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Abstract Water allocation in a competing environment is a major social and eco-
nomic challenge especially in water stressed semi-arid regions. In developing coun-
tries the end users are represented by the water sectors in most parts and conflict
over water is resolved at the agency level. In this paper, two reservoir operation
optimization models for water allocation to different users are presented. The objec-
tive functions of both models are based on the Nash Bargaining Theory which can
incorporate the utility functions of the water users and the stakeholders as well as
their relative authorities on the water allocation process. The first model is called
GA–KNN (Genetic Algorithm–K Nearest Neighborhood) optimization model. In
this model, in order to expedite the convergence process of GA, a KNN scheme for
estimating initial solutions is used. Also KNN is utilized to develop the operating
rules in each month based on the derived optimization results. The second model
is called the Bayesian Stochastic GA (BSGA) optimization model. This model
considers the joint probability distribution of inflow and its forecast to the reser-
voir. In this way, the intrinsic and forecast uncertainties of inflow to the reservoir
are incorporated. In order to test the proposed models, they are applied to the
Satarkhan reservoir system in the north-western part of Iran. The models have
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unique features in incorporating uncertainties, facilitating the convergence process
of GA, and handling finer state variable discretization and utilizing reliability based
utility functions for water user sectors. They are compared with the alternative
models. Comparisons show the significant value of the proposed models in reservoir
operation and supplying the demands of different water users.

Keywords Reservoir operation · Optimization model · Genetic Algorithm ·
Bayesian Decision Theory · Inflow uncertainty · Water allocation

1 Introduction

Real-time operation of reservoir systems requires specific operating rules. These
rules are guides for water conservation and release policies which conserve water
for future use and maintain flood control capabilities. Inflow to a reservoir is the
most important source of uncertainty in the reservoir operation and development
of operating policies for a system. Deterministic models have been widely used for
modeling complex and large-scale water resources systems. In these models, the
uncertainty is sometimes implicitly incorporated using long time generated synthetic
time series of uncertain inflows that include the worst case scenario of droughts
and floods experienced during the historical record. However, stochastic reservoir
operation models can be formulated to incorporate uncertainty in inflows and the
forecast model explicitly.

Forecasts of streamflow have been incorporated in reservoir operation models,
and some investigators have explicitly recognized forecast uncertainty. Karamouz
and Houck (1987) developed an algorithm that consisted of a deterministic dynamic
program with a regression analysis to consider the inflow uncertainty implicitly.
Stedinger et al. (1984), Trezos and Yeh (1987) and Kelman et al. (1990) have tried
to incorporate forecast uncertainty in the reservoir operation. Eiger and Shamir
(1991) developed a model for optimal multi-period operation of a multi- reservoir
system with uncertain inflows and water demands formulated and solved by the finite
generation algorithm. Uncertainties are considered in chance constraints and the
stochastic variables are assigned discrete probability distributions. Karamouz and
Vasiliadis (1992) proposed a Bayesian Stochastic Dynamic Programming (BSDP)
method, which includes inflow, storage and forecast as state variables, and used
Bayesian Decision Theory (BDT) to incorporate new information by updating the
prior probabilities to posterior probabilities, to generate reservoir operating rules.

Seifi and Hipel (2001) proposed a method for long-term reservoir operation plan-
ning with stochastic inflows. The problem is formulated as a two-stage stochastic
linear program and solved with interior-point optimization algorithm. Chang et al.
(2002) developed an optimal regulation program; grey fuzzy stochastic dynamic
programming (GFSDP), for reservoir operation. Karamouz and Mousavi (2003)
developed a Fuzzy Stochastic Dynamic Programming (FSDP) model, where a form
of the fuzzy Markov chain was defined, and then fuzzy transition probabilities were
calculated to determine the expected value of the objective function. Celeste et al.
(2008) proposed a procedure to incorporate streamflow uncertainty by means of
stochastic and deterministic optimization models. A monthly operation model by an
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explicit stochastic programming approach is first solved and then its information is
used to guide the daily operation, which is solved by deterministic optimization.

Classical optimization techniques are useful tools for solving many reservoir
operation problems; however, the computational requirements are too burdensome
in many instances. Computational burden and representation of the problem within
an optimization solver has been a hurdle in solving many complex multiple reser-
voir operation problems characterized by a large number of decision variables
(Teegavarapu and Simonovic 2001). There are numerous techniques that can guar-
antee global optimal solutions, for optimal reservoir operation in water resources
literature. Genetic Algorithms (GA) have been widely used in recent years for
optimal planning and operation of water resources systems. East and Hall (1994)
used GA to maximize the benefits from power generation and irrigation water
supply subject to constraints on storage and releases from a four-reservoir system
using GA. Wardlaw and Sharif (1999) evaluated GAs for optimal reservoir system
operation with a view to presenting fundamental guidelines for implementation of
the approach to practical problems. Pelikan et al. (2000) proposed an algorithm
that uses an estimation of the joint distribution of promising solutions in order
to generate new candidate solutions in GA. The proposed algorithm is called the
Bayesian Optimization Algorithm (BOA). Burn and Yulianti (2001) have shown
the capabilities of GAs for identifying solutions for classical waste-load allocation
problems. They demonstrated that GA is an effective solution technique for solving
a number of optimization problems. The approach can handle discrete decision
variables and can efficiently identify the trade-off relationship that exists for a multi-
objective optimization problem. Kerachian and Karamouz (2006) used an algorithm
combining a water quality simulation model and a stochastic conflict resolution
GA-based optimization technique for determining optimal reservoir operating rules.
In their model, the basic structure of SDP was used in incorporating the inflow state
transition probabilities.

GAs employ a random, yet directed search for locating the globally optimal solu-
tion. They are superior to gradient descent techniques as the search is not biased
towards the locally optimal solution. One characteristics of GAs is the ability to con-
verge to an optimum solution (local or global), after locating the region containing
the optimum. A shortcoming of GA is the long convergence time for optimization
problems especially with many decision variables. In that case, sometimes it is
impossible to reach the global optimum in a reasonable run time.

