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Abstract Forecasting of groundwater levels is very useful for planning integrated
management of groundwater and surface water resources in a basin. In the present
study, artificial neural network models have been developed for groundwater level
forecasting in a river island of tropical humid region, eastern India. ANN modeling
was carried out to predict groundwater levels 1 week ahead at 18 sites over the study
area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation,
river stage, water level in the drain, pumping rate and groundwater level in the
previous week, which led to 40 input nodes and 18 output nodes. Three different
ANN training algorithms, viz., gradient descent with momentum and adaptive learn-
ing rate backpropagation (GDX) algorithm, Levenberg–Marquardt (LM) algorithm
and Bayesian regularization (BR) algorithm were employed and their performance
was evaluated. As the neural network became very large with 40 input nodes and
18 output nodes, the LM and BR algorithms took too much time to complete a
single iteration. Consequently, the study area was divided into three clusters and the
performance evaluation of the three ANN training algorithms was done separately
for all the clusters. The performance of all the three ANN training algorithms in
predicting groundwater levels over the study area was found to be almost equally
good. However, the performance of the BR algorithm was found slightly superior to
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that of the GDX and LM algorithms. The ANN model trained with BR algorithm
was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the
tubewells of one cluster using the same inputs. It was found that though the accuracy
of predicted groundwater levels generally decreases with an increase in the lead time,
the predicted groundwater levels are reasonable for the larger lead times as well.

Keywords Artificial neural network · Groundwater level prediction ·
Backpropagation GDX algorithm · Lavenberg-Marquardt algorithm ·
Bayesian regularization algorithm · River island

1 Introduction

Groundwater is one of the most valuable natural resources and it has become a
dependable source of water in all climatic regions of the world (Todd and Mays
2005). In the developing countries, it is emerging as a poverty-alleviation tool owing
to the fact that groundwater can be delivered directly to poor communities more cost-
effectively, promptly and easily than the surface water (IWMI 2001). Unfortunately,
the dwindling of groundwater levels and aquifer depletion due to over-exploitation
together with growing pollution of groundwater are threatening the sustainability
of water supply and ecosystems. Numerous consequences of unsustainable ground-
water use are becoming increasingly apparent worldwide, particularly in developing
countries and the major concern is how to maintain a long-term sustainable yield
from aquifers (Alley and Leake 2004; Kalf and Woolley 2005; Sophocleous 2005;
Todd and Mays 2005). Thus, sustainable management of water resources in general
and groundwater resource in particular is of utmost importance for both present and
future generations.

Groundwater modeling has emerged as a powerful tool to help water managers
optimize groundwater use and to protect this vital resource. Physically based nu-
merical models are being used during past several years for simulation and analysis
of groundwater systems. With the proliferation of use of computers, they are
being widely used by engineers, hydrogeologists and environmentalists. They have
been applied to problems ranging from aquifer safe yield analysis to groundwater
remediation and quality issues. These modeling techniques are very data intensive,
labour intensive and expensive. Under data-scarce conditions, which are a common
scenario in most developing countries, the use of physical based models is highly
restricted. Therefore, in such cases, empirical models serve an attractive alternative
as they can provide useful results using relatively less data and are less laborious
and cost-effective. Artificial Neural Network (ANN) models are one of such models,
which are treated as universal approximators and are very much suited to dynamic
nonlinear system modeling (ASCE 2000a). Unlike physically based numerical mod-
els, ANNs do not require explicit characterization and quantification of physical
properties and conditions of the system under investigation. ANNs learn the system’s
behavior from representative data. The ability to learn and generalize from sufficient
data pairs makes it possible for ANNs to solve large-scale complex problems (ASCE
2000a; Haykin 1999). An attractive feature of ANNs is their ability to develop a
relation between the outputs and inputs of a process without the physics being
explicitly provided to them. The advantages of ANN models over physically based
models are discussed in French et al. (1992).
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The applications of ANN technique in hydrology range from real-time modeling
to event-based modeling. It has been used for rainfall-runoff modeling, precipitation
forecasting as well as for modeling of streamflows, evapotranspiration, water qual-
ity and groundwater (Gobindraju and Ramachandra Rao 2000; ASCE 2000a, b).
Compared to surface water hydrology, relatively less number of studies on ANN
application in groundwater hydrology has been reported in the literature. In ground-
water hydrology, the neural network technique has been used for aquifer parameter
estimation (Aziz and Wong 1992; Morshed and Kaluarachchi 1998; Balkhair 2002;
Shigdi and Garcia 2003; Garcia and Shigdi 2006; Samani et al. 2007; Karahan and
Ayvaz 2008), groundwater quality prediction (Hong and Rosen 2001; Milot et al.
2002; Kuo et al. 2004), and groundwater level prediction (Coulibaly et al. 2001;
Coppola et al. 2003, 2005; Daliakopoulos et al. 2005; Nayak et al. 2006; Uddameri
2007; Krishna et al. 2008; Banerjee et al. 2009).

