type model can be considered as
an acceptable one for the dry season (from November to April of the following
year) (Zhou et al. 2009). Recently, the Ertan station initiates efforts to improve
inflow forecasts accuracy of the wet season by testing and comparing several inflow-
forecasting models which make use of observed and predicted precipitation as input
variables. As a first step, medium-range Quantitative Precipitation Forecasts (QPFs)
over coming 10-day periods are addressed.

The use of QPFs from numerical weather prediction models as input data to run
hydrological rainfall–runoff models, thereby obtaining extended inflow forecasts, has
been explored by several authors (Yu et al. 1999; Ibbitt et al. 2000; Anderson et al.
2002; Jasper et al. 2002; Koussis et al. 2003; Habets et al. 2004; Collischonn et al. 2005,
2007). Collischonn et al. (2007) make predictions of medium-range reservoir inflow
using the QPFs from the regional Era model run by the Brazilian Center for Weather
Prediction applied to part of the Paranaiba river basin, and the results show forecast
errors can be reduced considerably during both wet and dry season, compared with
those from the ARMA model. And recent attempts have been made to consider
the uncertainty in forecasts, using ensemble rainfall forecasts (Zhang et al. 2006;
Bartholmes and Todini 2005; Goweleeuw et al. 2005) and to combine the inherent
uncertainty of hydrological models with ensemble forecasts (Pappenberger et al.
2005). Krzysztofowicz and Henry (2001) present a Hydrologic Uncertainty Processor
(HUP) which produces a probabilistic river stage forecast based on probabilistic
QPFs. However, most of these results are from work that is still at the research stage,
since operational forecasting systems still rely more on radar estimates and telemetry
of measured rainfall or short-range nowcasting (Moore et al. 2005; Wang et al. 2005;
Qiu et al. 2004; Yuan et al. 2008; Li and Lai 2004). Nevertheless, medium-range
QPFs are gradually being introduced in operational inflow forecasting systems in an
attempt to extend the range of forecasts (Bremicker et al. 2006; Moore et al. 2005),
but value of the extended inflow forecasts using QPFs in hydropower generation
should be further explored on a case-by-case basis, which is rarely addressed in the
literature.

Hydropower operation can be represented mathematically as a stochastic, non-
linear optimization problem, as future inflows and energy demands are uncertain
and the system dynamics are nonlinear (Kim and Palmer 1997). Despite intensive
researches since the classic work of Young (1967), no generally applicable meth-
ods exist for solving reservoir operation problems. Rather, the choice of methods
depends upon the characteristics of the reservoir system being considered and the
specific objectives and constraints to be modeled. Stochastic dynamic programming
(SDP) is particularly well suited to stochastic, nonlinear problems that characterize
a large number of hydropower systems (Yeh 1985). In SDP, the hydrologic state
variables translate various hydrologic information into the required probabilistic
framework. Stedinger et al. (1984) developed a SDP model, which employed the
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best forecast of the current period’s inflow to define a reservoir release policy and
to calculate the expected benefits from future operations. Karamouz and Vasiliadis
(1992) proposed a Bayesian SDP (BSDP) incorporating a Bayesian approach within
the SDP formulation. They stressed that flow transition probabilities from one
month to the next can be updated as new forecasts become available. Such updating
can significantly reduce the effects of natural and forecast uncertainties in SDP.
Zhou et al. (2009) presents a hybrid SDP model (HSDP), that employs generated

forecasts of inflow time series
{

Q f
1 , Q f

2 , · · · , Q f
t∗
}

during dry season and a discrete
lag-one Markov process during wet season as hydrologic state variables for the Ertan
hydropower station, China. The simulation results demonstrate that including the
best forecasts of inflow time series during dry season is beneficial in comparison to
the standard operating policy.

The Global Forecast System (GFS) run by the American National Oceanic and
Atmospheric Administration (NOAA) has made medium-range QPFs. However,
the use of QPFs by the GFS (GFS-QPFs) as input into rainfall–runoff models is
relatively undeveloped for medium-range reservoir inflow predictions (Zhou et al.
2009). In this paper, a global evaluation of the GFS-QPFs is done to explore the
potential improvement in medium-range inflow predictions, and hydropower pro-
ductions. Taking the Ertan hydropower station as an example, a simple hydrological
model using GFS-QPFs is presented for forecasting the reservoir inflow during
the wet season firstly, and the results from the proposed hydrological model will
be compared with forecasts obtained by the currently used Auto-Regressive (AR)
model quantitatively. Then an improved Piecewise SDP framework (PSDP) based
on HSDP (Zhou et al. 2009) is proposed to generate operating policies for the
Ertan station to better off incorporate inflow forecasts with various lead-times as
hydrologic state variables. Finally performance of the PSDP model is compared with
alternative stochastic programming models to evaluate the value of the GFS-QPFs
in hydropower generation.

