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Abstract Reservoir flood control operation (RFCO) is a complex problem because it
needs to consider multiple objectives and a large number of constraints. Traditional
methods usually convert multiple objectives into a single objective to solve, using
weighted methods or constrained methods. In this paper, a new approach named
multi-objective cultured differential evolution (MOCDE) is proposed to deal with
RFCO. MOCDE takes cultural algorithm as its framework and adopts differential
evolution (DE) in its population space. Considering the features of DE and multi-
objective optimization, three knowledge structures are defined in belief space to
improve the searching efficiency of MOCDE. MOCDE is first tested on several
benchmark problems and compared with some well known multi-objective optimiza-
tion algorithms. On achieving satisfactory performance for test problems, MOCDE is
applied to a case study of RFCO. It is found that MOCDE provides decision makers
many alternative non-dominated schemes with uniform coverage and convergence
to true Pareto optimal solutions in a short time. The results obtained show that
MOCDE can be a viable alternative for generating optimal trade-offs in reservoir
multi-objective flood control operation.
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1 Introduction

Flood disaster is one of the most damaging natural disasters, due to its high frequency
and enormous destruction strength. Especially in China, the threat of flood disaster
is much greater because large numbers of people live around rivers. To defend flood
disaster, many hydro projects have been built in China, such as Three Gorges Project
(TGP) in the Yangtze River. Yangtze River is the longest river in China and third
longest in the world. It nurtures 400 million people of China, however, its floods
are often a great threat to the life and property safety of persons living along the
downstream. Especially in the middle-lower Yangtze area, the loss is tremendous
once a flood disaster occurs, due to the flat terrain, developed economy and high
population density. TGP is an extremely important project for Yangtze River flood
control and it highly improves the flood control capacity of Yangtze River Basin,
owing to its huge flood storage capacity. The goal of reservoir flood control operation
(RFCO) is to minify the flood peaks utilizing flood storage capacity of reservoirs.
It is generally complex as it involves multiple objectives (such as safety of the
dam, upstream and downstream flood control requirement, hydropower generation,
navigation, and so on) and a large number of constraints. Because of the multiple
conflictive objectives, it is not possible to find a single optimal solution, which will
satisfy all the objectives. Instead, the solution exists in the form of alternative trade-
offs, also known as the Pareto optimal solutions.

In the past, researchers have used many optimization techniques to solve this
problem. such as linear programming (Windsor 1973), dynamic programming (DP)
(Schultz and Plate 1976; Mei 1999), nonlinear programming (Unver and Mays
1990), and folded dynamic programming (FDP) (Nagesh Kumar and Baliarsingh
2003; Nagesh Kumar et al. 2009). More recently, intelligent methods inspired by
biological intelligence, such as genetic algorithm (GA) (Li-Chiu 2008; Karamouz
et al. 2009) and artificial neural network (Wei and Hsu 2008; Mehta and Jain
2009) were presented to solve reservoir flood control and management problem.
However, most of these methods adopted a weighted approach or a constrained
approach to convert multiple objectives into single objective, without consider-
ing all the objectives simultaneously. Because these methods use point-by-point
searching approaches, so the outcome is a single solution from each run. It needs
to iterate several times to get a set of solutions. Furthermore, these methods
usually fail in yielding true Pareto optimal solutions, when the objective functions
are nonconvex and consist of disconnected Pareto fronts (Deb 2001). Cheng and
Wang (1995) presented an interactive method for generating flood control oper-
ation alternatives, depending on the operation rules and operators’ intuition and
experience. This method can generate alternatives fast and consider the operators’
experience, so it is usable in practical flood control operation. However, it just
generates feasible alternatives and can’t ensure that these alternatives are non-
dominated, and the strong subjectivity of this method may weaken its validity and
practicability.

Compared to classical approaches, multi-objective evolutionary algorithms
(MOEAs) have two advantages in dealing with multi-objective optimization prob-
lems: (1) MOEAs can get several non-dominated solutions in a single run, due to
their population-based characteristic; (2) MOEAs are less sensitive to the shape
or continuity of the Pareto surface. Since Schaffer (1985) first used evolutionary
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algorithms to solve multi-objective optimization problems, many MOEAs have
been proposed in recent decades, NSGA-II (Deb et al. 2002) and SPEA2 (Zitzler
et al. 2001) are the most popular ones. In recent years, researchers have begun
to apply MOEAs to the field of multipurpose reservoir operation problems and
achieved various degrees of success. Kim et al. (2006) applied NSGA-II to four
interconnected reservoirs operation in the Han River Basin. The objectives of
reservoirs operation include maximizing reservoirs’ releases and storage levels,
subject to continuity constraints and end-of-period storage constraints. Janga Reddy
and Nagesh Kumar (2006, 2007a, b) proposed three approaches, Multi-objective
Genetic Algorithm, Multi-objective particle swarm optimization and Multi-objective
Differential Evolution to solve a reservoir operation problem with multiple purposes
of irrigation, hydropower generation and river water quality. Chen et al. (2007)
presented a Macro-evolutionary Multi-objective Genetic Algorithm (MMGA) for
optimizing the multipurpose reservoir rule curves with two objectives involving
water supply and hydropower generation. Alexandre and Darrell (2008) presented
an implementation of Multi-objective Particle Swarm Optimization (MOPSO) on
multipurpose reservoir operation problem and indicated that this method, however,
requires some fine tuning of its control parameters. In this paper, we attempt to
present a new MOEA to solve RFCO problem.