In most of the past studies on groundwater level prediction by ANN, ANN models
have been developed for predicting groundwater level in a single well or a few wells

River Stage Gauging 
Station 

Study Area 

•

Fig. 1 Location map of the study area
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using a set of input parameters. However, in the present study, a methodology is
presented to predict groundwater levels simultaneously in a large number of wells
over a basin by using an ANN model. Thus, the methodology is of great practical im-
portance. The applicability of the methodology is demonstrated by using three ANN
training algorithms namely gradient descent with momentum and adaptive learning
rate backpropagation (GDX) algorithm, Lavenberg-Marquardt (LM) algorithm and
Bayesian regularization (BR) algorithm for predicting groundwater levels in a river
island located in the tropical humid region, eastern India. This study is first of its kind
in north India in general and eastern India in particular.

2 Study Area

The study area selected for this study is known as Bayalish Mouza which is located
in the Kathajodi River basin of Orissa, India (Figs. 1 and 2). It is a typical river
island surrounded by the Kathajodi River and its branch Surua. It is located between
85◦ 54′ 21′′ and 86◦ 00′ 41′′ E longitude and 20◦ 21′ 48′′ to 20◦ 26′ 00′′ N latitude. The
total area of the river island is 35 km2. The study area has a tropical humid climate
with an average annual rainfall of 1,535 mm, of which 80% occurs during June to
October months. The normal mean monthly maximum and minimum temperatures
of the region are 38.8◦C and 15.5◦C in May and December, respectively. The mean
monthly maximum and minimum evapotranspiration rates are 202.9 and 80.7 mm in
May and December, respectively.

Fig. 2 Location of pumping and observation wells in the study area
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Fig. 3 a Lithologic profile of the study area along the section A–A′ (b) Lithologic profile of the study
area along the section B–B′
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Groundwater is the major source of irrigation in the study area. There are 69
government tubewells in the area, which constitute major sources of groundwater
withdrawals for irrigation. These tubewells are constructed and managed by the
Orissa Lift Irrigation Corporation, Government of Orissa, India. Now, they are
gradually being handed over to the local water users’ associations. The lithologic data
of the study area indicate the existence of a confined aquifer. Figure 3a, b show the
lithologic profiles of the study area along cross-sections A–A′ and B–B′, respectively.
It is apparent from Fig. 3a that aquifer is present at a deeper depth in the western
side and at a shallower depth in the eastern side of the river basin. Figure 3b shows
that there is more than one layer of water bearing formation towards the downstream
side of the river basin. The water bearing formation (i.e., aquifer) mostly consists of
coarse sand, medium to coarse sand and pebbles, with the coarse sand as a dominant
formation. The thickness of the aquifer varies from 20 to 55 m over the basin. The
top confining layers having a thickness of 15 to 50 m comprise clay or sandy clay
with isolated patches of coarse sand or medium sand in between. The groundwater
level responds significantly to the rainfall or variation in river stage, indicating a good
connection with surface water bodies (Mohanty et al. 2009). Thus, the top confining
layer is a semi-confining layer in reality and hence the aquifer is a semi-confined in
nature. The aquifer transmissivity varies from a minimum of 528.5 m2/day at Site B
to a maximum of 3,484.8 m2/day at Site O with an average value of 1,778.86 m2/day.
The storage coefficient of the aquifer ranges from a minimum of 1.43 × 10−4 at Site H
to a maximum of 9.9 × 10−4 at Site O with an average value of 4.61 × 10−4 (Mohanty
et al. 2009).

There is no water shortage during the monsoon season in the study area, but
in the summer season, the farm ponds dry up and the groundwater withdrawal is
not sufficient to meet the entire water requirement of the farmers. Thus, the study
area suffers from water scarcity during summers and the water scarcity is aggravated
during the years having below average rainfall.