2 Study Site: The Ertan Hydropower Station

The case study in this paper is concentrated on the Ertan hydropower station.
Figure 1 shows the location of the Ertan dam, and gauging stations. The Ertan dam
is located in the lower reaches of the Yalong river basin in the Sichuan province
of southern China. This part is relatively well covered with rain gauges and stream
gauges, which transmit rainfall and flow at 6-h intervals in real time, as seen in Fig. 1.
The Yalong river basin lies on the eastern edge of the Tibetan plateau that covers
26◦32′–33◦58′ N and 96◦52′–102◦48′ E, and the catchment area is about 136,000 km2.
The mean annual rainfall in catchment ranges is between 500 and 2,470 mm, and it is
higher in the south and east. The area has two distinct seasons: dry and wet season,
as its climate is mainly influenced by high-altitude westerly circulation and southwest
Monsoon. Generally, this basin receives about 90% to 95% of the annual rainfall in
the wet season (from May to October), while only 5% to 10% in the dry season (from
November to April of the following year). So there is great possibility for hydropower
improvement in the wet season. Over a period of 48 years the average annual inflow
into the Ertan dam is 1,670 m3/s. The transition of inflow in time period t to inflow in
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Fig. 1 Main features of the Yalong River basin and location of the Ertan dam and gauging stations

period t + 1 can be described by a first-order Markov chain using correlation analysis
(Zhou et al. 2009).

The Ertan hydropower station is one of the key power sources for the Sichuan
electric network, with an installed capacity of power generation of 3,300 MW
through its power generation system composed by six hydro generators with an
installed capacity of 550 MW each. Statistical analyses of actual data of the Ertan
hydropower operation shows that, the wet season can be roughly divided into two
periods by the features of underlaying surface and soil moisture content: the delivery
period from early May1 to mid June, and the storage period from late June to
late October (Zhou et al. 2009). To meet the requirements of Ertan medium-range
hydropower generation scheduling, reservoir operation model should be formulated
for monthly operation during dry season and 10-day operation during wet season.
Ertan operation policy is maximizing the total power supply, to make more profits
by utilizing water resource rationally subject to the firm capacity of 1,028 MW
committed for Ertan reservoir. The design reliability probability of hydroelectric
generation of Ertan (Ertan DRPHG) is 95% (Zhou et al. 2009), which is the ratio
of the number of periods the system output is satisfactory and the total number
of running periods during the years of operation, and defined as the probability
system’s output is satisfactory (Hashimoto et al. 1982). More features are shown in
Table 1, and the constrains including mass balance equation for the reservoir storage
and inflow, releases from the reservoir, plant capability, turbine capacity and power
productions; details are found in Zhou et al. (2009).

1In China, a month is divided into three periods: the first 10-day (early), the middle 10-day (mid) and
the last 10-day (late) of a month. Taking May as an example, the first 10-day of May is denoted by
early May, the middle 10-day of May is mid May, and the last 10-day of May is late May.
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Table 1 Key descriptions of
the Ertan hydropower station

Characteristic Unit Parameters

Dead storage capacity Mm3 2,430
Dead pool level m 1,155
Gross storage capacity Mm3 5,800
Normal pool level m 1,200
Usable storage capacity Mm3 3,370
Turbine capacity m3/s 2,400
Plant capability MW 3,300
Firm capacity MW 1,208
Minimum release m3/s 20
Power coefficient – 8.6

3 Quantitative Precipitation Forecasts by Global Forecast System

The Global Forecast System run by NOAA is a global Numerical Weather Pre-
diction (NWP) computer model, which produces QPFs up to 16 days at each data
assimilation cycle (00, 06, 12 and 18 UTC) in advance, but with decreasing spatial
and temporal resolution over time. The NWP model is run in two parts: the first
part has a higher resolution and goes out to 180 h in the future; the second part
runs from 180 to 384 h at a lower resolution. The resolution of the model varies
in each part of the model: horizontally, it divides the surface of the earth into
35 or 70 km grid squares; vertically, it divides the atmosphere into 64 layers and
temporally, it produces a forecast for every sixth hour for the first 180 h, after that
they are produced for every 12th hour. The GFS is the only global NWP model
for which all output including QPFs in GRIB1 format (Transited to GRIB2 since
February 12, 2008) is available on NOAA FTP SERVERS for free over the internet,
and as such is the basis for non-state weather companies, e.g., Wunderground.com,
Weatheronline.co.uk, Weather.com.au, and t7online.com (GRIB 2008).

The GFS-QPFs over Continental United States (CONUS) have been evaluated
by different measures including Equitable Threat Score (ETS), True Skill Statistics
(TSS) and Bias. These statistics show that, the precipitation forecast has more skill in
winter (December, January and February) when comparing to summer (June, July
and August), and the skills have been improved gradually over the past several years
when the model increased the resolution, improved analysis system and physical
processes (Zhu 2007). The ETS is a good estimate for overall forecast skill, and has
a range of −1/3 to 1. The higher the value of ETS, the better the forecast model
skill is for that particular threshold. The TSS measures the ability of the forecasts
to discriminate between “Yes” and “No” observations based on contingency tables
(Doswell et al. 1990). It ranges from −1.0 (no correct forecasts) to 1.0 (perfectly
correct). The Bias measures the relative frequency of predicted and observed rainfall.
The best model is generally the one that remains near the 1.0 line. If the model
verifies over 1.0, it is over-predicting precipitation, and if below 1.0 it is under-
predicting precipitation.