Differential evolution (DE) is a new type of evolutionary algorithm (Storn and
Price 1995). It is simple yet powerful, and has been successfully used in solving single
objective optimization problems (Yuan et al. 2008; Mandal and Chakraborty 2009).
In recent years, some researchers have extended it to deal with multi-objective op-
timization problems, such as Pareto differential evolution (PDE) algorithm (Abbass
et al. 2001), Pareto differential evolution approach (PDEA) (Madavan 2002), Pareto-
based multi-objective differential evolution (abbr. PMODE) (Xue et al. 2003),
differential evolution for multi-objective optimization (DEMO) (Rolic and Filipic
2005) and adaptive differential evolution algorithm (ADEA) (Qian and Li 2008).
However, most of these DE based multi-objective optimization algorithms suffer
from premature convergence at different degrees (Madavan 2002; Xue et al. 2003;
Rolic and Filipic 2005). In this paper, we present a new multi-objective optimization
algorithm by incorporating cultural algorithm (Reynolds 1994) and DE, and name it
multi-objective cultured differential evolution (MOCDE). MOCDE uses cultural al-
gorithm as its framework and DE in its population space. To improve the algorithm’s
searching efficiency, three knowledge structures are pertinently designed in the belief
space: the situational knowledge structure and normative knowledge structure are
used to improve convergence rate and diversity of solutions; history knowledge
monitors the convergence process and adopts an adaptive Cauchy mutation to avoid
premature convergence. MOCDE is first tested by several benchmark test problems
and compared with some well known multi-objective optimization algorithms, and
the results show that MOCDE is efficient and robust in dealing with multi-objective
optimization problems. After that, we apply MOCDE to a practical problem—
multi-objective flood control operation of Three Georges Reservoir. It is found that
MOCDE can provide decision-makers many alternative Pareto optimal solutions
with uniform coverage and convergence to true Pareto optimal solutions in a short
time.

The rest of the paper is organized as follows. Flood control operation problem is
formulated in Section 2. Thereafter, in Section 3, we describe MOCDE in details.
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Section 4 presents the application study of MOCDE to a practical RFCO problem.
The paper concludes with Section 5.

2 Model Formulation of RFCO

RFCO involves multiple objectives, the main of which are generally classified into
three types (Mei 1999): (1) the safety requirement for the dam; (2) flood control
requirement for reservoir area (upstream); (3) flood control requirement for down-
stream protected area. The first two goals are related to the flood water volume
stored in the reservoir, which are represented by the maximum upstream water
level of the dam and the duration of high water level. Flood control requirement for
downstream protected areas is mainly related to the maximum discharge volume of
the dam and the duration of large discharge volume. The first two objectives expect
the reservoir doesn’t store a large flood water volume to ensure the safety of the
dam and decrease loss of upstream area. Contrarily, the third objective expects the
reservoir store as much flood water volume as possible to protect the downstream
areas. In this paper, we establish the model of RFCO by selecting the maximum
upstream water level as the optimization objectives for the first two goals and the
maximum discharge volume of the dam as the optimization objective for downstream
protected areas. The objectives are expressed as follows.

min F1 = min Zmax = min{max(Zt)} t = 1, 2, ..., T (1)

min F2 = min Qmax = min{max(Qt)} t = 1, 2, ..., T (2)

Where Zt is the upstream water level of the t-th period, T is the number of periods,
Qt is the discharge volume of the t-th period, Zmax and Qmax are the maximal water
level and discharge volume of all periods, respectively.

Constraints of this model are described as follows:

(1) Upstream water level limit.

Z min
t ≤ Zt ≤ Z max

t , t ∈ [1, T] (3)

Where Z min
t and Z max

t are the minimum and maximum limit of upstream water level
of the t-th period. This limit is the intersection of the dam’s own physical restriction
and level limit prescribed in reservoir operating regulations.

(2) Water release ability limit of the dam.

Qt ≤ Qmax
(
Z avg

t

)
(4)

Where Qt is the discharge volume of the t-th period, Zavg
t (equal to (Zt + Zt−1)/2)

is the average upstream water level of the t-th period, Qmax
(
Zavg

t

)
is the maximum

water release ability of the dam at level Zavg
t .

(3) Discharge volume limit.

Qmin
t ≤ Qt ≤ Qmax

t , t ∈ [1, T] (5)
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Where [Qmin
t , Qmax

t ] is the intersection of discharge volume limit prescribed in
reservoir operating regulations and the physical restriction of the dam.

(4) Water balance equation.

Vt = Vt−1 + It − Qt (6)

Where Vt and Vt−1 are the reservoir storages, It and Qt are the reservoir inflow and
discharge volume, respectively.

(5) Final upstream water level limit.

ZT → Z FL (7)

Where ZT is the final upstream water level, Z FL is the flood control limit level. This
constraint expects the final upstream water level to fall back to flood control limit
level, to cope with following possible floods. It is a soft constraint that needn’t to be
satisfied accurately.

3 Multi-objective Cultured Differential Evolution

DE is easy to implement and its convergence rate is fast, but it is prone to converge
prematurely when solving problems that have many local optima. The MOEAs based
on DE, mentioned in Section 1, don’t take direct measures to avoid this problem and
suffer from premature convergence at different degrees, which can also be seen from
the convergence metric values in Table 5 presented in Section 3.5. The main goal of
this section is to present MOCDE which can avoid this problem effectively. Firstly,
we give a brief introduction of cultural algorithm and DE, then we present a detailed
description of the knowledge structures defined in belief space, at last we outline
MOCDE and test it using some benchmark test problems.

3.1 Background

3.1.1 Framework of Cultural Algorithm

The Cultural Algorithm is a computational model of social evolution based upon
a general model of the cultural evolution process. The key idea behind Cultural
Algorithm is to acquire problem-solving knowledge (beliefs) from the evolving
population and in return make use of that knowledge to guide the searching process
(Reynolds 1994; Jin and Reynolds 1999). The basic framework of cultural algorithm
is shown in Fig. 1.