One of the goals of recent research on GA is to prevent it from getting stuck
at a local optimum by approaching adaptive GA. Srinivas and Patnaik (1994) have
recommended the use of adaptive probabilities of crossover and mutation to realize
the maintaining diversity in the population and sustaining the convergence capacity
of the GA. Herrera and Lozano (2003) have developed an adaptive GA based
on fuzzy techniques to include suitable exploitation/exploration relationships for
avoiding the premature convergence problem. Mei-yi et al. (2004) proposed an
adaptive GA with diversity-guided mutation which combines adaptive probabilities
of crossover and mutation.

In this study, due to considering the uncertainties of inflow and forecasted flow
to the reservoir, the number of decision variables is high. In order to overcome
the computational complexity and reduce the run time of the GA model, the KNN
(K Nearest Neighborhood) model is used to implement an adaptive GA. In this
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method a flexible learning processes of the system’s past performance is provided
through the so called “Nearest Neighborhood”. This way, a feasible solution could
be generated based on what was observed/repeated in the past considering the
present system’s attributes to search the space for the region containing the global
optimum. It offers a unique opportunity to come up with an initial estimate of the
system’s behavior in an environment like GA to expedite the model convergence
process. The KNN model is a nonparametric estimation of probability densities
and regression functions through weighted average of the dependent variables.
Karlsson and Yakowitz (1987) developed this method for time series analysis and
estimating parameters. Soon after successful applications were used in hydrologic
engineering (Galeati 1990; Kember and Flower 1993; Todini 2000; Araghinejad et al.
2006; Bannayan and Hoogenboom 2008). Ostfeld and Salomons (2005) developed
a methodology for calibration of a water quality model using the combination of a
hurdle-race and a hybrid GA-KNN. The hurdle race is used for accepting/rejecting
a proposed set of model parameters during simulation; the KNN for approximating
the objective function response surface and the GA for linking both.

All of the above techniques and methods are well cited in literature; however,
there are only a few real world case studies in the literature that have combined
different aspects of these planning tools. In this paper, these techniques are combined
in an integrated fashion in two deterministic and stochastic models for the reservoir
operation. The objective function is reliability based and it is treated in the context
of the Nash Bargaining Theory for resolving conflict among water users/stakeholders
[please refer to Karamouz et al. (2003) for more details about Nash Bargaining
Theory].

In this study, the two developed models (deterministic and stochastic models) for
reservoir operation are applied to the Satarkhan reservoir which is located in the
north-western part of Iran. In the deterministic model, a KNN estimator is used with
the Genetic Algorithm to derive reservoir operating policies for each month. This
is an adaptive approach to facilitate the model convergence process. The objective
of the stochastic model is to develop an optimal water release scheme from the
reservoir considering the uncertainty of inflow and its forecast. The stochastic model
uses statistical descriptions of the streamflow and forecast in a Bayesian Genetic
Algorithm framework to obtain the operating policies. These models are applied to
the case study and the results are compared with the alternative models and with
each other utilizing 17 years of historical and 50 years of generated monthly inflow
time series. This paper is organized as follows: In Section 2, the methodology of
the proposed models and the model formulations are explained. In Section 3, the
case study is introduced; the characteristics of the reservoir, the assumptions and
parameters in implementation of each model are given. The results are discussed in
Section 4 followed by a summary and conclusion.

2 Methodology

In this study, two reliability based deterministic and stochastic optimization models
solved by Genetic Algorithm (GA) for reservoir operation have been developed.
Genetic Algorithm is an adaptive method trying to imitate the biological and genetic
process and can successfully be applied to optimization problems.
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GA is a population of individuals, named chromosomes. Each chromosome
represents a potential solution to a problem. This solution is evaluated by its fitness
function. As each chromosome represents a potential solution, the fitness of each
chromosome as a candidate solution, must be evaluated by a random search process
to form the decision space. Additionally, fitness is a function of the problem
constraints, and must be satisfied. Through successive generation, fitness should
progressively be improved towards an optimum solution. The new population is
generated using the genetic operators including Selection, Crossover, and Mutation.
More details of genetic algorithms can be obtained in the works of Michalewicz
(1992) and Gen and Chang (2000). Genetic algorithms usually consist of the follow-
ing steps:

1. Encoding of the decision variables and placing them in a chromosome.
2. Creating an initial population (first generation).
3. Determination of fitness for every chromosome in the current population (fitness

evaluation).
4. Setting the probability for mutation and crossover.
5. The selection of better chromosomes for matching and running a cross over

operator for shuffling the selected chromosomes.
6. Performing mutation for selected chromosomes.
7. Repeat steps 3–6 to obtain the optimal or near optimal solutions.

In general, GA starts with a population of chromosomes and later modifies
them through genetic operators to produce better fitting chromosomes. The main
fields of application of GAs include problems with high complexity and non-linear
behavior. In the varying length GA (VLGA) model, proposed by Kerachian and
Karamouz (2006), the initial value for each new gene is equal to the average value
of the corresponding genes in the previous years that are obtained from the last
optimization sequence.

In this study, a VLGA model is extended in both deterministic and stochastic
models. In the deterministic model, in the first stage a KNN model is used as a simu-
lation model to estimate the initial value for new chromosomes from the last opti-
mization sequence. In this model, the chromosome length is increased sequentially
based on KNN estimates with respect to the reservoir inflow, the reservoir storage
and the water demands in each month. In the second stage, the KNN model is used
to develop the reservoir operating rules utilizing the optimization policies obtained
from the deterministic model.

In the stochastic model a Bayesian Stochastic GA (BSGA) optimization model is
developed which uses the general framework of the Bayesian Stochastic Dynamic
Programming (BSDP) model, proposed by Karamouz and Vasiliadis (1992). The
BSGA model uses Bayesian Decision Theory (BDT) to update prior to posterior
probabilities. The operating policy designated by this model is a set of rules specifying
the storage levels at the beginning of the next month based on reservoir storage and
inflow of each month, and the forecasted flow for the next month.

The Nash Bargaining Theory is used as the objective functions of both optimiza-
tion models that includes the players’ preference in a reliability form (presented by
a utility function), as well as their disagreement point and the individual risk taking
attitudes in the decision process. For more details about the Nash Bargaining Theory,
the readers are referred to Karamouz et al. (2003). Different sectors are considered
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including environmental, agricultural, industrial, and domestic water supply sectors
and regional water authority.