3 Methodology

3.1 Data Acquisition and Monitoring

Groundwater level data in the study area was obtained by monitoring the ground-
water level at 19 sites (A to S in Fig. 2) on a weekly basis. The monitoring
work continued from February 2004 to June 2007. The sites for groundwater level
monitoring were selected in such a way that they can represent some north–south
and east–west cross-sections across the basin. As groundwater level monitoring could
not be at one site (site N) for full period, groundwater level data of 18 sites was
considered for this study. The daily rainfall was monitored by installing a rain gauge
in the study area, whereas the daily pan evaporation data were obtained from a
meteorological station at Central Rice Research Institute, Cuttack located about
2 km from the study area. As the weekly river stage data near the project site was not
available, the river stage data measured at Naraj (Fig. 1) where the Kathajodi River
originates from the main river Mahanadi, were collected from the Central Water
Commission Office, Bhubaneswar and used in this study. As the river stage at Naraj
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directly influences the river stage around the study area, the river stage data of Naraj
were used for ANN modeling.

3.2 Overview of ANN Architectures and Training Algorithms

An ANN is a massively parallel distributed information processing system that has
certain performance characteristics resembling biological neural networks of the
human brain (Haykin 1999). A neural network is characterized by its architecture
that represents the pattern of connection between nodes, its method of determining
the connection weights and the activation function (Fausett 1994). In this study,
feedforward neural network architecture has been used and three ANN training
algorithms, viz., gradient descent with momentum and adaptive learning rate back-
propagation (GDX) algorithm, Levenberg–Marquardt (LM) algorithm and Bayesian
regularization (BR) algorithm have been evaluated to identify a suitable algorithm
which performs the best in predicting weekly groundwater levels over the study area.

3.2.1 Feedforward Neural Network

Feedforward neural networks have been successfully applied in different problems
since the advent of error propagation learning algorithm. This network architecture
is the simplest of all neural network architectures. In a feedforward network, the
nodes are generally arranged in layers, starting from a first input layer and ending at
the final output layer. There can be several hidden layers with each layer having one
or more nodes. Figure 4 shows the feedforward network for the current study having
one hidden layer with several nodes in input and output layer. Information passes
from the input to the output side. The nodes in one layer are connected to those in
the next, but not to those in the same layer. Thus, the output of a node in a layer
is only dependant on the input it receives from previous layers and corresponding
weights. The main advantage of feedforward neural networks are that they are easy
to handle, and can approximate any input/output map, as established by Hornik et al.
(1989).

3.2.2 Training Algorithms

Coulibaly et al. (1999) reported that more than 23 learning rules have been proposed
for training an artificial neural network; however, none of them can guarantee the
global minimum solution. Therefore, efficient network training is a challenging part

Fig. 4 Configuration of
feedforward three-layer ANN
for the study area
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of network design. A critical examination of the available literature indicates that
more than 90% of the experiments make use of feedforward neural network trained
by standard backpropagation algorithm (BPA), which is basically a gradient based
optimization technique developed by Rumelhart et al. (1986). Standard backpropa-
gation is a gradient descent algorithm in which network weights are moved along the
negative of the gradient of the performance function. The term ‘backpropagation’
refers to the manner in which the gradient is computed for nonlinear multilayer
networks.

Although backpropagation training has proved to be efficient in lots of applica-
tions, it has inherent limitations of gradient based techniques such as slow conver-
gence and the local search nature. Among the various modifications proposed to the
backpropagation algorithm, the conventional second-order nonlinear optimization
methods such as the conjugate-gradient, the Levenberg–Marquardt and the quasi-
Newton algorithms are usually faster than any variant of the BPA (Masters 1995;
Hagen et al. 1996). The Levenberg–Marquardt algorithm is designed specifically for
minimizing a sum of squared error (Bishop 1995) and to overcome the limitations in
the standard BPA.

Building a model with minimum number of input variables and parameters to
achieve high predictive accuracy without under or over fitting problems is very much
essential. Too many neurons in the hidden layer lead to over fitting, i.e., the training
data will be well modeled but the network models the noise in the data as well as the
trends. On the other hand, a network with an insufficient number of hidden nodes
will have difficulty in learning data. Thus, both too small and too large networks have
poor prediction performance. Therefore, the network will not generalize well on the
testing data. To overcome this problem, Mackay (1991) proposed the use of Bayesian
regularization algorithm which is able to deal with the over fitting issue.