Figure 2 are the objective scores of GFS precipitation skills over CONUS from
Zhu (2007), for 00 UTC of August15, 2006 to 18 UTC of November 6, 2006 and 00
UTC of November 1, 2006 to18 UTC of February 5, 2007. Three different forecasts
(12–36, 36–60, and 60–84 h, leading time) have been verified by calculating ETS, TSS
and Bias. The x-axis is 24-h threshold precipitation amounts in mm. The numbers
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Fig. 2 The verification scores over CONUS including ETS, TSS and Bias are for (a) 00 UTC of
August 15, 2006–18 UTC of November 6, 2006 and (b) 00 UTC of November 1, 2006–18 UTC of
February 5, 2007

above x-axis are total observed grids/boxes in the verified period for that threshold.
The Bias scores (Fig. 2a) are very similar at a range of 0.9 (10% under-forecast) to
2.0 (100% over-forecast) for all lead time forecasts, the TSS and ETS are reasonable
decreasing their skills when increasing lead time. There is the same future for Fig. 2b
except the Bias are less, TSS and ETS are larger. A more comprehensive description
of GFS, including model parameters and its implementation changes, precipitation
maps, and evaluation documentations is given by official website of NOAA.

The GFS-QPFs used in this study are the modeled precipitation forecasts over
the entire East Asia region. A precipitation map published at 00 GMT July 15,
2006, is given in Fig. 3, showing the modeled precipitation in mm between 0 and
8 a.m. The precipitation areas are encircled by isohyets—lines with equal amounts
of precipitation. For research purpose, the GRIB1 data sets are collected from the
NOAA Server explained above during wet season from 2002 to 2006 firstly. Then
the GFS-QPFs made at the first data assimilation cycle of 0000 UTC every day
are extracted from the collected data sets for all gauging stations of the Yalong
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Fig. 3 Precipitation forecasting over the Yalong river basin at 00 GMT July 15, 2006

river basin shown in Fig. 1, by a GRIB1 Encoder/Decoder program, which also can
be downloaded from GRIB (2008). Finally, the observed and forecasted average
areal precipitations for the next 10 days in Yalong river basin (termed by 10-day
subsequent precipitations) are estimated by the Thiessen polygon method (McCuen
1998), which assigns an area called a Thiessen polygon to each station in the Yalong
river basin shown in Fig. 1. The practical use of the collected 10-day subsequent GFS-
QPFs over the Yalong river basin will be discussed in the following sections in details.

4 Inflow Forecasting Model

4.1 A Rainfall–Runoff Model Using Quantitative Precipitation Forecasts

Many hydrological models can be used to predict reservoir inflows using the quan-
titative precipitation forecasts, and the comparative study should include lumped
rainfall–runoff models (Reed et al 2004), and more complex Distributed Hydrolog-
ical Models (DHM, Collischonn et al. 2005, 2007). However, the input data guiding
the DHM or physically-based lumped models’ parameter calibration including land
use, topography, vegetation cover and soil types (Beven 2001), is not available at all
as collecting such data is too expensive (Zhou et al. 2009). So the results presented in
this paper are all obtained by a simpler lumped Rainfall–Runoff model using GFS-
QPFs (denoted by GRR). The GRR model incorporates with the forecasts of 10-day
subsequent precipitation by the Thiessen polygon method (McCuen 1998), published
at 00 UTC the first day of every 10 days, e.g. May 1, May 11 and May 21 during the
month of May, as an input variable. Further researches on forecasting inflows using
the DHM should be done as the data become available.
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As mentioned in Section 2, the wet season can be roughly divided into two
periods by the features of underlaying surface and soil moisture content, so the GRR
model is a two-segment multi-factor inflow forecasting model. Model configuration is
estimated by the stepwise regression algorithm (Sun et al. 1998) using observed and
forecasted hydrological data from the Ertan reservoir during the wet season from
2002 to 2005, and verified using data of 2006. And predictors P f

t , Pt−1 and Qt−1

are chosen to predict inflows to Ertan dam. So it is given as a piecewise function in
Eq. 1:

Qt =
{−165.1 + 1.01P f

t + 15.17Pt−1 + 1.16Qt−1 1 ≤ t ≤ 5

173.1 + 13.84P f
t + 4.87Pt−1 + 0.56Qt−1 6 ≤ t ≤ 18

(1)

where Period t is reckoned 1, 2, 3,. . . , 18 in the forward direction, and t = 1 denotes a
10-day period starting on May 1st while t = 18 denotes the period ending on October
31st; Qt is the modeled 10-day inflow in cubic meters per second to Ertan dam for
period t using the model; P f

t is the estimated 10-day subsequent accumulated GFS-
QPFs in mm during period t by the Thiessen polygon method (McCuen 1998); Pt−1 is
observed 10-day total precipitation in mm during previous period t − 1 also estimated
by the Thiessen polygon method; Qt−1 is observed 10-day average inflow in cubic
meters per second to Ertan dam of previous period t − 1.

4.2 Quantitative Analysis of Inflow Forecasting Models

Predicted 10-day average inflows into the Ertan dam obtained by the GRR model
using GFS-QPFs are compared with forecasts by the currently-used AR model.
Figure 4 presents the hydrographs of observed and predicted 10-day average inflows
during the wet season from 2002 to 2006. It can be seen that forecasts obtained by the
GRR model are closer to observed inflow in most cases, especially for the first five
periods each year, which correspond to the end of the recession of the dry season,
and for the rising parts of the hydrograph. The AR forecasts show a pattern of a one
10-day delay with maximum and minimum values postponed by one 10 days, which is
a consequence of the model structure. The value of including new information given
by rainfall forecasts can also be seen during periods when the hydrograph is rising
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Fig. 4 Hydrographs of observed and predicted 10-day average inflows during wet season from 2002
to 2006
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Fig. 5 Scatter plot of observed versus predicted 10-day averages of inflows using the GRR model
with rainfall forecasts and the AR model

and during sharp changes in inflow when the hydrograph may increase or decrease,
which is consistent with that from Collischonn et al. (2007).