The deterministic and stochastic models are developed using 17 years of historical
data and tested with a generated time series of inflow to the reservoir. In order to
compare the two models, the performance indices such as reliability, resiliency and
vulnerability proposed by Hashimoto et al. (1982) and used by others (see Karamouz
et al. 2003) are utilized. The performance indices help to assess the operation of the
reservoir under different modeling conditions.

2.1 Deterministic Model

There are many concepts and methods to find the consensus among players (water
users). One might consider the problem as a multi-objective optimization problem
with the objectives of the different decision-makers. Conflict situations can also be
modeled as social choice problems in which the rankings of the decision-makers
are taken into account in the final decision. Another way of resolving conflicts was
offered by Nash, who considered a certain set of conditions the solution has to satisfy,
and proved that exactly one solution satisfies his “fairness” requirements.

The following assumptions are underlying the Nash theory:

• In the case when the decision-makers are unable to reach an agreement, all
decision-makers will get low objective function values.

• The solution has to provide at least the disagreement outcome to all decision-
makers. The feasibility condition requires that the decision-makers cannot get
more than the amount available.

• No decision-maker would agree to an outcome that is worse than the amount
he/she would get anyway without the agreement.

• The solution has to be non-dominated. It shows there is no better possibility
available for all.

• The solution must not depend on unfavorable alternatives. It shows if certain
possibilities become infeasible but the solution remains feasible, then the solu-
tion must not change.

• Increasing linear transformation should not alter the solution. If any of the
decision-makers change the unit of their objective, then a linear transformation
is performed on the criteria-space.

• If two decision-makers have equal positions in the definition of the conflict then
they must get equal objective values at the solution. It shows a certain kind of
fairness stating that if two decision-makers have the same outcome possibilities
and same disagreement outcome, then there is no reason to distinguish among
them in the final solution.

The most common solutions are the Nash solution (Nash 1950), and the non-
symmetric Nash solution (Harsanyi and Selten 1972). Varian (1995) demonstrated
a brief discussion of the Game theory and Nash solution of the economic based
problems. Richards and Singh (1997) used the Nash Bargaining Theory to reach
a compromise for water allocations. Ganji et al. (2007) used the game theory to
consider the associated preference among different consumers due to limited water.
In these researches, the uncertainties of the inflow and forecasted flow to the
reservoir are not considered.
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In this study, this shortcoming has been realized and a state transition probability
is considered to incorporate both natural inflow and forecast model uncertainties in a
stochastic model. In order to evaluate the results, a deterministic optimization model
is also developed to provide the optimal monthly release from the reservoir during
the planning horizon based on the Nash objective function. In the model formulation,
the objective function is the multiplication of the utility functions of different water
users seeking different reliability levels considering their disagreement points. The
disagreement point is the minimum acceptable share by each player. It is an element
of the payoff space, which is assigned as d = (da, di, dd, de, ds), and reflects the lowest
level of acceptable payoff for players. The model formulation is as follows:

Maximize Z =
12∗Y∏

t=1

[
( f a(At) − da)wa × ( f i(Int) − di)wi × ( f d(Dt) − dd)wd

×( f e(Et) − de)we × ( f s(St+1) − ds)ws

]
(1)

Subject to:

At = rat

Dat
t = 1, . . . , 12 × Y (2)

Int = rit

Dit
(3)

Dt = rdt

Ddt
(4)

Et = ret

Det
(5)

Rt = rat + rit + rdt + ret ∀ t (6)

St+1 = St + It − Rt − Lt t = 1, . . . , 12 × Y (7)

0 ≤ Rt ≤ RMax(St) ∀ t (8)

SMin ≤ St+1 ≤ SMax (9)

where:

f a()/da Utility function/disagreement point related to the reliability of
allocated water to agricultural (a) demand

f i()/di Utility function/disagreement point related to the reliability of
allocated water to industrial (i) demand

f d()/dd Utility function/disagreement point related to the reliability of
allocated water to domestic (d) demand

f e()/de Utility function/disagreement point related to the reliability of
allocated water to environmental (e) demand

f s()/ds Utility function/disagreement point related to the reservoir
storage (s)

Dat, Dit, Ddt, Det Demands of agricultural, industrial, domestic and environmen-
tal sectors during time period t, respectively (MCM)

rat, rit, rdt, ret Allocated water to agricultural, industrial, domestic and envi-
ronmental sectors during time period t, respectively (MCM)
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At, Int, Dt, Et Reliability of meeting the demand for agricultural, industrial,
domestic and environmental sectors during time period t,
respectively

wa, wi, wd, we Relative authority or weight of the decision-makers/
stakeholders which are in charge of agricultural, industrial,
domestic and environmental demands, and water storage

Y Time horizon of optimization model (years)
St Reservoir storage at the beginning of time period t (MCM)
Rt Total release during time period t (MCM)
It Inflow in time period t (MCM)
Lt Total loss during time period t due to evaporation and infil-

tration (MCM)
RMax(St) Allowable release during time period t considering reservoir

storage (MCM)
SMin Minimum storage of the reservoir (MCM)
SMax Maximum storage of the reservoir (MCM)

Considering the computational complexity of the problem, in this study, the
VLGA model proposed by Kerachian and Karamouz (2006) is extended to include
a K Nearest Neighborhood (KNN) estimator for generating the initial solution. This
model is referred to as GA-KNN optimization of the reservoir operation model. In
this model, the number of genes (chromosome length) is sequentially increased to
effectively lead to the initial feasible solutions for a near global optimal solution.
Figure 1 shows the schematic of a chromosome of the GA-KNN model. The gene
values are the monthly release from the reservoir and the allocated water to each
sector. A small record of inflow is selected first and the optimal monthly allocated
water to each water user is obtained using a GA optimization model. Then the
KNN model estimates the new chromosomes based on the optimum solution of the
previous sequence. In other words, the KNN algorithm is used to find the previously
observed similar months with respect to the inflow to the reservoir, the reservoir
storage at the beginning of each month and the water demand during each month.
Then it generates the initial solutions for each year. Figure 2 shows the flowchart of
the GA-KNN model.