Gradient descent with momentum and adaptive learning rate backpropagation With
a standard backpropagation algorithm, the learning rate is held constant throughout
the training. The performance of the algorithm is very sensitive to the proper setting
of the learning rate. If the learning rate is set too high, the algorithm may oscillate and
become unstable. If the learning rate is too small, the algorithm will take too long to
converge. In order to overcome the problem, the gradient descent with momentum
and adaptive learning rate backpropagation (GDX) algorithm combines adaptive
learning rate with momentum training. An adaptive learning rate attempts to keep
the learning step size as large as possible while keeping learning stable. Each variable
is adjusted according to the gradient descent with momentum. Acting like a low pass
filter, momentum allows the network to ignore small features in the error surface.
This training algorithm is one of the simplest and most common ways to train a
network.

Levenberg–Marquardt In backpropagation algorithm, the local gradient given by
gradient descent does not point directly towards the minimum. Gradient-descent
then takes many small steps to reach minimum and thus leads to slow learning.
To overcome this, Levenberg–Marquardt algorithm, a second order optimization
procedure for multilayer FNN training is used. Levenberg–Marquardt method is a
modification of the Newton algorithm for finding an optimal solution to a minimiza-
tion problem. It is designed to approach second order training speed and accuracy
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without having to compute the Hessian matrix. It uses an approximate to the Hessian
matrix in the following Newton-like weight update (Daliakopoulos et al. 2005).

xi+1 = xi − [
JT J + μI

]−1
JTe (1)

Where, x = weights of the neural network, J = Jacobian matrix of the performance
criteria to be minimized, μ = a scalar that controls the learning process, and e =
residual error vector. When the scalar μ is zero, this is just Newton’s method using
the approximate Hessian matrix. When μ is large the equation becomes gradient
descent with small step size. Newton’s method is faster and more accurate near an
error minimum, so the aim is to shift towards Newton’s method as quickly as possible.

Levenberg–Marquardt algorithm is one of the fastest methods for training feed-
forward neural networks. However, due to high memory requirement, it can only
be used in small networks (Maier and Dandy 1998). Nevertheless, many researchers
have been successfully using it (e.g., Toth et al. 2000; Coulibaly et al. 2000, 2001;
Anctil et al. 2004; Daliakopoulos et al. 2005).

Bayesian regularization The Bayesian approach involves the optimization of an
objective function that comprises the conventional sum of squared error function
as well as an additional term, called ‘regularizer’. The motivation for using the
regularizer is to penalize the more complex weight functions in favor of simpler
functions. The Bayesian approach also enables the optimal weight decay parameters
to be adjusted automatically during training (Mackay 1991; Bishop 1995). The salient
advantages of Bayesian updating are as follows:

1. It provides a unifying approach for dealing with issues of model complexity and
over fitting.

2. The modification in the error function aims to improve the model’s generaliza-
tion capability.

3. The prediction generated by a trained model can be assigned an error bar to
indicate its confidence level.

In the Bayesian framework, the uncertainty in the weight space is assigned a
probability distribution representing the degree of belief in the different values of
the weight vector. This function is initially set to some prior distribution. Once the
data has been observed, it can be converted to a posterior distribution through the
use of Bayes’ theorem. By maximizing the posterior distribution over the weights, the
most probable parameter values can be obtained. Bayesian regularization has been
effectively used by several researchers (e.g., Porter et al. 2000; Coulibaly et al. 2001;
Anctil et al. 2004; Daliakopoulos et al. 2005).

3.3 Design of ANN

One of the most important steps in the model development process is the determi-
nation of significant input variables. Generally some degree of a priori knowledge
is used to specify the initial set of candidate inputs (e.g., Campolo et al. 1999;
Thirumalaiah and Deo 2000). Although a priori identification is widely used in many
applications and is necessary to define a candidate set of inputs, it is dependent on
an expert’s knowledge, and hence, is very subjective and case dependent. When the
relationship to be modeled is not well understood, then an analytical technique, such
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as cross-correlation, is often employed (e.g., Sajikumar and Thandaveswara 1999;
Coulibaly et al. 2000; Sudheer et al. 2002). The major disadvantage associated with
using cross-correlation is that it is only able to detect linear dependence between
two variables. Therefore, cross-correlation is unable to capture any nonlinear depen-
dence that may exist between the inputs and the output, and may possibly result in
the omission of important inputs that are related to the output in a nonlinear fashion.
Intuitively, the preferred approach for determining appropriate inputs involves a
combination of a priori knowledge and analytical approaches (Maier and Dandy
1997).