Figure 5 compares observed and predicted 10-day average inflows into the
Ertan dam considering both the GRR hydrological model using GFS-QPFs and
the currently used AR model during the wet season from 2002 to 2006. For low
inflows both forecasting models perform relatively well, with points representing
the GRR forecasts rather closer to the line of perfect forecasts. For inflows larger
than 1,500 m3/s, both forecasting models do not perform well, though points are
considerably more dispersed with a less pattern of larger dispersion for the AR
model, most of which occurs in the main flood season from late June to late
September, and there is a dramatic change in the inflows as seen from Fig. 4. For
example, the average inflows in August vary greatly over the last 49 years from
1958 to 2006: the minimum inflow is about 1,200 m3/s, while the maximum inflow is
approaching 7,200 m3/s, which makes it hard to get perfect forecasts of inflow during
main flood season. In some cases, however, it is not necessary to have very accurate
forecasts, since relatively rough estimates can improve the operation of hydraulic
structures, or can yield estimates of the risk that rivers will exceed specified discharge
thresholds (Rabuffetti and Barbero 2005), especially for forecasts of inflows into
reservoirs in the medium range. So qualitative analysis of 10-day inflow forecasts
using the GRR model will be further made for evaluation tasks in the following
sections.

Table 2 Error statistics for 10-day average inflow forecasts obtained by the GRR model using
rainfall forecasts and forecasts obtained by the AR model for both calibration and verification

Statistics AR model GRR model

Calibr. Verific. Calibr. Verific.

Average absolute error (ABE) 577 616 526 389
Average relative error (ARE) 21 33 17 24
Root mean square error (RMSE) 792 723 738 542
Nash–Sutcliffe efficiency (NSE) 0.75 0.63 0.79 0.79
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Fig. 6 Available hydrologic
state variables for dry season
(AB) and wet season (BC)
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Several error analyses compare forecasts obtained by the GRR model with QPF
as inputs with forecasts by the AR model for both calibration (from 2002 to 2005)
and verification (the year 2006). The results are given in Table 2, showing that the
GRR model performs better in all cases, no matter for calibration or verification.
The reduction of average absolute errors (ABE) is of the order of 15% and the
improvement in other statistics is similar. It is not possible to assert at present
whether this improvement results in better decisions in reservoir operation, however
we expect that better forecasts will probably lead to better decisions.

4.3 A Summary of Available Hydrological State Variables

The qualitative forecasts of 10-day average inflow using GRR model might assist
the decision maker in selecting the better reservoir operating policy for the Ertan
reservoir. Then the Markov-type inflow process during wet season in HSDP (Zhou
et al. 2009) will be updated by anew forecasts of current period’s inflow, and a
relatively new model for inflow process is formed as illustrated in Fig. 6. The model

includes forecasts of monthly inflow series
{

Q f
1 , Q f

2 , · · · , Q f
6

}
with lead-times of

6 months during the dry season (Zhou et al. 2009), and 10-day average inflow
forecasts Q f

t with one 10-day lead-time during wet season. The potential value of
available inflow forecasts to long-term water system operations may be significant if
there are modeling techniques and decision processes available to exploit them. So
next section will focus on the development and evaluation of decision support models
that can be used in real time, and employing the predicted inflows with various
lead-times as hydrologic state variables to determine the most efficient operating
decisions.

In many cases, it is computationally convenient to represent state variables as
a number of discrete values known as characteristic values, such as characteristic
storages and characteristic inflows (Karamouz and Vasiliadis 1992). The storage state
variable, Ertan beginning storage, is discretized into 23 characteristic values using the
Savarenskiy’s scheme (Klemes 1977). The inflow and forecast are assumed to be log-
normally distributed and then discretized with 3 characteristic values by using the
nonuniform symmetric scheme (Kim and Palmer 1997).

5 Reservoir Optimization Model and Its Application

5.1 Objective Function

As previously stated, Ertan operation policy should not only maximize the total
power supply to make more profits but also produce the firm power as far as possible
to guarantee power system stable running and peak-load regulation especially during
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dry season. So the system performance considered should be a penalty function for a
given combination of available state variables St, Ht and decision variable, St+1. Once
the calculated power generation P(·) in MW is less than the firm power of 1,028 MW,
the reservoir system must be “punished”, and the value of system performance
measure B(·) in gigawatt hour will decrease correspondingly, determined by the
penalty factors α and β. Thus the objective function, a maximization function can
be written as:

f n
opt

(
St, Ht

) = Max
St+1

[
T∑

t=1

E
[
B

(
St, Ht, St+1

)]]∀St, Ht,
{
feasible St+1

}
(2)

B
(
St, Ht, St+1

) =
[

P
(
St, Ht, St+1

) − α · {
max

(
P
(
St, Ht, St+1

) − 1028, 0
)}β

]
· �t

(3)

where f n
opt (·) is the maximum expected generation of hydropower system return

from the current period to the end of the planning horizon; t is the index of time
period, and t = 1, . . ., T; n is the number of time period remaining until the end of the
planning horizon; St is the storage at the beginning of period t (termed by beginning
storage); St+1 is the target storage at the end of the period t (termed by end storage);
Ht is hydrologic state variables for period t, such as class interval or point value of
inflow forecast during period t, inflow during the previous period t − 1 and so on; α

and β are the penalty factors determined by Ertan DRPHG; �t is the time in hours
for decision interval t.