The K Nearest Neighborhood method is a non-parametric regression method-
ology, which uses the similarity (neighboring in the sense of numerical closeness)
between observations of predictors and K similar sets of past observations to obtain
the best estimate for a dependent variable. K vectors of the past observations are

Fig. 1 Schematic of a chromosome of GA-KNN model
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Fig. 2 Flow Chart of
GA-KNN model

recognized that have the minimum Euclidean norm from the present condition
among all candidates. The distance between the current and past observed condition
is calculated by the Euclidian distance (Karlsson and Yakowitz 1987) between
current and historical predictors. A short summary of this method is as follows:

For each forecast Zt at time t, let Pm
t be an m-dimensional attribute vector of

past records. To estimate a dependent variable, (Zt), the KNN method calculates
the distance between current vectors and the set of K past nearest Neighborhoods
of Pm

t . Those Pm
t are selected that have the minimum norm

∥∥Pm
t − Pm

r

∥∥ among
all candidates, where Pm

r is an m-dimensional attribute vector of the rth nearest
data. KNN models choose the most common values of Zr among the K training
examples nearest to Zt. The most widely used distance to identify neighborhoods
is the Euclidean norm, which for an m-dimensional feature vector is calculated as:

Distt,r = ∥∥Pm
t − Pm

r

∥∥ =
√

w1
(

p1
t − p1

r

)2 + w2
(

p2
t − p2

r

)2 + ... + wm
(
Pm

t − Pm
r

)2

(10)
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where Distt,r is the Euclidean norm from past observations (Pm
t ) to the rth nearest

data. m is total number of predictors, wm is the weight of each predictor in calculating
the distance between the current attribute vectors and the Neighborhoods according
to their distance. The estimate is then obtained as a weighted average of the nearest
neighborhoods, in the way that greater weight is given to closer Neighborhoods. The
contribution of each Neighborhood may be determined according to the inverse of
its rank. A kernel function proposed by Lall and Sharma (1996) defines the weights,
which lead to a K-NN regression estimate of:

Zt = 1
K∑

j=1

1
j

K∑

j=1

(
1
j

)
Zj (11)

where j is the order of the nearest neighborhoods in which the nearest have the lowest
order ( j = 1 to K), and Zj is the magnitude of the nearest neighborhood j.

In this study, the Euclidean norm for a three-dimensional feature vector (the
monthly inflow to the reservoir, the reservoir storage at the beginning of each month
and the water demand during each month) is calculated as:

Dist,r =
√

wI(It − Ir)2 + wS(St − Sr)2 + wD(Dt − Dr)2 (12)

where:

Ir, It are the inflows to the reservoir, St, Sr are the reservoir storage volumes, and
Dt, Dr are the water demands in the current sequence (t) and in previous sequences
(r), respectively. The weights at an increment of 0.01 and the number of neighbor-
hoods (from 1 to number of the data − 1) that produce the lowest mean square error
of estimating are found by cross validation of the calibrated data set. First, the KNN
model is coupled with the GA optimization model for generating the initial solution
in each sequence. This method is used for estimating reservoir water release in each
month. In the second stage, the KNN model is also used for development of reservoir
operating rules utilizing the results of the optimization model.

2.2 Bayesian Stochastic Genetic Algorithm (BSGA)

In the stochastic model, the joint probability distribution of observed inflow and
forecasted inflow to the reservoir is considered. The Bayesian Stochastic Genetic
Algorithm, BSGA, considers the intrinsic and forecast uncertainties of inflow by
updating transition probabilities as new flow data becomes available utilizing Baye’s
theorem (BT). In the BSGA model, the forecast characteristics are also included as
state variables. The policies are generated for each month, based on the reservoir
storage and the inflow and forecasted inflow discretization. The BSGA model deter-
mines the reservoir storage at the end of period t (St+1) whereas the reservoir storage
at the beginning of time period t is St, the representative of streamflow into the
reservoir during time period t is It and the forecasted inflow for the next time period
t + l is Ht. In the BSGA model, each chromosome contains the operating policies
capturing the natural and the forecast uncertainties of inflow to the reservoir. The
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Nash Bargaining Theory is also used to bring consensus among the water users the
same way it was used in the deterministic model. Figure 3 shows the flowchart of
the BSGA model. The results of the BSGA model are compared with the Bayesian
Stochastic Dynamic Programming (BSDP) model which has similar framework for
the water release from the reservoir. In the BSGA model, in addition to water
releases form the reservoir, water allocation to each sector is also determined based
on the Nash Bargaining Theory. Due to a high number of state and decision variables
especially for handling finer state variable discretization, the optimization problem
with computational complexity is solved with the use of the genetic algorithm (GA)
method.

2.2.1 Optimization Model

In this model, the Nash objective function is used for optimizing the water allocation
to each sector/water user while maintaining the reservoir storage level. In the model
formulation, the objective function is the multiplication of utility functions of the

Fig. 3 Flowchart of Bayesian
Stochastic Genetic Algorithm
(BSGA) model
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sectors (agricultural, industrial, domestic, and environmental) subtracted from their
point of disagreement.

Maximize Z = E

{
12∏

m=1

[(
nu∏

r=1

(
fr,m(Rm,r,i, j,g) − dr,m

)wr

)
· (

f sm(Sm+1,i, j,g) − dsm
)ws

]}

(13)

Subject to:

E

{
12∏

m=1

[(
nu∏

r=1

(
fr,m(Rm,r,i, j,g) − dr,m

)wr

)
· (

f sm(Sm+1,i, j,g) − dsm
)ws

]}

=
12∏

m=1

⎡

⎣
12N+m∑

n=1

ni∑

i=1

n j∑

j=1

ng∑

g=1

(Fn,m,i, j,g) −
12N+m−1∑

n=1

ni∑

i=1

n j∑

j=1

ng∑

g=1

(Fn,m,i, j,g)

⎤

⎦ (14)

Fn,m,i, j,g =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bm,i, j,g +
n j∑

h=1

(
φm+1

[
Ih

m+1

∣∣Hg
m+1, I j

m

]

·
ng∑

k=1

ξm+1
[
Hk

m+1

∣∣Ih
m

] · (Fn,m+1,i, j,g)

)
m = 2,...,12

Bm,i, j,g +
n j∑

h=1

(
φm+1

[
Ih

m+1

∣∣Hg
m+1, I j

m

]

·
ng∑

k=1

ξm+1
[
Hk

m+1

∣∣Ih
m

] · (Fn,12,i, j,g)