In the present study, the ANN model was designed to predict groundwater levels
in 18 tubewells (Fig. 2) with 1 week lead time using a set of suitable input para-
meters. The input parameters for the ANN model were decided by considering the
parameters which have potential to affect the groundwater level. A cross correlation
analysis between the water levels in the tube wells at various lags suggested that Lag
1 correlation is highly significant in the water level time series in all the 18 wells.
To examine the effect of rainfall and river stage on groundwater, they were plotted
along with the weekly groundwater level. Figure 5 shows the weekly variation of
groundwater levels at four sites along with the weekly rainfall, which indicates that
groundwater levels are generally higher on high rainfall days. Hence, rainfall is one
potential input parameter which influences groundwater of the study area. Similarly,
Fig. 6 shows the weekly variation of groundwater levels at the four sites along with
the river stage data. As there is a good correlation between the river stage data
and the groundwater level data, river stage is another potential input parameter
which influences the groundwater of the study area. In a semi-confined aquifer, apart
from rainfall, evaporation is another parameter which can influence the recharge to
groundwater. Therefore, weekly pan evaporation was also considered as one of the
input parameters for the ANN model.
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Fig. 6 Well hydrographs at sites A to D with river stage hydrograph at Naraj gauging station

Moreover, in the study area, entire rainwater of the region is drained through a
main drain and discharged at a single outlet into the river. A sluice gate is provided
at the outlet of the area to prevent ingress of river water during flood events. During
these flood events, water level in the main drain rises and waterlogging problem
is encountered in the downstream side of the study area. The water level in the
main drain has been also considered as an input parameter because it influences
the groundwater, especially in the downstream portion of the study area. There
are 69 tubewells in the study area. However, by considering weekly pumping of
69 tubewells, 69 input parameters will make the model quite big and difficult to
work with. Hence for ANN modeling, it was assumed that the weekly pumping of
selected 18 tubewells represents the specific pumping pattern in that locality, which
is reasonable for the study area because the 18 tubewells are uniformly distributed
over the area and pumping pattern of each of the 18 tubewells almost matches with
the nearby tubewells. As the records of history of pumping from the tubewells were
not available, the pumping rates of the 18 tubewells were obtained from the farmers
and were considered as one of ANN input parameters. Thus, there were altogether
40 input nodes and 18 output nodes in the initial ANN model of the study area.
The 40 input nodes represent initial groundwater levels at the 18 sites, groundwater
pumping rates of the 18 tubewells, weekly rainfall, average weekly pan evaporation,
average weekly river stage, and average weekly water level at the drain outlet. The
18 output nodes represent groundwater levels at the 18 sites in the next time step
(i.e., 1 week ahead).

The structure of the neural network was determined by trial and error. The
optimal number of nodes in the hidden layer and the stopping criteria were optimized
by trial and error for obtaining accurate output. The activation function of the hidden
layer and output layer was set as log-sigmoid transfer function as this proved by trial
and error to be the best among a set of other options. In this study, supervised type
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of learning with a batch mode of data feeding was used in ANN modeling. Out of the
174 weeks data sets available, 122 data sets were used for training the ANN model
and 52 data sets were used for testing the model. The entire ANN modeling was
performed by using MATLAB 6.5 software.

3.4 Evaluation Criteria

Four statistical criteria (or statistical indicators) were used in order to evaluate the
effectiveness of three artificial neural network models developed in this study. They
are correlation coefficient (R), bias, root mean square error (RMSE) and Nash-
Sutcliffe efficiency or model efficiency (E) and are given by the following equations:

R =

n∑

i=1

(
Oi − Ō

) (
Pi − P̄

)

√
n∑

i=1

(
Oi − Ō

)2 n∑

i=1

(
Pi − P̄

)2

(2)

Bias = 1

N

n∑

i=1

(Oi − Pi) (3)

RMSE =

√√
√√√

n∑

i=1
(Oi − Pi)2

N
(4)

E = 1 −

n∑

i=1
(Oi − Pi)

2

n∑

i=1

(
Oi − Ō

)2
(5)

Where, Oi = observed value for ith data, Pi = predicted value for ith data, Ō = mean
of observed value, P̄ = mean of predicted value, and n = number of observations.
The best fit between observed and predicted values under ideal conditions would
yield RMSE = 0, bias = 0, R2 = 1 and E = 1.