5.2 Classical Stochastic Dynamic Programming

In classical SDP models, the optimal reservoir end storage for time period t can be
determined by solving the following recursive equation (Tejada-Guibert et al. 1995):

f n
opt

(
St, Ht

)= Max
St+1

{
E Qt |Ht ·Bt

(
St, Qt, St+1

)+E Qt |Ht · EHt+1|Ht,Qt · f n−1
opt

(
St+1, Ht+1

)}

(4)

where Qt is the inflow during current period t; and E Qt |Ht is the conditional
expectation operator for a flow of Qt during period t, given a specific Ht during
period t.

5.3 Alternative SDP Models for Hydropower Operation

Four alternative SDP models can be formulated from Eq. 4, each employing a
different set of hydrologic state variables. The differences between the alternative
SDP models depend on how the hydrologic state variables are defined as well as
the expectation operators used in Eq. 4. This paper compares the operation policies
derived by the alternative SDP models to measure the value of using various hydro-
logic information, and also with the proposed PSDP policies to measure the value
of including current flow forecasts using medium-range quantitative precipitation
forecasts from Global Forecast System.



2732 G.L. Tang et al.

Let i be the class interval of inflow Qt−1 in previous period t − 1; k be the class
interval of inflow forecast Q f

t in current period t; j be the class intervals of inflow Qt

in current period t; and l be the class intervals of inflow forecast Q f
t+1 of next period

t + 1, and h be the class intervals of inflow Qt+1 of next period t + 1.
Deterministic Dynamic Programming (DDP) does not consider any stochasticity

of inflow processes. In DDP, it is assumed that a given sequence of inflow repeats
infinitely. DDP with perfect forecast time series used in this study is expected to be
superior to any SDP and provides a base against which is to compare the value of
stochastic models, and to explore how to further increase the efficiency of power
generation. Because DDP uses no hydrologic state variable, Eq. 4 can be reduced
to:

f n
opt

(
St

) = Max
St+1

{
Bt

(
St, Qt, St+1

) + f n−1
opt

(
St+1

)}
(5)

where Qt is the historical flow in time period t.
Another alternative DP model, denoted SDP-Q, includes the previous period’s

inflow Qt−1 = i as a hydrologic state variable, as illustrated in Fig. 7a. It allows

Fig. 7 The evaluation process
from (a) SDP-Q to (b) HSDP,
(c) HSDP-F, (d) PSDP and
(e) DP, each employing a
different set of hydrologic
state variables
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inclusion of the serial correlation between two consecutive periods. Thus, Eq. 4
becomes:

f n
opt

(
St, i

) = Max
St+1

⎧⎨
⎩

∑
j

Pt−1
ij ·

(
Bt

(
St, j, St+1

) +
∑

l

Pt
jh · f n−1

opt

(
St+1, h

))
⎫⎬
⎭ (6)

The third alternative DP model, denoted HSDP (Zhou et al. 2009), a combination
of DDP and SDP-Q, includes predicted inflow time series using ARMA forecasting
model during dry season and the previous period’s inflow Qt−1 = i during wet season
as hydrologic state variables, as shown in Fig. 7b. More details of the HSDP model
and its recursive equation are also found in Zhou et al. (2009).

The last alternative DP model, denoted HSDP-F, employs the current period’s
inflow forecast Q f

t = k as a hydrologic state variable, and the likelihood probability
P t

kj to address the randomness of the inflow, as illustrated in Fig. 7c. Thus:

f n
opt

(
St, k

) = Max
St+1

⎧⎨
⎩

∑
j

P t
kj ·

(
Bt

(
St, j, St+1

) +
∑

l

Pt
jl · f n−1

opt

(
St+1, l

))
⎫⎬
⎭ (7)

5.4 Proposed Piecewise SDP model

A PSDP model is proposed to better off incorporating available inflow forecasts at
different lead-times, and the recursive equations of which vary from period to period.
The outline of the model is depicted in Fig. 7d. The randomness of the inflow is
addressed through a posterior transition probability Pt−1

ikj , and the uncertainty in flow

forecasts is addressed through both the posterior flow transition probability Pt−1
ikj , and

the predictive probability of forecasts Pt
jl . These two probabilities together handle

the inflow uncertainty and forecast uncertainty. Time horizon for which decisions
need to be obtained is a year, with months for dry season and 10 days for wet season
taken as stages. Pt

ikj and Pt+1
jl are evaluated by a relative frequency approach as

illustrated in Kim and Palmer (1997).
The posterior flow transition probability Pt−1

ikj , gives the probability that the flow
Qt in time period t belongs to the class interval j, given that the flow Qt−1 in time
period t − 1 belongs to class interval i and the forecast Q f

t for flow in time period t,
belongs to class interval k. It is the revised inflow transition probability, derived using
Bayesian Decision Theory (Mayer 1970, Eq. 8), by incorporating new information,
a forecast Q f

t for current period t, to the prior inflow transition probability Pt
ij and

likelihood probability P t
kj:

Pt
ikj = P

[
Qt = j

∣∣Q f
t = k, Qt−1 = i

]
=

P
[

Q f
t = k

∣∣Qt = j
]