)
m = 1

(15)

Bm,i, j,g =
(

nu∏

r=1

(
fr,m(Rm,r,i, j,g) − dr,m

)wr

)
· (

f sm(Sm+1,i, j,g) − dsm
)ws (16)

φm+1
[
Ih

m+1

∣∣Hg
m+1, I j

m

] = λm+1
[
Hg

m+1

∣∣Ih
m+1

]
. ρm+1

[
Ih

m+1

∣∣I j
m
]

ξm+1
[
Hg

m+1

∣∣I j
m
] (17)

ξm+1
[
Hg

m+1

∣∣I j
m

] =
n j∑

l=1

[
λm+1

[
Hg

m+1

∣∣Il
m+1

]
.ρm+1

[
Il

m+1

∣∣I j
m

]]
(18)

nu∑

r=1

Rm,r,i, j,g = Si − Sm+1,i, j,g + I j − Lm,i, j (19)

Smin ≤ Sm+1,i, j,g ≤ Smax (20)

nu∑

r=1

Rm,r,i, j,g ≤ Rmax (Si) (21)
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where:

r Index of sector/water user
i Index of characteristic reservoir storage
j Index of characteristic inflow
g Index of characterestic forecasted inflow
ni The number of reservoir storage discretization
n j The number of inflow discretization
ng The number of forecasted inflow discretization
nu The number of sectors/water users
E{} Expected value
fr,m()/dr,m Utility function/ disagreement point related to the rth water

user in month m
f sm()/dsm Utility function/ disagreement point related to the water

storage in month m
wr, ws Relative authority or weight of the decision-makers/

stakeholders which are in charge of the rth water user and
water storage, respectively

Rm,r,i, j,g Water allocation to user r in month m when the storage index
at the beginning of the month is i the index of the inflow is j
and the index of forecasted flow is g (MCM)

Sm+1,i, j,g Storage volume at the end of month m, when the storage
index at the beginning of the month is i, the index of the
inflow is j and the index of forecasted flow is g (MCM)

Bm,i, j,g Value of the first two terms of the Nash product when the
reservoir storage index at the beginning of month m is i, the
index of the inflow is j and the index of forecasted flow is g

Si Reservoir storage corresponding to the reservoir storage
index i at the beginning of month m (MCM)

I j Monthly inflow volume corresponding to the inflow index j
(MCM)

Lm,i, j Total loss during month m due to evaporation and
infiltration when the storage index at the beginning of the
month is i and the index of the flow is j (MCM)

N Number of iterations to achive the stationary state transition
probability matrix (year)

φm+1
[
Ih

m+1

∣∣Hg
m+1, I j

m
]

Posterior state transition from current forecast flow (g in-
dex) and a previous actual flow ( j index) to the current actual
flow (h index) in month m + 1

ξm+1
[
Hk

m+1

∣∣Ih
m

]
Predictive probability function of the forecast flow (k range)
conditioned to a previous actual flow (h range) in month m+1

λm+1
[
Hg

m+1

∣∣Il
m+1

]
Likelihood function of the current forecast flow (g range)
given that the actual flow belong to the l range

ρm+1
[
Il

m+1

∣∣I j
m
]

Prior flow transition from a previous actual flow ( j range) to
the current inflow (l range)

Smin Minimum volume of the reservoir (MCM)
Smax Maximum volume of the reservoir (MCM)
RMax(Sm) Allowable release during the month m considering reservoir

storage (MCM)
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Equation 13 is the Nash product; and Eqs. 14, 15, and 16 show the expected value
of the Nash product considering allocated water to each sector. This expected value is
calculated considering the first-order Markov process for inflow and forecasted flow,
which is similar to the BSDP model when the algorithm reaches the stationary con-
dition. The increase in the value of cumulative Fn,m,i, j,g reaches a constant value due
to the stationary state condition of the state transition probability matrix. As shown
in Eq. 14, this constant value is equal to the expected value of the objective function.
Equations 17 and 18 present the probabilities (prior and posterior) calculated using
the Bayesian Theory.

In the proposed model, the decision variables are the operating rules that deter-
mine the storage index at the end of month m, when the storage index at the
beginning of the month is i, the index of the flow is j, and the index of forecasted flow
is g. The number of genes in each chromosome is calculated based on the following
equation:

NG = ni × n j × ng × nu × M (22)

where M is total month of time horizon.

2.2.2 Model Characteristics

The intrinsic uncertainties are represented as the transition probabilities of inflow
at time m to inflow at time m + 1. Furthermore, the Bayesian framework to update
the prior probabilities is used in incorporating the uncertainty of the forecast flow.
See Karamouz and Vasiliadis (1992) for a detailed discussion on this issue. The
BSDP performance is limited by the number of the state variable discretization.
The shortcoming has been realized in the development of a GA based Bayesian
stochastic model for the finer state variable discretization. The ability of GA with
varying chromosome length has been discovered through the work of Kerachian and
Karamouz (2006), but that study was limited to extend the numbers of storage and
inflow discretization by varying the number of time steps in the modeling (i.e. from
one season per year to 12 months per year). In this study, the length of chromosomes
is extended to include higher numbers of reservoir storage and inflow discretization
for 12 months and to initiate with less chromosome length. In order to overcome the
computational complexity of the problem, the discretization of reservoir storage and
inflow has been sequentially increased. This way, the number of genes (chromosome
length) is sequentially increased to expeditiously lead the initial feasible solutions
to the near global optimum solution. The proposed GA with varying chromosome
length as shown in Fig. 4 has the following steps:

1- A random initial population of reservoir storage at the end of each month
for different intervals of monthly inflow, forecasted flow and reservoir storage
at the beginning of each month is generated. In this step, the numbers of
reservoir and inflow discretization are considered to be low. Therefore, the
optimization model solves a small problem containing a few number of genes
in each chromosome.

2- The optimal reservoir storage at the end of each month and monthly water
release from the reservoir are obtained using the GA optimization method.