Cultural algorithm consists of two spaces: population space and belief space.
Population space consists of a set of individuals, and it can be modeled using any
population-based technique, such as genetic algorithms (Reynolds 1994), evolution-
ary programming (Jin and Reynolds 1999), particle swarm optimization (Iacoban
et al. 2003), differential evolution (Becerra and Coello 2006), and so on; the
knowledge acquired by the individuals along the evolutionary process is stored in
belief space. Evolution processes of these two spaces are relatively independent. To
unify both spaces, a communication protocol is established. For example, to update
the belief space, the individual experiences (a select set of excellent individuals
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Fig. 1 Framework of cultural
algorithm

Population Space

Belief Space

update()

select () objective ()

generate()
{ accept() influence()}

Communication
Protocol

obtained during evolution process) in population space are added to belief space
with the function accept(), then belief space uses function update() to update its
knowledge, according to some special rules. On the other hand, the operators in
the population space (e.g. recombination, mutation and selection) are modified by
the function inf luence() to improve the algorithm’s searching efficiency. Function
objective() is used to evaluate the fitness of every individual, function generate()
generates offspring individuals and function select() selects the individuals for next
generation.

From the description above we can see that cultural algorithm provides a general
framework for population-based evolutionary algorithms. Information interaction
between population space and belief space increases the computational complexity
to some extent, but the searching purposefulness of the evolution process can be
enhanced under the guidance of knowledge in belief space, thus the whole searching
efficiency of cultural algorithm exceeds the searching efficiency of evolutionary
algorithms just based upon biological evolution.

3.1.2 Overview of Dif ferential Evolution

Differential Evolution is an approach developed for single-objective optimization in
continuous search spaces (Storn and Price 1995). It is conceptually simple and easy to
implement. Details of the algorithm can be found elsewhere (Storn and Price 1995),
only main features are summarized here. DE includes three operators: mutation,
crossover and selection. It uses a population Pg that contains NP n-dimensional real-
valued parameter vectors (named xg

i , i = 1, 2...NP) in generation g. Different from
genetic algorithm, mutation is the key operator of DE. DE mutation generates new
trial parameter vectors (named v

g+1
i ) by adding a weighted difference between two

(or more) parameter vectors selected randomly from current population to another
parameter vectors selected from the same population. v

g+1
i is generated according to

the following mutation scheme:

v
g+1
i = xg

r1
+ F

(
xg

r2
− xg

r3

)
i = 1, 2, ..., NP (8)

Where integers r1, r2 and r3 are chosen randomly in the range [1, NP], and are
different from each other. The mutation parameter F ([0, 2]) is a real, constant,
user-supplied parameter that controls the amplification of the differential vector.
Considering that the mutation operation may lead to new vectors that fall outside
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the boundaries of the variables, a simple strategy is used here to deal with this case:
if a variable of new vectors gets outside its boundary, just let it equal the boundary.
Some variants of DE have been developed, and more details can be found elsewhere
(Storn 1996).

DE uses discrete recombination to modify the trial parameter vector and get a
candidate (named ug+1

i ), as follows:

ug+1
i, j =

(
v

g+1
i, j , i f (random() ≤ CR) or j = randomRange (1, n) ;

xg
i, j , otherwise.

(9)

In the above, function random() generates a random number in [0, 1], CR (∈ [0,1])
is the crossover parameter, and the integer j is a randomly chosen index in {1, 2,...,
n} that ensures candidate ug+1

i get at least one parameter from trial parameter vector
v

g+1
i but not all from xg

i, j.
The selection scheme used in DE is deterministic and based on local optimization,

the better one of candidate ug+1
i and parent xg

i, j is chosen to enter the next generation:

xg+1
i =

{
ug+1

i i f ug+1
i better than xg

i

xg
i otherwise.

(10)

3.2 Knowledge Structures Defined in Belief Space and Their Influences
to Population Space

Belief space includes a series of knowledge structures. Saleem (2001) gave several
knowledge structures for reference: situational knowledge, normative knowledge,
history knowledge, domain knowledge and topographic knowledge. According to
the features of an actual problem, users can select part of these structures or define
their own knowledge structures. Here, we redefine three knowledge structures and
give the ways they work, based on the characteristics of DE and multi-objective
optimization. These knowledge structures are described as follows.

3.2.1 Situational Knowledge

Situational knowledge consists of the best exemplars obtained along the evolution
process. This knowledge structure is similar to an external population or archive
set (Zitzler et al. 2001) used in many other MOEAs. These exemplars represent
leaders for the other individuals to follow. Table 1 shows the structure of situational
knowledge.

Where X i (i = 1, 2...NQ) is an elite individual, NQ is the size of situational
knowledge structure. Situational knowledge influences the mutation operator of DE
in the following way: the individuals xg

r1 , xg
r2 , xg

r3 in formula (8) for mutation operation
are chosen from these exemplars, but not from population space. Because these
exemplars are the non-dominated individuals found along the evolutionary process,
generating new individuals by these individuals may accelerate convergence of the

Table 1 Structure of situational knowledge

X1 X2 . . . . . . Xi . . . . . . X NQ
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Table 2 Structure of normative knowledge

l1 l2 . . . l j . . . ln−1 ln
u1 u2 . . . u j . . . un−1 un

algorithm. This scheme is like the DE/best/1 scheme (Storn 1996) in single-objective
optimization.