· P
[
Qt = j

∣∣Qt−1 = i
]

∑
Qt

P
[

Q f
t = k

∣∣Qt

]
· P

[
Qt

∣∣Qt−1 = i
]

(8)

The predictive probability of forecasts Pt
jl , gives the probability that the forecast Q f

t+1
for flow in the time period t + 1 belongs to class interval l, given that the flow Qt in
previous period t belongs to class interval j. It predicts the uncertain forecast Q f

t+1 for
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the next period t + 1 from the inflow Qt during period t, determined from the Total
Probability Theorem (Mayer 1970, Eq. 9). This links the inflow Qt in the period t, to
forecast Q f

t+1 in the next period t + 1, in PSDP recursive equation (Eq. 10):

Pt+1
jl = P

[
Q f

t+1 = l
∣∣Qt = j

]
=

∑
Qt+1

P
[

Q f
t+1 = l

∣∣Qt+1

]
· P

[
Qt+1

∣∣Qt
] = j

]
(9)

Thus, the recursive equation for the period t > 6 and stage n < 19 during wet season
can be written as:

f n
opt

(
St, i, k

) = Max
St+1

⎧⎨
⎩

∑
j

Pt
ikj ·

(
Bt

(
St, j, St+1

) +
∑

l

Pt+1
jl · f n−1

opt

(
St+1, j, l

))
⎫⎬
⎭ (10)

When the computations proceed to the period t∗ = 6 and n∗ = 19 (Point B, Fig. 6)
in backward recursive, accurate quantitative inflow forecast Qt∗ for time period t∗ is
given. For the current period t∗, the system performance measure is known to be Bt∗

for given values of St∗ , j and St∗+1. The expected value of system for the subsequent
periods is calculated from Pt∗+1

jl , and f n∗−1
opt (St∗+1, j, l), calculated by the recursive

Eq. 9 for the period t∗ + 1 for a given combination of j and l, so the recursive equation
for period t∗ and stage n∗ is given as:

f n∗
opt

(
St∗ , j

) = Max
St∗+1

{
Bt∗

(
St∗ , j, St∗+1

) +
∑

l

Pt∗+1
jl · f n∗−1

opt

(
St∗+1, j, l

)}
(11)

Table 3 Hydrologic state variables and conditional probabilities for dry and wet season in various
SDP models

Figure SDP models Hydrologic state variable Conditional probabilities

Wet season Dry season Wet season Dry season

7a SDP-Q Q f
t−1 Q f

t−1 Pt−1
ij , Pt

jh Pt−1
ij , Pt

jh

7b HSDP Q f
t−1

{
Q f

1 , Q f
2 , · · · , Q f

6

}
Pt−1

ij , Pt
jh E1

7c HSDP-F Q f2
t

{
Q f

1 , Q f
2 , · · · , Q f

6

}
Pt−1

kj , Pt
jl E

7d PSDP-AR Q f
t−1, Q f3

t

{
Q f

1 , Q f
2 , · · · , Q f

6

}
Pt−1

ikj , Pt
jl E

7d PSDP-GRR Q f
t−1, Q f2

t

{
Q f

1 , Q f
2 , · · · , Q f

6

}
Pt−1

ikj , Pt
jl E

7e DDP {Q7, Q8, · · · , Q24} {Q1, Q2, · · · , Q6} E E

(1) =

100

010

001

E
. If the forecasts are perfect, the likelihood Pt−1

kj matrix, which presents

the forecast uncertainty, will get reduced to an identity matrix. Thus, the posterior flow transition
probability matrix, which is a function of the likelihood matrix, will get transformed to a matrix

containing only 1.0 and 0.0 entries in a symmetrical arrangement. (2) Q f
t in HSDP-F and PSDP-

GRR models is the inflow forecast by GRR model. (3) Q f
t in PSDP-AR is the inflow forecast by

AR model
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When the computations proceed to the next period t∗ − 1 in backward recursive,
quantitative inflow forecasts and for period t∗ − 1 and t∗ are both given, so the
state variables of the reservoir will include the reservoir stage class intervals at the
beginning of period t∗ − 1, St∗−1, and point value of inflow forecast into the reservoir
during period t∗ − 1, , then the recursive equation for period t∗ − 1, can be written:

f n
opt

(
St, k

) = Max
St+1

{
Bt

(
St, k, St+1

) + f n−1
opt

(
St+1, l

)}
(12)

5.5 A Summary of Reservoir Optimization Models

Table 3 shows the hydrologic state variables for dry and wet season required in
various SDP models. In each case, the conditional expectation is evaluated with
conditional probabilities including flow and forecast transition probabilities, as also
presented in Table 3.

6 Results and Discussion

6.1 Generation of Steady-State Operating Policies

Using backward recursion, each SDP model is run iteratively until the ending
storage reach steady state. The generated operating policy is considered to be in
the steady state when the expected average annual total power generation becomes
constant for all periods and all combinations of the discretized state variables,
and the obtained reliability probability of hydroelectric generation of Ertan from
simulation results by a relative frequency approach should be 95% to guarantee
power system stable running and peak-load regulation during dry season. Using this
convergence criterion, DDP, SDP-Q, HSDP, HSDP-F, PSDP-AR and PSDP-GRR
models require 4, 5, 7, 8, 9 and 9 iterations, respectively, to generate the steady-state
operating policy. Figure 8 shows a typical PSDP policy plot derived by PSDP model
using GRR forecasting model in early August (t = 15, α = 1, and β = 2.5). From the
policy, the optimal Ertan end storage S16 can be obtained for a given combination
of state variables including Ertan beginning storage S15, i and k, where i is the class

Fig. 8 A typical policy plot
derived by PSDP-GRR model
in early August for the Ertan
reservoir
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interval of inflow to the reservoir during late July; k is the class interval of inflow
forecast during early August.