3- As presented in Fig. 4, the number of discretization of reservoir storage and
inflow are doubled separately and the initial value of the chromosome for the
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Fig. 4 Schematic of sequential increase of the chromosome lengh by increasing flow and storage
discretizations

next sequence is generated based on the chromosome value of the last genera-
tion. When the number of discretization of the reservoir storage is doubled, the
value of genes related to each discretization of reservoir storage is duplicated
(transition from state A to state B) and when the number of inflow and fore-
casted flow discretization is doubled, the value of each gene is duplicated for
each inflow and forecasted flow discretization (transition from state A to state
C). This means, the chromosome length has increased sequentially based on
increasing the reservoir storage and inflow discretizations and through updating
the Bayesian probabilities. The optimization model considers the initial value
for the chromosome in the next sequence based on the optimum solution of the
previous sequence.

4- Optimization processes for the last population is done and the optimal reser-
voir storage at the end of each month is obtained up to a predefined maximum
number of iterations.

5- Step 3 and 4 are repeated until the desired number of discretization is reached.

In this study, the maximum inflow intervals are considered as 8. Afterwards,
increasing inflow discretization is stopped but the reservoir storage discretization
is continuously increased until reaching a maximum predefined number such as 64
or 128.
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3 Case Study

Aharchay river basin in the north-western part of Iran is located between 47◦ 20′ and
47◦ 30′ north longitude and 38◦20′ and 38◦45′ east latitude. The only available surface
water storage facility in the study area is the Satarkhan Dam as shown in Fig. 5. In
order to evaluate the proposed models; they are applied to the Satarkhan reservoir.

The maximum capacity of the reservoir is about l31 MCM (million cubic meters)
with an average annual inflow of 82 MCM. A schematic of the Satarkhan dam charac-
teristics which shows the various water levels of reservoir and its related storage is
presented in Fig. 6.

Seventeen years of historical monthly streamflow data in Orang hydrometric
station, located just upstream of the Satarkhan Dam is considered as the inflow to
the reservoir. The general streamflow forecasting model ARIMA (p,d,q) (P,D,Q)w

is used for forecasting the inflow to the Satarkhan reservoir. Where “p” and “q”
are the orders of the non-seasonal autoregressive and the non-seasonal moving
average components. “P” and “Q” are the orders of the seasonal autoregressive and
the non-seasonal moving average components. “d” is the order of the non-seasonal
difference, and “D” is the order of the seasonal difference of season “w”.

The forecasted time series of inflow is predicted based on the historical data of
the Orang hydrometric station just upstream of the reservoir. The best ARIMA
(Autoregressive Integrated Moving Average) model is selected based on the white
noise test of independence, the chi-square goodness-of-fit test, and the analysis of
autocorrelation functions (ACF) and partial autocorrelation functions (PACF) as
well as other model testing criteria. The selected model is ARIMA (2,1,1)(2,1,2)12.

R

Aharchy River

Satarkhan Dam

Aharchay irrigation network

Songoon copper industry Ahar city

Aharchay Watershed

East 
Azarbayjan 

Caspian Sea

Fig. 5 Aharchay river and Satarkhan reservoir watershed
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Fig. 6 Schematic of Satarkhan reservoir characteristics

It should be noted that for testing the operating rules, developed by different
models, an ARMA (1,1) model has been fitted to the historical data to synthesize
50 years of monthly data. To test the optimization model, a forecast series is also
needed. Therefore a 50 year forecast series is also predicted utilizing the 50 year
synthesized data using the same ARIMA model that was identified before utilizing
the historical data.

The Satarkhan dam supplies the domestic demands of Ahar City, the demand of
Songoon copper industry and agricultural demand of 3,800 ha (1 ha = 10,000 m2)
to be expanded to over 6,000 ha in the future of pressure irrigation networks and
instream flow requirements as the environmental water demand. Therefore, water
demands downstream of the reservoir includes the domestic, industrial, agricultural
and environmental demands that their monthly value are presented in Table 1. The
lack of consensus among the water users and within a watershed tends to be pervasive
and usually results in undue delays in the implementation of water resources devel-
opment projects especially expansion of pressure irrigation networks. Currently, such
conflicts could be resolved through participatory decision making. In this study, the
proposed optimization models determine the monthly release from the reservoir and
the amount of allocated water to each sector during the planning horizon by a com-
promise among users. Different water supply sectors in the study area are agricul-
tural, industrial, domestic, environmental and Azarbayjan regional water authority.
Utility functions indicate player’s preference and individual risk taking attitudes in
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Table 1 The monthly demands of different sectors in the study area (MCM)

Month Domestic Industrial Agricultural Environmental Total

January 0.64 0.44 0.0 0.70 1.78
February 0.64 0.44 0.0 0.70 1.78
March 0.62 0.44 0.0 0.70 1.76
April 0.78 0.44 0.81 0.70 2.73
May 0.78 0.44 6.13 0.70 8.05
June 0.78 0.44 8.74 0.70 10.66
July 0.82 0.44 11.92 0.70 13.88
August 0.82 0.44 12.47 0.70 14.43
September 0.82 0.44 6.03 0.70 7.99
October 0.67 0.44 1.68 0.70 3.49
November 0.67 0.44 0.52 0.70 2.33
December 0.67 0.44 0.0 0.70 1.81

the decision process. The general format of the utility function based on the reliability
of supplying the demand of different water users/stakeholders is illustrated in Fig. 7.
In this figure, the utility value of each sector varies between zero and one when the
reliability of supplying the water demand is in the range of a to d. The zero value
indicates that the allocated resource has no value for the consumer, and the value
of one represents 100% satisfaction. Social issues could be considered when a,b,c,
and d parameters of each user’s utility function are determined. In order to avoid
eliminating the near optimal solution and to expedite the convergence process of
the optimization model, the utility function decreases by water allocation with any
excess water from water demands. Without considering parameter (d) presented in
Fig. 7, the Nash product will be zero for supplying with any excess water from water
demands. In the model, the total excess water is summed with environmental water
allocation and then the utility function of environmental sector is calculated.

In order to determine the relative authority or weight of each sector, the AHP
method is used. This method is based on a pair-wise comparison of the importance
of different sectors (industrial sector, the Regional Water and Wastewater Company,
the regional water authority, the agricultural sector, and the environmental sector)
and the consistency of comparisons are verified. The pair-wise comparison matrix is

Fig. 7 Typical Utility function of allocated water of a water user
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determined by sending questionnaires to different experts/agencies. The eigenvector
of pair-wise comparison matrix is then used for estimating the relative weight
(importance or priority) of different sectors.