Situational knowledge is the basis for other knowledge. To update belief space,
function accept() adds all non-dominated individuals (named NDSet(g)) in current
population space P g to situational knowledge structure in the following way. For
each individual w

g
i in NDSet(g): if w

g
i is not dominated by any individual in

situational knowledge structure, then add w
g
i into situational knowledge structure

and delete the individuals dominated by w
g
i , otherwise, discard it; If the size of

situational knowledge structure is larger than NQ, a truncation operation is needed
to eliminate a redundant individual. Here, we use the crowding distance metric (Deb
et al. 2002) to pick out the individual having the minimal crowding distance.

3.2.2 Normative Knowledge

The normative knowledge contains the intervals for the decision variables where
non-dominated solutions have been found, in order to move new solutions towards
these intervals. The normative knowledge has the structure shown in Table 2.

Where l j and u j are the lower and upper bounds on the j-th dimension of the
individuals in situational knowledge structure. This knowledge structure influences
the population space as follows. DE mutation operation may lead to new vectors that
fall outside the boundaries of the variables, and the original way we deal with this
case is making them equal to the boundaries. Here, we use normative knowledge
structure to substitute the original variables boundaries. Since the intervals in
normative knowledge structure are more constringent than the original variables
boundaries and these intervals are the spaces where excellent individuals have
been found, so searching in these spaces may improve the convergence rate of the
algorithm. Update of normative knowledge is simple: after updating the situational
knowledge, it just needs to recover the lower and upper bounds of the exemplars in
the updated situational knowledge.

3.2.3 History Knowledge

This knowledge was originally proposed for dynamic objective functions (Saleem
2001), and it was used to find patterns in the environmental changes. Here we
design this knowledge to monitor the searching process of the algorithm and guide
the searching direction. Almost all evolutionary algorithms have premature con-
vergence problem, DE is without exception. We use history knowledge to monitor
convergence state of the algorithm and take an adaptive Cauchy mutation (ACM)
to overcome premature convergence problem. The structure of history knowledge is
shown in Table 3.

Where C(Pg) is a running convergence performance metric (Deb and Jain 2002),
which evaluates convergence of current non-dominated solutions to a reference set.
The reference set of points P∗ can be either a set of Pareto-optimal points (if known,
such as benchmark testing functions) or the non-dominated set points in a combined
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Table 3 Structure of history knowledge

C(Pg−h+1) C(Pg−h+2) . . . C(Pg) ξt

Diversity(1) Diversity(2) . . . Diversity(n) ACM operator

pool of all generation-wise populations obtained from an MOEA run. ξ t is defined as
|C(P(g)) − C(P(g−h+1))|/C(P(g)), and it represents the variation degree of C(Pg) along
searching process. Diversity ( j) describes the diversity of the j-th dimension variables
of the individuals in situational knowledge. History knowledge works in the following
manner. C(Pg) and ξ t are calculated at every h (here we set it to 20) generations.
Then we check whether ξ t is smaller than a threshold ξCP (given beforehand). If so,
then we calculate the diversity( j) ( j = 1, 2, ..., n) and check whether diversity( j) is
less than a given threshold ε. If so, a Cauchy mutation operation on this dimension is
carried out, as follows:

xg
i, j = xg

i, j
∗ (1 + η ∗ C (0, 1)) i f diversity ( j) < ε, i = 1, 2 . . . NQ (11)

Where xg
i, j is the value of the j-th dimension of the i-th individual in situational

knowledge structure, C(0, 1) is a standard Cauchy variable, η is the coefficient of
Cauchy mutation. Here, we calculate diversity( j) as follows:

diversity( j) =

√√
√√√ 1

NQ

NQ∑

i=1

⎛

⎝
xg

i, j − xg
j

u j − l j

⎞

⎠

2

(12)

Where, xg
j is the average value of the variables of the j-th dimension.

There are three parameters in adaptive Cauchy mutation: the diversity threshold
ε, convergence accuracy threshold ξCP and the coefficient of Cauchy mutation η.
ε and ξCP are often set to 0.01∼0.1, here we set ε to 0.02, ξCP to 0.05. η controls
the intensity of Cauchy mutation and usually set to 0.1∼0.5. A larger η will result
in a more intense mutation that increases the probability of getting out from local
optima; however, too intense mutation may affect the convergence performance
of the algorithm. In this paper, we use a linear variable η as follows: η = 0.5–
0.4*g/GenNum, g ∈ [1, GenNum], where GenNum is the total generations.

The reason why we adopt this dimensional based mutation is based on the analysis
of premature convergence of DE. The mutation operator and crossover operator
of DE are based on the scale of dimension. When the decision variables of one
dimension are nearly equal and tend to be a constant (named C j,and it is a local
optimal value of this dimension), the j-th dimension value of differential vector is
close to zero, thus the algorithm can’t generate new values differing from C j by
its own operators, so it loses searching ability on the j-th dimension. To overcome
this problem, we monitor the convergence process and take an ACM operation on
the individuals in situation knowledge structure to keep their diversity, when these
individuals may assemble at local optima.

ACM is a fine-grained mutation based on dimension. It doesn’t impact on the
variables of other dimensions, so it can help the algorithm overcome premature con-
vergence without influencing the algorithm’s convergence rate markedly. Pseudo-
codes of ACM are described in Fig. 2.
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Fig. 2 Pseudo-codes of ACM If g mod h = 0 and CP < CPξ  then 

Begin 
For j=1 to n 
Begin 

Calculate diversity (j); 
If diversity (j) < ε  then 

Cauchy mutation operation on g

jQ ;

End for 
End if. 