6.2 Simulation for Hydropower Generation Policies

The simulation analysis investigate the hydropower system performance when the
operating policies derived from the proposed SDP models are employed in opera-
tion, using historical or synthetic flows and forecasts. Four performance indicators
chosen to study the performances of the system under a given steady state operating
policy and assist decision makers in selecting the best reservoir operating policy
are: Annual Total Hydropower Generation (denoted by ATHG), Nash–Sutcliffe
Sufficiency Score (NSSS), reliability, and vulnerability (Zhou et al. 2009). ATHG
of the system is the target value of optimal operation, so it is the most important
of these four indicators. NSSS is often defined as the ratio of the mean square
error to the variance in the observed data, subtracted from unity. It is used here
to measure how the storage hydrograph obtained by a given policy (termed by
obtained storages) coincide well with the perfect storage hydrograph (termed by
perfect storages) gotten by DDP with historical inflows time series as input, and
higher values of which indicates better agreement between the obtained storages
and perfect storages. The discussion about the last two indictors is taken from Suresh
(2002) and Vijaykumar et al. (1996). Reliability of the system under a given policy
is defined as the probability that the system output is satisfactory (Hashimoto et al.
1982). The last indicator, vulnerability of the system under a given policy is defined
as the ratio of the average of the largest deficit occurring in the year for the system
to the firm power committed for the system. Vulnerability gives a measure of how
large is the deficit. In order to determine a specific performance indicator for a given
policy, the system is simulated over several years.

6.3 Simulation Results

Optimal operation policies for Ertan station have been derived with an objective
function that maximizes the expected value of total power generation with the
firm power committed for Ertan station. The performance of the Ertan reservoir
should desirably result in high values for ATHG and reliability and low values for
vulnerability. Table 4 presents the simulation results of the alternative SDP models
as well as the proposed PSDP model using the predicted inflows by the AR and GRR
model with the rainfall forecasts from GFS during wet season respectively.

Table 4 Performance
indicators for the various
operating polices

Operating Performance indicators
policy ATHG NSSS Reliability Vulnerability

(GWh) (%) (%) (%)

SDP-Q 16,526 0.72 98.71 1.78
HSDP 16,758 0.79 95.15 4.45
HSDP-F 17,086 0.80 95.11 3.83
PSDP-AR 17,092 0.82 95.17 3.67
PSDP-GRR 17,106 0.92 95.12 2.59
DDP 17,540 1 95.02 1.46
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In general, the more sophisticated the model, the better its performance. How-
ever, marginal benefits of improved models are different:

(1) HSDP performs considerably better than SDP-Q, which shows that incorpo-
rating the predicted inflow time series during the dry season is considerably
beneficial. The forecasts for inflow time series during dry season employed
as a hydrologic state variable are so perfect, that the likelihood matrix, which
presents the forecast uncertainty, gets reduced to an identity matrix. Then, the
corresponding conditional probabilities Pt−1

ij and Pt
jh of SDP-Q, will transform

to a matrix containing only 1.0 and 0.0 entries in a symmetrical arrangement in
HSDP model, which result in appreciable improvements.

(2) PSDP-AR, HSDP-F and PSDP-GRR perform considerably better than HSDP,
which shows that adding the predicted current period’s inflow during wet season
as another hydrologic state variable is also obviously beneficial. Figure 9 shows
prior flow transition probabilities for late July, when the lag 1 autocorrelation
is 0.52. Figure 10 shows the posterior flow transition probabilities used in
PSDP for all cases (Low, Medium, and Large) of the one 10-day-ahead inflow
forecasts obtained by GRR and AR model in early May and late July. The
comparisons show that employing the forecasts for current time period’s inflow,
especially those obtained by GRR model as a hydrologic state variable in PSDP,
lead to differences between the prior and posterior flow transition probabilities
to a certain extent.

(3) PSDP-GRR performs much better than PSDP-AR, which shows that employ-
ing the predicted current inflow obtained by GRR model with the QPFs from
GFS as a hydrologic state variable during wet season, results in higher values of
ATHG (approximately 114 GWh), NSSS, and reliability, and in a lower value
of vulnerability, compared to employing that obtained by the AR model. The
prior flow transition probability matrix plays the governing role in DP algorithm
such as SDP-Q and HSDP during wet season. On another hand, the posterior
and predictive probability matrix, are functions of the likelihood matrix, and
when the forecasts are not perfect, the likelihood matrix plays the governing
role, and through Bayesian law, incorporates the forecast uncertainty in PSDP
during wet season. Figure 11 shows the likelihood probabilities for both GRR
and AR inflow forecasting models. For GRR model, the diagonal probabilities
are larger compared to that of AR model because of the higher forecasting

Fig. 9 Prior flow transition
probabilities for late July
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Fig. 10 Posterior flow transition probabilities for late July using the predicted current inflows (a)
low; (b) medium; (c) large by both GGR model and AR model

accuracy of GRR, so PSDP-GRR policies results in better decisions, and better
forecasts indeed lead to higher benefits. The comparison of performances from
simulation for given operating policies fully proves that value of medium-range
quantitative precipitation forecasts from Global Forecast System in inflow
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Table 5 Average hydropower
generation during both dry
and wet season for
PSDP-GRR and HSDP
policies

Operating AHPG (GWh)
policy A whole year Dry season Wet season

PSDP-GRR 17,106 5,005 12,101
HSDP 16,758 4,622 12,136
DDP 17,537 5,102 12,435

forecasting and power generation dispatch of the Ertan hydropower station,
and the PSDP-GRR policy is chosen to optimize the Ertan reservoir operations
in this study.