The instream flow requirement (environmental demand) in the Aharchay River
is the main concern of the environmental sector. The available data shows that about
10% of the historical inflow of the river in each month is considered as environmental
demand in this study. Considering the importance of the instream flow requirements,
the most favorable range is 9 to 10 MCM per year. The values of a,b,c, and d
parameters for the environmental utility function are presented in the second row
of Table 2.

The main objective of the agricultural sector is to increase the reliability of
meeting agricultural demand. The most desirable range for water demand supply
is considered as 80% to 100% of the demand and the lowest amount of agricultural
sector utility is considered as 20% of the demand. This amount of water is necessary
for irrigation of orchards in the study area. The utility function parameters for the
reliability of supplying the agricultural water demand are presented in the third row
of Table 2.

The main objective of the industrial sector is to increase the reliability of water
to industrial demands. Supplying the industrial demand especially for the Songoon
copper industry is one of the important functions of the Satarkhan dam. The most
favorable range of water supplying reliability for the industrial sector is considered
as 95% to 100%. The utility function parameters of this sector are given in the fourth
row of Table 2.

The main objective of the regional Water and Wastewater Company is to supply
the water demand for the City of Ahar. The desirable range of this sector is consid-
ered as 95% to 100% of the domestic demand and the lowest acceptable amount is
about 90% of the demand where the remaining water demand can be supplied from
groundwater. The utility function parameters of this sector are presented in the fifth
row of Table 2.

The main objective of the Azarbayjan regional water authority is to maintain the
storage level of the Satarkhan reservoir. The utility function of reservoir storage is
defined considering the minimum and maximum allowable water storage levels in
each month. The desirable variation of water level in Satarkhan reservoir is between
the normal water level and the elevation of the water intake. The reservoir storages
associated with these elevations are 120 and 45 MCM, respectively. The maximum
and minimum allowable water storage in the reservoir is considered to be about
130 and 20 MCM respectively. The utility function of the objective for the reservoir
storage is presented in the sixth row of Table 2.

Table 2 Utility function parameters for different sectors/water users

Sector a b c d w

Environmental 50 90 200 300 0.17
Agricultural 20 80 100 120 0.15
Industrial 80 95 100 130 0.19
Regional Water and Wastewater Company 90 95 100 130 0.32
Azarbayjan Regional Water Authority 20 45 120 130 0.17
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4 Results and Discussion

In this section, the results of applying the models to the case study are presented. A
17-year time series of streamflow (1982–1999) is used for evaluation of the model for
water allocation from the Satarkhan reservoir to the domestic, industrial, agricultural
and environmental demands. In all models, the performance indices are used to
evaluate the results of models. These indices show how often the system does
not fail (reliability), how quickly the system returns to a satisfactory state once a
failure has occurred (resiliency) and how significant the consequences of failure are
(vulnerability). Satisfactory state is a state that water demands for different sectors
being supplied. The reliability can be defined as the number of data in a satisfactory
state divided by the total number of data in time series. The resiliency can be
expressed as the probability that if in an unsatisfactory state, the next state will be
satisfactory. The vulnerability is the expected measure of the unsatisfactory state. It
can be defined as the sum of positive different values between the threshold value
and the unsatisfactory value divided by the number of times that an unsatisfactory
value occurred. The threshold value in each month is the water demand [please refer
to Karamouz et al. (2009) for more details about the formulation of the utilized
indices in the case study]. In the first part of this section, the results of developing
a deterministic model using the GA-KNN optimization model are presented and the
performance of the model is compared with the alternative model such as the VLGA
model. In the second part of this section, the results of the development of a BSGA
are presented and compared with the results of BSDP model. In the discussion of the
results section, the performances of developed models are evaluated.

4.1 Part 1—Deterministic Model

In order to generate the operating policies for a reservoir, a deterministic GA based
model with the KNN estimator for initial solutions is developed. The results of the
deterministic GA-KNN and VLGA models are presented in Table 3. In this table,
the percentages of supplying the demands in the planning period are shown for both
models. The results show that GA-KNN improves the reliability of supplying the
demands by 7%.

Figure 8 shows the objective function variations of GA-KNN and VLGA models.
As can be seen in this figure, the difference between the objective functions at the
end of each optimization sequence and at the beginning of the new sequence is less
in the GA-KNN model than VLGA model. Therefore, it takes less time to reach the
optimal solution in each sequence using the GA-KNN model and it leads to produce

Table 3 Comparison of the results of supplying the water demand downstream of the reservoir for
the deterministic models

Demand VLGA GA-KNN

Reliability Resiliency Vulnerability Reliability Resiliency Vulnerability
% % (MCM) % % (MCM)

Domestic 81 72 1.23 85 70 1.30
Industrial 90 83 1.31 93 79 1.43
Agricultural 54 43 1.57 57 42 1.59
Environmental 64 54 1.60 65 52 1.64
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more robust and reliable results while reducing the run time and the computational
efforts significantly.

The GA-KNN model could be more effective in reducing the optimization run
time in conditions with variable inflow and demand during each year of the planning
horizon, because the GA-KNN model considers inflow and demand variations in
generating the new gene values in each sequence.

4.2 Part 2—Stochastic Model

In order to evaluate the performance of the stochastic model, the results of the
BSGA and the BSDP optimization models are compared. The water releases from
the reservoir utilizing BSDP and BSGA models and the water demand during the
simulation period are presented in Fig. 9.

The reliability, resiliency, and vulnerability of supplying the water demand down-
stream of the reservoir for a 17-year simulation period are 69, 46%, 2.45 MCM in
the BSGA model compared to 66, 46%, 2.45 MCM when using the BSDP model
with equal numbers of inflow and reservoir storage discretization. The results of
performance indices in supplying the demand of each sector are presented in Table 4.

The BSGA model seems more suitable for large scale reservoir systems than the
BSDP model because it could handle more discrete storage levels than BSDP. The
level of the reservoir storage in the BSDP model is 68 MCM compared with 74 MCM
in the BSGA model which shows that the BSGA model better maintains the storage
fluctuations during the time horizon of the operation. It shows the BSGA model
with conflict resolution objective function has better performance in the reservoir
operation for improving the reliability of supplying the water demand than the
BSDP model.
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4.3 Comparison of Results

In the previous section, the proposed deterministic and stochastic models to develop
the operating policies were compared with the alternate models. In this section, in
order to compare the proposed models with each other, a 50-year time series of
reservoir inflow is generated.