∇

3.3 Modification of DE’s Selection Operator for Multi-objective Optimization

It is needed to point out that the selection operation in population space is modified
to suit multi-objective optimization. In single-objective optimization, it is easy to
decide which is better between two individuals. But for multi-objective optimization
problems, the decision is not so straightforward. Here we use the truncation method
also used in PDEA (Madavan 2002) and DEMO (Rolic and Filipic 2005), as
follows. The candidate replaces the parent if it dominates the parent; if the parent
dominates the candidate, the candidate is discarded; otherwise, when the candidate
and parent are non-dominated with regard to each other, the candidate is added to
the population. This step is repeated until NP candidates are created. After that, we
get a population with the size between NP and 2·NP. If the population has expanded
(larger than NP), we have to truncate it to prepare it for the next generation. The
truncation operation includes sorting the individuals with non-dominated sorting
(Deb et al. 2002) and evaluating the individuals of the same front with crowding
distance metric (Deb et al. 2002). The best NP individuals (with regard to these two
metrics) enter the next population.

3.4 Outline of MOCDE

The outline of MOCDE is described as follows and the flow chart of MOCDE is
shown as Fig. 3.

Step1. Initialization. Initialize population space, belief space and parameters of
MOCDE. Set generation counter g = 0.

Step2. Population space evolution.

(1) Mutation: Apply DE mutation operator (modified according to the
knowledge structures in belief space) to Pg, then get a trial population
Vg.

(2) Crossover: Apply DE crossover operator to the corresponding individ-
uals in Pg and Vg, get a set of candidates Ug+1.

(3) Selection: compare the corresponding individuals in Pg and Ug+1, the
superior individuals are added to population Pg+1. If Pg+1 is too large
(|Pg+1| > Np), truncate it toNp.

Step3. Update of belief space. Add the non-dominated individuals in current
population space to belief space, and update the knowledge structures in
belief space.
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Fig. 3 Flow chart of MOCDE
Initialization. Initialize population space, 
belief space and parameters. Set  g=0.

Mutation

CrossOver

Select

Belief Space Update
Add the non-dominated individuals in 
population space to belief space, and 

update the knowledge structures.
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Step4. If generation g mod h = 0 and the parameter in history knowledge structure
∇CP is lower than ξCP, then apply adaptive Cauchy mutation to the individ-
uals in situational knowledge structure.

Step5. Termination. If g = GenNum, output the individuals in situational knowl-
edge structure as the final results; otherwise, increase the generation counter
g = g + 1, and go to Step2.

To handle constrained problems, we use the following strategies (Deb et al.
2002) to determine the dominance relationship between two individuals: (1) if one
individual is feasible and the other one is infeasible, the feasible one dominates the



2622 H. Qin et al.

Table 4 Benchmark test problems

Problems n Variable Objective functions (&Constraints) Optimal Comments
bounds solutions

ZDT1 30 [0,1] f1 (x) = x1, f2 (x) = g
[
1 −

√
f1

/
g
]

x1 ∈[0,1] Convex

g(x) = 1 + 9(
∑n

i=2 xi)
/
(n − 1) x1 = 0

i = 2, 3,

· · · , n

ZDT3 30 [0,1] f1 (x) = x1, f2 (x) = g
[
1 −

√
f1

/
g
]

x1 ∈[0,1] Convex,

− (
f1

/
g
)

sin (10π f )1 discontinuous
g (x) = 1 + 9

(∑n
i=2 xi

)/
(n − 1) xi = 0

i = 2, 3,

· · · , n

ZDT4 10 x1 ∈[0,1] f1 (x) = x1, f2 (x) = g
[
1 −

√
f1

/
g
]

x1 ∈[0,1] Non-convex

x1 ∈[−5,5]
g (x) = 1 + 10 (n − 1) +∑n

i=2
[
x2

i − 10 cos (4πxi)
] xi = 0

i = 2, 3, i = 2, 3,

· · · , n · · · , n
ZDT6 10 [0,1] f1 (x) = 1 − exp (−4x1) sin6 (4πxi) x1 ∈[0,1] Non-convex,

f2 (x) = g
[
1 − (

f1
/

g
)2

]
xi = 0 non-uniform

g (x) = 1 + 9
[(∑n

i=2 xi
)/

(n − 1)
]0.25 i = 2, 3,

· · · , n
SRN 2 x1 ∈[−20,20] f1 (x) = (x1 − 2)2 + (x2 − 1)2 + 2 Constrained

i = 1,2 f2 (x) = 9x1 + (x2 − 1)2

g1 (x) = x2
1 + x2

2 ≤ 225, g2 (x)

= x1 − 3x2 ≤ −10
TNK 2 x1 ∈[0,π] f1 (x) = x1, f2 (x) = x2 Discontinuous

i = 1, 2
g1 (x) = −x2

1 − x2
2 + 1+

0.1 cos
(
16 arctan

(
x1

/
x2

)) ≤ 0
constrained

g2 (x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

infeasible one; (2) if two individuals are both feasible, determine the dominance
relationship based on the objectives values; (3) if two individuals are both infeasible,
the individual having smaller overall constraint violation dominates the other one.

Fig. 4 Pareto front for ZDT1
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Fig. 5 Pareto front for ZDT3

-1

-0.6

-0.2

0.2

0.6

1

0 0.2 0.4 0.6 0.8 1
f 1

f 2

MOCDE
real Pareto front

3.5 Numerical Simulation

3.5.1 Test Problems and Performance Measures

To demonstrate the efficiency of the proposed algorithm for multi-objective opti-
mization problems, several typical and widely used benchmark test problems are
chosen to test MOCDE. The main features of these problems are described in
Table 4.

Generally, there are two goals in multi-objective optimization: (1) to discover
solutions as close to the true Pareto front as possible; (2) to find solutions as
diverse as possible in the obtained non-dominated front. To evaluate these two goals,
different performance measures have been suggested in literatures. In this paper,
we use two widely used performance metrics: Convergence metric γ and Diversity
metric � (Deb et al. 2002).