Meanwhile, Table 5 shows the value of Average Hydropower Generation
(AHPG) within dry season for PSDP-GRR is 385 GWh higher than that for HSDP,
but the value of AHPG within wet season for PSDP-GRR is 35 MkWh lower than
that for HSDP. The findings seem to contradict the fact that the HSDP policy during
wet season is improved by introducing the predicted current inflow as a hydrologic
state variable. To seeking the answers, the storage hydrographs obtained using
PSDP-GRR, HSDP and DDP policies are given in Fig. 12. It can be observed that the
obtained storages from HSDP policy is not well matching with the perfect storages
from DDP, especially the optimal May beginning storages obtained by HSDP is
apparently higher than the perfect ones by DDP. For example, the obtained Ertan
May beginning storage by HSDP policy is 1,181.5 m, which is 15 m higher than
1,166.5 m, the optimal perfect reservoir May beginning storage by DDP shown in
Fig. 13. This is due to the fact that, HSDP policy doesn’t utilize any anew forecasts
during wet season as a hydrological state variable, which makes Ertan May beginning
storages by HSDP deviate from the perfect ones. In contrast, the obtained storages
hydrograph and May beginning storage by PSDP-GRR policy are reasonable, which
are well matching with the perfect storages simulated by DDP, as illustrated from the
values of NSSS for PSDP-GRR policy obtained as 0.93 in Table 5.

However, there is still 429 GWh of annual power production including 95 GWh
in dry season and 334 GWh in wet season, to be improved for PSDP-GRR policy
as compared to DDP policy (Table 5), which is derived from historical inflow time
series. Its forecast lead-time is a year, so the posterior inflow transition probability
and the forecast predictive probability matrix will get reduced to an identity matrix
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Fig. 13 The obtained Ertan May beginning storages by PSDP-GRR, HSDP and DDP policies from
2003 to 2006

for every stage. DDP policy is taking care of the carry over storage to meet the
uncertainty of adequate inflow in the sequent periods and thus yielding better results.
Compared with DDP policy for wet season, PSDP-GRR policy takes into account the
forecasts of current period’s inflow from a GRR model and the forecast predictive
probability. The forecast lead-time of the GRR model is only one 10-day period, so
the forecast predictive probability matrix is function of the prior inflow transition
probability, but not an identity matrix. In this case, the forecast lead-time or the
forecast predictive probability plays the governing role in PSDP-GRR model. To
further increase the efficiency of power generation, the forecast lead-time has to be
prolonged on the basis of improving the accuracy of the flood forecast for current
period by making full use of available information on inflow or rainfall.

7 Summary and Conclusions

Forecasts of average areal precipitations for the next 10 days from Global Forecast
System (GFS-QPFs) are evaluated to investigate the potential value in reservoir
inflow forecasting and hydropower generation by revisiting the Ertan reservoir prob-
lem of the Yalong river basin comprehensively. A methodology for forecasting 10-
day average inflow for current period using GFS-QPFs has also been presented and
tested quantitatively, using a simple lumped hydrological model to estimate inflows
from rainfall firstly. Then an improved Piecewise Stochastic Dynamic Programming
model (PSDP) is finally proposed to generate operating policies for the Ertan station,
to better off incorporate inflow forecasts with various lead-times as hydrologic state
variables. Finally, performance of the PSDP model is compared with alternative
stochastic programming models to evaluate the value of the QPFs from GFS in
hydropower generation.

Inflow forecasts of 10-day average inflow are tested over a 5-year period on a
10-day basis during wet season, according to current operational practice, for the
Ertan hydropower station. One of the most important results reported is given by
comparing forecasts of 10-day average discharge with observed inflow and with
results from the currently-used AR forecasting model, which makes no use of rainfall,
whether observed or forecast. This comparison shows that the GRR model performs
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better than the AR model, especially for low flows, both in terms of error statistics
and of visual inspection of hydrographs and scatter plots.

An improved PSDP model is proposed to exploit the potential value of GFS-
QPFs to long-term water system operations. Four performance indicators—Annual
Total Hydropower Generation (ATHG), Nash–Sutcliffe Sufficiency Score (NSSS),
reliability and vulnerability—are used to study the performance of the system
under the policies and then to assist decision makers in selecting the best reservoir
operating policy. As expected, the predicted inflows using the GRR model with GFS-
QPFs result in better decisions with an increment of power generation as 114 GWh as
compared with that using the AR model. In conclusion, the quantitative precipitation
forecasts obtained by the Global Forecast System can be applied to 10-day average
inflow forecasting and power generation scheduling of the Ertan hydropower station
in the Yalong river basin. Further improvement of precipitation prediction skill on
the meteorological side is needed and further work has to be done to tackle the
uncertainty issue on the hydrological side.
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