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Abstract The problems involved in the optimal design of water distribution net-
works belong to a class of large combinatorial optimization problems. Various
heuristic and deterministic algorithms have been developed in the past two decades
for solving optimization problems and applied to the design of water distribution
systems. Nevertheless, there is still some uncertainty about finding a generally trust-
worthy method that can consistently find solutions which are really close to the global
optimum of this problem. The paper proposes a combined genetic algorithm (GA)
and linear programming (LP) method, named GALP for solving water distribution
system design problems. It was investigated that the proposed method provides
results that are more stable in terms of closeness to a global minimum. The main idea
is that linear programming is more dependable than heuristic methods in finding the
global optimum, but because it is suitable only for solving branched networks, the
GA method is used in the proposed algorithm for decomposing a complex looped
network into a group of branched networks. Linear programming is then applied
for optimizing every branch network produced by GA from the original looped
network. The proposed method was tested on three benchmark least-cost design
problems and compared with other methods; the results suggest that the GALP
consistently provides better solutions. The method is intended for use in the design
and rehabilitation of drinking water systems and pressurized irrigation systems as
well.
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1 Introduction

A water distribution network is a system containing pipes, reservoirs, pumps, and
valves of different types, which are connected to each other to provide water to
consumers. The problems involved in the optimal design of this system are huge;
they belong to a class of problems known as NP-hard problems, where the problem is
intractable, and it is not practical to perform a full enumeration using any rigorous al-
gorithm. For this reason, various algorithms ranging from artificial intelligence to the
optimization domain were applied. Alperovits and Shamir (Alperovits and Shamir
1977) presented a linear programming gradient for optimizing a water distribution
network. This is an iterative method where, at each iteration, a fixed set of flows is
tried, and every pipe is divided into segments, each with a different diameter. The
decision variables are the lengths of each segment, and the problem is reduced to a
linear one. In the successive iterations, the flow variables are heuristically adjusted
according to the gradient of the objective function. Kessler and Shamir (Kessler
and Shamir 1989) used the linear programming gradient method as an extension
of this method. It consists of two stages: an LP problem is solved for a given flow
distribution, and then a search is conducted in the space of the flow variables. Later,
Fujiwara and Khang (Fujiwara and Khang 1990) used a two-phase decomposition
method extending the method of Alperovits and Shamir to non-linear modeling.
Also, Eiger et al. (1994) used the same formulation as Kessler and Shamir, which
leads to a determination of the lengths of one or more segments in each link with
discrete diameters. Nevertheless, these methods fail when solving problems of large
looped systems.

The researchers have focused on stochastic or so-called heuristic optimization
methods from the early 1990s. Simpson et al. (1994) used a simple genetic algorithm
in which each individual solution from the population of solutions is represented by
a string of bits with identical lengths. The simple GA was then improved by Dandy
et al. (1996) using the concept of the variable power scaling of the fitness function, an
adjacency mutation operator, and gray codes. Savic and Walters (Savic and Walters
1997) also used a simple GA in conjunction with an EPANET network solver.

Other heuristic techniques have also been applied to the optimization of a water
distribution system, such as simulated annealing (Loganathan et al. 1995; Cunha and
Sousa 2001); an ant colony optimization algorithm (Maier et al. 2001); a shuffled
frog leaping algorithm (Eusuff and Lansey 2003) and a harmony search (Geem et al.
2002), to name a few.

Nowadays, the main concern in developing methods for the design of water
distribution networks consists of solving various types of multi-objective tasks (for
instance, a combination of an economic design with the reliability of a water distri-
bution system, leakage reduction, location of the water quality sensors, etc.). These
tasks could be implemented quite effectively in existing multi-objective optimizers
such as NSGA-II, SPEA or others. The question is how different are pareto fronts
obtained from these computations from the true optimal pareto fronts of these
tasks (e.g., from a global optimum). Although research exists which deals with the
task of performance assessment of multi-objective optimizers (e.g., Zitzler et al.
2003) mainly methods for relative comparisons of existing algorithms are available.
That is why this paper deals with a least-cost design where a measurement of an
approximation to a global optimum could be more easily evaluated. The author
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expects that when an optimization model with a better approximation to the global
optimum for this task evolves; a better basis for more complicated multi-objective
tasks will also be obtained.

Significant differences from known global optimums are referred to even for
single objective tasks and simple benchmark networks, while existing algorithms
are applied. Reca et al. (2008) evaluated the performance of several meta-heuristic
techniques—genetic algorithms, simulated annealing, tabu search, and iterated local
search. He compared (among other testing accomplished) these techniques by
applying them to medium-sized benchmark networks. The results which he obtained
for the Hanoi network (after ten different runs with five heuristic search techniques)
varied from 6,173,421 to 6,352,526. These results differ by 1.5–4.5% from the known
global optimum for this task, which is a relatively large deviation for such a small
problem. Similar results were presented by Zecchin (Zecchin et al. 2007) in a
comparative study of ant colony optimization algorithms in which other heuristic
algorithms were also tested. It could be expected for larger networks and networks
for which the global optimum is not known (i.e., what should be obtained from
computations), that this difference would be even greater (e.g., more than 6% for
the network tested in Cisty et al. (1999). It should be noted that real life problems
never get the privileges afforded the Hanoi or other benchmark network, which were
computed in various optimizer hours or maybe years of CPU time. This runtime
reduction for real designs also increases the possibility of greater errors in the
solutions obtained in comparison to the global minimum. Similarly this difference
between the local optimum obtained and the global optimum would logically be even
greater for more complicated tasks (multi-objective optimization).