3.5.2 Results and Discussion

Main parameters of MOCDE were set as follows. Crossover parameter CR was set
to 0.2; scaling factor F was set to 0.5. To match the settings of the algorithms used for
comparison, the population size NP was set to 100 and the algorithm was run for 250
generations. The size of situational knowledge structure NQ was set to 100.

Fig. 6 Pareto front for ZDT4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
f 1

f 2

MOCDE
real Pareto front



2624 H. Qin et al.

Fig. 7 Pareto front for ZDT6
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Figures 4, 5, 6 and 7 show the Pareto fronts obtained by MOCDE and the real
Pareto fronts of four ZDT test problems. Table 5 presents the mean (boldfaced font
above) and variance (underside) values of the convergence metric γ and diversity
metric � (zero means that this value is smaller than 10−6) obtained by MOCDE
and other contradistinctive algorithms, averaged over ten runs. Results of other
algorithms are taken from correlative literatures: Deb et al. (2002) for NSGA-II,
Lei and Wu (2005) for SPEA2, Madavan (2002) for PDEA, Xue et al. (2003) for
PMODE, Rolic and Filipic (2005) for DEMO/parent, and Qian and Li (2008) for
ADEA. Problem SRN and TNK are two constrained test problems. Figures 8 and
9 show the feasible region (marked by blue points) and Pareto fronts obtained by
MOCDE (marked by red points).

Table 5 Statistics of results on convergence metric γ and diversity metric �

(Because the Pareto front of ZDT3 is discontinuous, we delete the distances between
break points when calculating �.)

Table 5 Statistics of results on convergence metric γ and diversity metric � (because the Pareto
front of ZDT3 is discontinuous, we delete the distances between break points when calculating �)

Metrics Problems NSGA-II SPEA2 PDEA PMODE DEMO/ ADEA MOCDE
(real-coded) (parent)

γ ZDT1 0.033482 0.023285 / 0.005800 0.001083 0.002741 0.000150
0.004750 0 / 0 0.000113 0.000385 0

ZDT3 0.114500 0.018409 / 0.021560 0.001178 0.002741 0.000027
0.007940 0 / 0 0.000059 0.000120 0

ZDT4 0.513053 4.9271 / 0.638950 0.001037 0.100100 0.000190
0.118460 2.703 / 0.500200 0.000134 0.446200 0

ZDT6 0.296564 0.232551 / 0.026230 0.000629 0.000624 0
0.013135 0.004945 / 0.000861 0.000044 0.000060 0

� ZDT1 0.390307 0.154723 0.298567 / 0.325237 0.382890 0.099545
0.001876 0.000874 0.000742 / 0.030249 0.001435 0.000378

ZDT3 0.738540 0.469100 0.623812 / 0.309436 0.525770 0.100462
0.019706 0.005265 0.000225 / 0.018603 0.043030 0.000198

ZDT4 0.702612 0.823900 0.840852 / 0.359905 0.436300 0.093290
0.064648 0.002883 0.035741 / 0.037672 0.110000 0.000288

ZDT6 0.668025 1.04422 0.473074 / 0.442308 0.361100 0.062343
0.009923 0.158106 0.021721 / 0.021721 0.036100 0.000127
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Fig. 8 Pareto front obtained
by MOCDE for SRN

From Figs. 4, 5, 6 and 7 we can see intuitively that solutions obtained by MOCDE
converge well to the true Pareto front and distribute uniformly. From Table 5 it can
be found that MOCDE gets the best convergence performance among the listed
algorithms on four ZDT test problems. Especially on problem ZDT4, which has
a large number of local Pareto fronts, NSGA-II, SPEA2, PDEA, PMODE and
ADEA all have difficulties in converging to the true Pareto front. MOCDE gets
good convergence performance on this problem. From the values diversity metric �

in Table 5 we can see that MOCDE also obtains satisfactory diversity performance,
which is much better than other contradistinctive algorithms. From Figs. 8 and 9 we
can see that MOCDE handled constraints well and converged to the true Pareto
front accurately. After achieving good performance on test problems, next we will
apply MOCDE to a practical RFCO problem.

4 Case Study: Multi-objective Flood Control Operation of Three Gorges Reservoir

Three Gorges Project (TGP) locates at the middle of the Yangtze River (Yichang
city, Hubei province, China). The index map of Yangtze River basin is presented
in Fig. 10 The catchment area of the upper Yangtze River Basin (from headstream

Fig. 9 Pareto front obtained
by MOCDE for TNK
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Fig. 10 Location map of TGP in the Yangtze River basin

to TGP) is about 1,000,000 km2 and most of these areas are covered by mountains
and gorges. The average annual rainfall in the catchment is 1,203.7 mm, with 75% of
the rainfall occurring during flood season (June to September). The main purpose of
constructing TGP is providing flood protection to its downstream areas (especially
for Wuhan city) of Yangtze River basin in flood season. Furthermore, it also servers
for power generation, navigation, water supply, and so on. Main parameters of TGP
are presented in Table 6.

The planning and design department of TGP had studied out some basic operating
regulations (Zhong 2003) to guide the flood control operation of TGP. The main
points of these rules are described as follows. When encountering a not so big flood
(smaller than 1% frequency flood), TGP controls its maximum discharge volume no
more than 55,000 m3/s to ensure the safety of downstream areas. If encountering a
big flood (between 1% frequency flood and 0.1% frequency flood), TGP controls
its discharge volume less than 78,000 m3/s to decrease flood loss of the downstream
areas. The maximum upstream water level of the dam is limited to 175 m, considering
the safety of the dam. If the dam front water level reaches 175 m, then increase
discharge volume to ensure that the dam front water level doesn’t continue to
increase. At the end of a flood process, the upstream water level of the dam is
expected to fall back to flood control limit level—145 m, to cope with next possible
floods.