4 Results and Discussion

4.1 Performance Evaluation of ANN Training Algorithms

With the ANN model having 40 input nodes and 18 output nodes, the Levenberg–
Marquardt and Bayesian regularization models consumed a lot of computer memory
and were difficult to be evaluated by the trial and error method. Maier and Dandy
(1998) also reported that the Levenberg–Marquardt algorithm has a great computa-
tional and memory requirement and thus it can only be used in small networks. The
same is true for the Bayesian regularization algorithm also. In contrast, the GDX
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Table 1 Input and output parameters for the three clusters

Cluster Input parameters Output parameters

Cluster 1 Initial groundwater levels at 7 sites Groundwater levels at 7 sites (A,
(A, B, D, E, H, I and J); average B, D, E, H, I and J) in the next
weekly pumping rates of 7 time step (i.e., 1 week ahead)
tubewells (A, B, D, E, H, I and J);
weekly total rainfall; average
weekly river stage; and average
weekly pan evaporation

Total 17 input parameters Total 7 output parameters
Cluster 2 Initial groundwater levels at 5 sites Groundwater levels at 5 sites (C,

(C, F, G, K and L); average weekly F, G, K and L) in the next time
pumping rates of 5 tubewells (C, F, step (i.e., 1 week ahead)
G, K and L); weekly total rainfall;
average weekly river stage; and
average weekly pan evaporation

Total 13 input parameters Total 5 output parameters
Cluster 3 Initial groundwater levels at 6 sites Groundwater levels at 6 sites (M,

(M, O, P, Q, R and S); average O, P, Q, R and S) in the next
time weekly pumping rates of 6 step (i.e., 1 week ahead)
tubewells (M, O, P, Q, R and S);
weekly total rainfall; average
weekly river stage; average weekly
pan evaporation; and average weekly
water level in the main drain

Total 16 input parameters Total 6 output parameters

algorithm could effectively be evaluated through trial and error procedure due to less
memory requirement. In order to run the LM and BR models effectively, an effort
was made to reduce the size of the network and the entire study area was divided
into three clusters as shown in Fig. 2, with three separate ANN models predicting
groundwater levels 1 week advance at sites present in the respective cluster. Cluster
1 contains seven sites namely A, B, D, E, H, I and J (Fig. 2). Cluster 2 contains five
sites namely C, F, G, K and L and Cluster 3 contains six sites namely M, O, P, Q, R
and S. The division of the study area into three clusters and modeling each cluster
separately will not have any effect on the final output as the pumping in the tubewells
of any cluster has a very minor effect on the water level in tubewells of other clusters.

In each cluster, groundwater levels at the sites in the previous time step, pumping
rates of the tubewells, weekly total rainfall, average weekly pan evaporation and
average weekly river stage were considered as input parameters. In the third cluster,
however, an additional input parameter average weekly water level in the drain
was considered as it has potential to affect the groundwater level in this cluster
only. Thus, Cluster 1 had 17 input nodes and seven output nodes, Cluster 2 had 13

Table 2 Optimum number of
hidden neurons for the three
ANN training algorithms

Cluster GDX LM BR

Cluster 1 10 40 10
Cluster 2 30 20 20
Cluster 3 30 20 40
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Fig. 7 a–c Variation of RMSE and model efficiency with the number of nodes in the hidden layer
for cluster 3
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input nodes and five output nodes and Cluster 3 had 16 input nodes and six output
nodes as shown in Table 1. The performance of GDX, LM and BR algorithms in
predicting groundwater levels 1 week ahead was evaluated separately for all the
three clusters. The optimal number of hidden neurons for each cluster and algorithm
was determined by the trial and error method. The ANN architecture with lowest
RMSE value, highest correlation coefficient and highest Nash-Sutcliffe coefficient
was considered to yield optimum number of hidden neurons. This procedure was
repeated for all the three clusters with three different training algorithms. The
optimum number of hidden neurons for the three training algorithms and three
clusters thus obtained are presented in Table 2. Figure 7a–c show the variation
of RMSE and model efficiency (E) with the number of nodes in hidden layer for
three different algorithms, respectively for Cluster 3 as an example. The values of
statistical indicators for the three training algorithms for the three clusters are shown
in Table 3 during training and testing periods. The values of the statistical indicators
have been obtained by taking the average of values obtained for the number of sites
in each cluster. It can be seen from Table 3 that the performance of all the three
training algorithms is good during both training and testing periods; they are able to
forecast groundwater levels 1 week in advance with a reasonable accuracy in all the
three clusters. For the GDX training algorithm during testing period, the correlation
coefficient (R) values range from 0.9678 to 0.9756, bias values from −0.0618 to
−0.0159 m, Nash-Sutcliffe efficiency (E) values from 0.9307 to 0.9388, and RMSE
values from 0.3722 to 0.4239 m. For the LM training algorithm during testing period,
the R values range from 0.9697 to 0.9815, bias values from −0.0806 to −0.0292 m,
E values from 0.9318 to 0.9380, and RMSE values from 0.3760 to 0.4244 m, whereas
these figures for the BR algorithm are 0.9721 to 0.9793, −0.0613 to 0.0027 m, 0.9366
to 0.9518, and 0.3182 to 0.3905 m respectively.