In the deterministic model, the optimal release in each month is determined using
the GA-KNN optimization model. Then, the operating rules to release water are
developed using the KNN model with respect to the initial storage, the inflow to the
reservoir, the monthly demand. The values of these variables at a given time with
selected weights are substituted in the general form of KNN as shown in Eq. 12. The
best weights of different independent variables including the inflow to the reservoir,
the reservoir storage, and the water demand in each month are considered as 0.2,
0.3, and 0.5, respectively and the best value of K (number of nearest neighborhood)
is considered as 40. Figure 10, illustrates the optimal releases which are the results
of the operating rule generated by the KNN model. As shown in this figure, in the
months with low water demands, the optimal policies resulting from the optimization
model and the operating rules obtained from the KNN model are comparable. The
correlation coefficient of two series of water release is about 88% for the dry season
(March to September) and 78% for the wet season (October to February). Therefore,
the operating rules are utilized to test the model performance with 50 years of
generated time series of inflow to the reservoir.

Also the operating policies obtained from the stochastic model are utilized to
simulate the optimal reservoir storage at the end of each month and, accordingly the

Table 4 Performance indices of suppling the demand with BSGA model

Demand Reliability % Resiliency % Vulnerability (MCM)

Domestic 87 69 1.29
Industrial 93 79 1.41
Agriculture 59 41 1.55
Environmental 66 48 1.38
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water releases from the reservoir in each month. The performance indices including
the reliability, resiliency and vulnerability are given in Table 5.

As shown in this table, the stochastic model can make a gain of +4% in the reli-
ability which means the total number of non-supplying demand months (unsatisfac-
tory states) is 186 in the deterministic model and this is about 162 months in the
stochastic model out of 600 months. The vulnerability values, the expected values
of non-supplying water demand, are about 2.33 MCM and 2.06 MCM (3.3 and
2.9 percentage of the annual demand) in the stochastic and deterministic models,
respectively. It shows the stochastic model considering uncertainties of the inflow and
forecasted inflow to the reservoir has better performance in the reservoir operation
for improving the reliability of supplying the water demand than the deterministic
model.

The variation of reservoir storage for both models is presented in Fig. 11. As
shown in this figure, the average water storages in the reservoir for the stochastic and
deterministic models are about 89.7 MCM and 75.3 MCM with a standard deviation
of 18.5 and 22.0, respectively. The results show that the stochastic model has better
performance in maintaining the reservoir storage and more consistent behavior in
reservoir operation.

Table 5 Performance indices of supplying the water demand for the deterministic and stochastic
models

Model Reliability % Resiliency % Vulnerability (MCM)

GA-KNN Model 69 47 2.06
BSGA Model 73 45 2.33
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This procedure can be easily applied to a problem with a longer planning horizon
or more water users. As can be seen in the model formulation, it is independent
of the number of users and each user can be considered as a player in the Nash
Bargaining Theory. Therefore, applying the model to more users is easily possible.
For more complex case studies with more reservoirs, based on the Nash Barging
Theory, the total objective function can be the multiplication of objective functions
of each reservoir considering their utility functions and weights. This study can be
extended to include other sources of uncertainties and water quality issues.

5 Summary and Conclusion

In this paper, in order to incorporate the effects of inflow and forecast uncertainties,
a stochastic model is developed and compared with a deterministic model (with
no accounted uncertainty) when they are applied to the Satarkhan reservoir in the
north-western part of Iran. The objective functions of both models are based on the
Nash Bargaining Theory.

In this study, the social supports in conflict resolution is not considered as a
separate issue but it is implicitly considered, if it is assumed that the utility function
is a reflection of the end user’s benefit. For example the utility function of the agri-
cultural sector has to reflect the interest of farmers. Furthermore adjustments could
be made to the objection if it seems that the interest of agencies involved does
not overlap with the interest of the public. This can be done by revising the utility
function parameters of agencies/water users to something such as industrial with
less social implications. In the deterministic model, the computational burden of a
varying length GA optimization method is reduced by generating the feasible initial
solutions using a KNN model as an estimator. The results show improvement in
supplying the water demand and convergence of the GA optimization model. In the
stochastic model, by coupling the Bayesian decision theory and stochastic genetic
algorithm, the natural and forecast flow uncertainties can be captured. In order to
overcome the computational complexity of the BSGA model, the discretization of
reservoir storage and inflow increases sequentially up to a reasonable upper bound
(8 for the inflow to the reservoir and 128 for the reservoir storage) by utilizing
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a varying length of chromosomes scheme. The results of the BSGA and BSDP
models are compared and show that the proposed methodology has increased
the efficiency of the developed reservoir operating policies while reducing the
computation difficulties of the BSDP model (when increasing the numbers of the
reservoir storage and the inflow discretization). This is perhaps the main advantage
of the BSGA model compared to BSDP especially when water allocation to different
sectors/water users is considered. Although the two models have different objective
functions, the comparisons are considered as fair because in both models, the
objectives are to meet the release targets.

The principle measure of the model effectiveness is related to meet the water
demands in a simulated reservoir operation period. Namely, the performance of
the proposed the deterministic and stochastic models is compared with a 50-year
generated time series. The results show that the KNN model is an effective model
for estimating the reservoir release with acceptable accuracy at a fraction of the run
time of the stochastic model (a factor of 5 to 24 h) using a Pentium IV (2,800 MHz)
computer. Nevertheless, the BSGA with Nash Bargaining Theory objective function
increases the reliability of supplying the water demands during the planning horizon.
BSGA is more robust than the GA-KNN model because it has considered the
uncertainty of the forecasts in the development of the operating policies. The conclu-
sions of improved performance of the proposed algorithms are based on a single case
study and are therefore subject to further testing.

The development of both models allows the decision maker to have two effective
tools with their own advantages. Utilizing both models will help cross check the
results and make comparative analysis of the reservoir operation. If both models are
indicating similar results, the reservoir operator/decision maker operates at a higher
confidence level.
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