Table 6 Main characteristics of Three Gorges Reservoir

Characteristics Quantity Characteristics Quantity

Gross storage capacity 393 × 108 m3 Firm power output 4,990 MW
Regulation storage capacity 269 × 108 m3 Crest elevation of the dam 185 m
Dead storage capacity 124 × 108 m3 Normal water level 175 m
Average annual inflow 4,529 × 108 m3 Flood control limit level 145 m
Designed discharge capacity 98,800 m3/s Dead water level 135 m
Installation capacity 18,200 MW
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4.1 Solution Methodology Based on MOCDE

4.1.1 Individuals Encoding Strategy

The population space consists of NP individuals and the belief space contains NQ

individuals. In this paper, we use discharge volume as the decision variable to encode
the individuals. Every individual vector is expressed as a series of discharge volumes,
that is X j = {q1

j, q2
j, . . . , qt

j, . . . , qT
j }, where qt

j is the discharge volume of the j-th
individual in the t-th period.

4.1.2 Dimensionless Conversion of the Objective Values

It needs to sum different objective function values when calculating crowding dis-
tance (Deb et al. 2002). However, these objective functions have different dimension,
so we need to convert them into dimensionless quantities. The conversion formulae
are as follows.

F1 = (
Zmax − Z

)/(
Z − Z

)
(13)

F2 =
(

Qmax − Q
)/(

Q − Q
)

(14)

Where Z and Z are the lower and upper bounds of upstream water level, Q and Q
are the lower and upper bounds of discharge volume.

4.1.3 Constraints Handling

We still use the constraint handling strategies described in Section 3.4. However, we
have difficulties in calculating the total violation of an individual, because different
constraints are often incommensurable with each other for real world optimization
problems. It is hard to determine proper weight coefficients to sum the total

Table 7 Non-dominated operation schemes of 5% frequency typical flood in 1954

Scheme Max Max ZT |ZT−ZF L| Scheme Max Max ZT |ZT−ZF L|
index Zt (m) Qt (m3/s) (m) (m) index Zt (m) Qt (m3/s) (m) (m)

1 151.8 55,000 147.2 2.20 16 157.0 49,535 156.0 11.02
2 152.2 54,731 147.9 2.87 17 157.3 49,236 156.5 11.52
3 152.5 54,265 148.6 3.57 18 157.7 48,998 157.0 11.98
4 152.9 53,888 149.3 4.27 19 158.1 48,700 157.5 12.52
5 153.3 53,489 150.0 4.98 20 158.4 48,489 158.0 12.93
6 153.6 53,107 150.6 5.64 21 158.9 48,211 158.5 13.45
7 154.0 52,739 151.2 6.24 22 159.3 48,014 159.0 13.96
8 154.3 52,369 151.8 6.82 23 159.9 47,729 159.7 14.65
9 154.7 51,975 152.5 7.45 24 160.5 47,576 160.2 15.20
10 155.0 51,598 153.0 8.02 25 161.1 47,396 160.9 15.90
11 155.4 51,189 153.6 8.58 26 161.6 47,109 161.5 16.50
12 155.7 50,861 154.1 9.05 27 162.1 46,899 162.1 17.05
13 156.0 50,503 154.6 9.57 28 162.9 46,591 162.9 17.89
14 156.3 50,158 155.1 10.07 29 163.5 46,368 163.4 18.44
15 156.6 49,854 155.6 10.57 30 164.0 46,158 164.0 18.97
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Table 8 Non-dominated operation schemes of 0.2% frequency typical flood in 1981

Scheme Max Max ZT |ZT−ZF L| Scheme Max Max ZT |ZT−ZF L|
index Zt (m) Qt (m3/s) (m) (m) index Zt (m) Qt (m3/s) (m) (m)

1 152.1 77,911 145.0 0 16 163.7 58,152 162.7 17.72
2 152.9 76,135 145.0 0 17 164.4 57,026 163.8 18.75
3 153.7 74,657 145.0 0 18 165.2 55,815 164.8 19.82
4 154.5 73,211 146.3 1.33 19 166.0 54,755 165.8 20.76
5 155.2 71,937 148.0 3.03 20 166.7 53,660 166.7 21.71
6 155.9 70,668 149.8 4.75 21 167.6 52,651 167.6 22.56
7 156.6 69,404 151.2 6.18 22 168.4 51,626 168.4 23.41
8 157.4 68,205 152.6 7.58 23 169.2 50,611 169.2 24.24
9 158.2 66,878 153.9 8.93 24 170.1 49,662 170.1 25.12
10 159.0 65,565 155.4 10.40 25 171.0 48,429 171.0 26.00
11 159.7 64,388 156.5 11.53 26 171.7 47,508 171.7 26.72
12 160.6 62,921 158.0 13.03 27 172.5 46,569 172.5 27.47
13 161.4 61,692 159.3 14.29 28 173.3 45,520 173.3 28.30
14 162.1 60,540 160.4 15.43 29 174.1 44,493 174.1 29.12
15 162.9 59,386 161.6 16.61 30 175.0 43,394 175.0 30.00

violation. Considering that the constraints mainly contain water level (or reservoir
storage volumes) limit and discharge volume limit, and the water level limit can be
converted into discharge volume limit through the water balance equation (formula
6), so we just need to handle discharge volume constraint and don’t need these weight
coefficients, which makes the constraint handling of this problem easier.