It is apparent from these performance criteria that all the three ANN training
algorithms yield more or less same results, but the Bayesian regularization (BR)
algorithm performs slightly better than the remaining two algorithms. It is followed
by the Lavenberg-Marquardt (LM) algorithm and the GDX algorithm respectively.

Figure 8a–c show the comparison of predicted groundwater levels (1 week ahead)
by different training algorithms with the observed groundwater levels at three

Table 3 Comparison of GDX, LM and BR algorithms

Algorithm R Bias (m) E RMSE (m)

Training Testing Training Testing Training Testing Training Testing

Cluster 1 (1-week lead time)
GDX 0.9739 0.9678 0.0499 −0.0267 0.9460 0.9307 0.3235 0.3785
LM 0.9881 0.9697 0.0058 −0.0600 0.9743 0.9318 0.2178 0.3760
BR 0.9895 0.9721 0.0194 −0.0613 0.9785 0.9366 0.2031 0.3648

Cluster 2 (1-week lead time)
GDX 0.9766 0.9733 0.0003 −0.0618 0.9536 0.9319 0.2823 0.3722
LM 0.9953 0.9772 −0.0032 −0.0292 0.9905 0.9321 0.1274 0.3782
BR 0.9773 0.9793 −0.0084 −0.0430 0.9546 0.9518 0.2777 0.3182

Cluster 3 (1-week lead time)
GDX 0.9664 0.9756 −0.0039 −0.0159 0.9336 0.9388 0.4133 0.4239
LM 0.9935 0.9815 −0.0394 −0.0806 0.9856 0.9380 0.1927 0.4244
BR 0.9695 0.9785 −0.0317 0.0027 0.9378 0.9503 0.4008 0.3905
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Fig. 8 a–c Comparison between the observed groundwater levels and the groundwater levels
predicted 1 week ahead by GDX, LM and BR algorithms at Baulakuda, Dahigan and Chanduli
sites during testing period
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different locations from each cluster, i.e., Baulakuda (A) from the first cluster,
Dahigan (K) from the second cluster and Chanduli (S) from the third cluster of
the study area. These figures indicate that there is a very good matching between
observed and simulated groundwater levels at all the sites. Based on the performance
criteria used in this study and the graphical comparison, it can be inferred that all
the three algorithms yield more or less same results. However, the performance
of the Bayesian regularization algorithm can be considered superior based on the
statistical indicators used in this study. On the other hand, the GDX algorithm can
effectively be used for large networks with little less accuracy than the Lavenberg-
Marquardt algorithm and the Bayesian regularization algorithm respectively. In
practice, however, any of these three algorithms could be used for groundwater
prediction in the study area.

4.2 Forecasting of Groundwater Levels at Higher Lead Times

As out of the three ANN training algorithms examined in this study, the Bayesian
regularization algorithm performed marginally better than the remaining two algo-
rithms, it was further used to forecast groundwater levels at 2-, 3- and 4-week in
advance in one cluster (Cluster 1 was selected as an example). It is worth mentioning
that the ANN inputs used for this analysis were the same as that used for predicting
groundwater levels at 1 week in advance. The performance of these models in terms
of R, Bias, E and RMSE statistics along the prediction time horizon during the testing
period is shown in Table 4. The values of the statistical indicators have been obtained
by taking the average of values obtained for the seven sites. It is apparent from this
table that the R value varies from 0.9721 for 1-week lead time forecast to 0.9389 for
4-week lead time forecast, the value of E varies from 0.9366 for 1-week lead time to
0.8647 for 4-week lead time, the value of bias varies from −0.0613 m for 1-week lead
time to −0.1286 m for 4-week lead time and the value of RMSE varies from 0.3648 m
for 1-week lead time to 0.5456 m for 4-week lead time. It is interesting to note that
the performance of the 3-week lead time forecast model is better than the 2-week
lead time forecast model. Thus, based on the statistical indicators, it can be inferred
that the predicted groundwater levels for the higher lead times (2 to 4 weeks) are
reasonable in this study, but the performance of the ANN model generally decreases
with an increase in the lead time.

Moreover, the magnitude of residual or prediction errors (i.e., the difference
between observed and predicted groundwater levels) for different lead times is
illustrated in Fig. 9a–c for three sites, i.e., Baulakuda (A), Dadhibamanpur (E) and
Dhuleswar (J), respectively as an example. In these figures, a positive sign indicates

Table 4 Goodness-of-fit statistics for different lead time forecasts

Lead time R Bias (m) E RMSE (m)

(week) Training Testing Training Testing Training Testing Training Testing

1 0.9895 0.9721 0.0194 −0.0613 0.9785 0.9366 0.2031 0.3648
2 0.9658 0.9469 −0.0008 −0.0837 0.9327 0.8866 0.3615 0.4919
3 0.9617 0.9573 0.0088 −0.0267 0.9245 0.9065 0.3816 0.4480
4 0.9604 0.9389 −0.0657 −0.1286 0.9199 0.8647 0.3951 0.5456
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Fig. 9 a–c Variation of prediction errors at Baulakuda, Dadhibamanpur and Dhuleswar sites for
different lead times
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overestimation and negative sign indicates underestimation of groundwater levels by
the model. At Baulakuda site, for the 1-week lead time, the residual error ranges
from −0.35 to 1.36 m, whereas for the 4 week lead time, the residual error varies
from −0.57 to 2.62 m. The corresponding figures for Dadhibamanpur site are −0.47
to +1.29 m for the 1-week lead time and −0.84 to +2.21 m for the 4-week lead time
and for Dhuleswar site are −0.51 to +1.42 m for the 1-week lead time and −0.75
to +2.64 m for the 4-week lead time. It is obvious from Fig. 9a–c that there is an
increase in the range of error at all the three sites with an increase in the prediction
time horizon from 1-week lead time to 4-week lead time. Thus, with an increase in
the lead time there is an increase in the prediction/residual error, which confirms the
earlier finding based on the performance criteria.

On the whole, it can be inferred that despite the data constraints in this study,
the developed ANN models could predict weekly groundwater levels over the river
island reasonably well for 1-, 2-, 3- and 4-week lead times. Thus, the ANN technique
is more suitable where the knowledge of hydrological/hydrogeological parameters is
limited. According to Coppola et al. (2005), while numerical models may be more
appropriate for long-term predictions, the ANN technique may be better for real-
time short-horizon predictions at selected locations that require a high accuracy.

5 Conclusions

In this paper, three artificial neural network models have been developed for ground-
water level forecasting in a river island located in the tropical humid region, eastern
India. ANN modeling was carried out using feedforward neural network architecture
to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs
of the ANN models were weekly rainfall, pan evaporation, river stage, water level in
the drain, pumping rate and groundwater level in the previous week. Thus, there
were altogether 40 input nodes and 18 output nodes. The performance of three ANN
training algorithms, viz., Gradient descent with momentum and adaptive learning
rate backpropagation (GDX) algorithm, Levenberg–Marquardt (LM) algorithm
and Bayesian regularization (BR) algorithm was evaluated using salient statistical
indicators and visual checking. It was observed that the BR and LM algorithms had
a very high memory requirement and hence, they were difficult to be evaluated by
the trial and error method. As a result, the entire study area was divided into three
clusters and ANN modeling was performed separately for each cluster.

The analysis of the ANN modeling results revealed that all the three training
algorithms yield more or less same results, and hence any of these three algorithms
can be used for predicting groundwater levels over the study area. However, the
performance of the Bayesian regularization (BR) algorithm is considered superior
based on the statistical indicators used in this study. The ANN model trained with
BR algorithm was further used to predict groundwater levels at 7 sites in Cluster
1 with higher lead times (2- 3- and 4-week lead times) using the same inputs. It
was found that the groundwater prediction is reasonably good for all the three lead
times, but the accuracy of prediction decreases with increasing lead times. Overall,
it can be concluded that despite the limited data used in this study, the developed
ANN models are capable of predicting weekly groundwater levels over the study
area reasonably well even for higher lead times.
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