4.2 Results and Discussion

MOCDE is applied to deal with two typical floods: 5% frequency flood (20-year
flood) in the year 1954 and 0.2% frequency flood (500-year flood) in 1981. The
starting regulation levels for these two floods are the flood control limit level—145 m,
and floods end levels are also expected (but not forced) to be back to this level. The
period numbers of the floods in 1954 and 1981 are 95 and 40, respectively. Duration
of each period is 6 h. The main parameters of MOCDE are set as follows. Crossover
parameter CR is set to 0.2, scaling factor F is set to 0.1, size of population space

Fig. 11 Pareto front obtained
by MOCDE and constrained
method for 5% frequency
flood in 1954
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Fig. 12 Pareto front obtained
by MOCDE and constrained
method for 0.2% frequency
flood in 1981
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NP is set to 50, the individual number in belief space NQ is set to 30, and the total
generation number GenNum is set to 1,000.

Tables 7 and 8 list the obtained non-dominated schemes for these two floods,
besides max Zt and max Qt, the values of final water level and its violation
|ZT − Z FL| are also listed. From Table 7 we can see that, for the operation schemes
set of 5% frequency typical flood in 1954, peak flood discharges are in the range
that from 46,158 to 55,000 m3/s and do not exceed 55,000 m3/s. Correspondingly,
maximum water level are decreased from 164.0 to 151.8 m. They all satisfy the
relevant constraints. Final water levels are in the range of 147.2 to 164.0 m that
can’t turn back to 145 m because of the peak flood discharge restriction and they
decrease as the maximum water levels decrease. Similarly, from Table 8, it can be
seen that the operation schemes set of 0.2% frequency typical flood in 1981 satisfy
the relevant constraints. The range of maximum water levels and final water levels
are almost 30 m, because this flood has larger flood volume. The maximum water
levels also decrease as the peak flood discharges increase. Where, the final water
level of scheme 1 to 3 can turn back to 145 m due to their larger flood discharges.
The final water levels of other schemes can’t turn back to 145 m and they decrease
as the maximum water levels decrease.

Figures 11 and 12 show the Pareto front obtained by MOCDE and constrained
method. The constrained method works as follows: for every scheme obtained by
MOCDE, we fix the value of objective F2 and just optimize objective F1, using DP

Fig. 13 Discharge process and
water lever process of scheme
15 for the flood in 1954
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Fig. 14 Discharge process and
water lever process of scheme
3 for the flood in 1981
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method (Mei 1999). In DP, period water level is set as state variable and the discrete
precision is 0.01 m. Generally, DP can obtain the theoretic true Pareto optimal with a
certain discrete precision. From Figs. 11 and 12 we can see that the solutions obtained
by MOCDE converge well to the Pareto front obtained by DP and distributed widely
with good diversity performance. By using constrained method with DP, the RFCO
problem is handled as single-objective problem and just one solution is obtained in
a run. Thus, a number of repeats are needed to obtain a set of schemes. For DP, it
needs about 41 s to get a scheme for the flood in 1954 under the discrete precision of
0.01 m, and for the flood in 1981, the time is about 25 s. The total computational times
to get 30 schemes for these two floods are about 20.5 and 12.5 min. In contrast, the
average computational times of MOCDE to get 30 schemes for these two floods are
just 57 and 38 s, respectively, which are much shorter than the constrained method
with DP. Therefore, MOCDE is more efficient and practical for solving RFCO
problem than DP. The detailed discharge processes and water level processes of
some typical schemes (the 15-th scheme in Table 7 and 3-th scheme in Table 8) are
shown in Figs. 13 and 14, respectively.

In practical application, the flood forecasting may not be so accurate and need
to be modified with time. Since MOCDE obtains trade-offs fast, we can use it to
re-generate alternative schemes according to the modified flood flows in time. This
enhances the engineering practicability of MOCDE. After getting a set of non-
dominated schemes, decision makers could pick out a compromise scheme as the
implementary scheme, according to actual requirements.

5 Conclusions

Reservoir flood control operation is a complex multi-objective optimization problem
with a number of constraints. To solve this problem effectively, we proposed a novel
multi-objective optimization algorithm, named multi-objective cultured differential
evolution (MOCDE), which syncretizes the advantages of DE and cultural algo-
rithm. MOCDE uses cultural algorithm as its framework and DE in its population
space. DE converges fast but has the premature convergence problem when dealing
with problems which have a large number of local optima. To overcome this problem
and improve the algorithm’s convergence speed, three knowledge structures are
defined in belief space, according to the features of DE and multi-objective optimiza-
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tion. MOCDE updates these three knowledge structures by accepting excellent indi-
viduals in evolving population space and uses these knowledge structures to improve
its searching efficiency. Tested by several typical benchmark problems, MOCDE
shows its efficiency and robust for solving multi-objective optimization problems,
especially the ability of avoiding premature convergence. Then we apply MOCDE
to a case study—multi-objective flood control of Three Gorges Reservoir. It is
found that MOCDE can provide decision-makers many alternative non-dominated
schemes with uniform coverage and convergence to true Pareto optimal solutions.

Considering that MOCDE is not presented for RFCO specially, it also can be
used as an efficient alternative technique to solve other practical multi-objective
optimization problems. In the near future, we plan to use MOCDE to solve multi-
objective generation scheduling problem of cascaded hydropower plants. Otherwise,
comparing with maximum discharge (objective 2 in this study), a monetary scale
would be more intuitionistic and comprehensive to represent downstream flood loss.
However, to get the corresponding monetary loss of each discharge, a hydraulic
model is needed to be embedded to our flood control model to calculate the
submergence depth and flooded area and then count the monetary loss. This is also
the further work that we plan to do.
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