The difference from the global optimum mentioned is not only a problem of a
bit higher cost of the network design, but designs which are closer to the global
optimum are also usually more logical designs from an engineering point of view. The
common experience of users who apply heuristic techniques (which offer suboptimal
solutions) is, for instance, the observation that in the results of the computations,
it often occurs that a larger diameter of a pipe is proposed by these methods after
a smaller one in the flow direction (in the direction in which the flows are smaller
because of the demands from the network), which is not acceptable in practical
design.

Research on the optimal design of water distribution systems continues to this
day. Many published papers have been concerned with improving the effectiveness
of traditional heuristic algorithms, while others have been concerned with their
efficiency or developing new search methods. For example, a recent development
in the field of evolutionary algorithms is to use probabilistic methods to identify key
building blocks (short, highly fit groups of genes). These techniques are replacing the
traditional crossover and mutation methods in genetic algorithms for the generation
of offspring with the building and sampling of a probabilistic model describing
the genomes in a set of promising solutions (Olsson et al. 2008). New algorithms
are being tested—e.g., Raad and Vuuren (2008) applied a modern metaheuristic
framework known as AMALGAM, which was developed in 2007 by Vrugt and
Robinson (2007). This framework allows for the simultaneous incorporation of
multiple heuristics within a generic evolutionary framework in the hope of improving
performance and efficiency by adopting the philosophy of power in diversity. More-
over, completely different methods are being proposed: Ekinci and Konak (2009)
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proposed a method by which they built on the idea that head losses through pipelines
should be minimal and as nearly equal as they can possibly be. In their study, the
initial flows and pipe diameters are determined by a weighting optimization process
to get a reliable solution satisfying those conditions in a concrete manner. A datum
optimization procedure is realized to get a least-cost design alternative giving the
optimum conditions for the system.

Nevertheless, it must be pointed out that there still exists uncertainty as to how
close any heuristic method could approximate solving the task of a global optimum.
The main concern of this paper is to propose a method which is more dependable in
converging more closely to a global optimum than existing algorithms.

A heuristic search is a method that might not always find the best solution,
but is usually capable of finding a near optimum solution in a reasonable time.
The advantage of applying these methods in a water distribution design is that
very complicated tasks can be solved by them, because heuristic methods have the
potential to take everything that is possible to compute by a simulation model of a
water distribution system as an optimization objective. On the other hand, the issue
of precision is problematic.

How closely any solution from the computation of the optimization in a particular
case could achieve a global optimum depends on the complexity of the problem.
Generally, a more complex problem is a problem for which a larger or more
complicated search space must be explored. The reduction of the search space is
the main approach of this paper on how to design a method which has a greater
potential to find results which are really close to a global optimum. A new hybrid
GA-LP approach using a genetic algorithm and linear programming is proposed in
this study for determining the least-cost design of a water distribution system. It is
built on the advantages of both the deterministic and heuristic methods. The GA
method is used in the outer loop of the proposed algorithm, which is intended for
decomposing a complex looped network in a group of equivalent branched networks.
LP is then used in an inner loop to solve each branched network and provide a
minimum-cost design. After evaluating a high number of possible branched networks
(by LP, which is nested in a GA fitness function), an optimal solution is found for the
original looped network.

The advantage of using this hybrid method consists in the fact that a GA in this
case has a much smaller searching space than in a case when GA methodology is
used alone, which has a great impact when trying to achieve better results. How this
is achieved will be explained later after introducing the details of the methodology.

2 Methodology

2.1 Deterministic Part of the Proposed Method—Linear Programming

The linear programming method has long been accepted as an approach for the
optimal selection of diameters for pipes in branched networks, e.g., in the design
of irrigation systems. The mathematical formulation of this problem is as follows:

X11 + X12 + . . . + X1n = B1

X21 + X22 + . . . + X2n = B2
(1)
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etc.

Xm1 + Xm2 + . . . + Xmn = Bm

A11 X11 + A12 X12 + . . . + Axy Xxy ≤ C1
(2)

etc.

D1 X11 + D2 X11 + . . . + DjXmn = min (3)

The solution has to comply with inequalities:

X11 > 0; X12 > 0 etc. up to Xmn > 0 (4)

Where

Xij is the unknown length of the selected diameter j on section i. The allowable
diameters must satisfy the velocity conditions on the section.

Bi the total length of the section
Ci allowable total loss for the constraint—described below
Di the unit price of a pipeline with the diameter number i

The choice of a split-pipe design was made for the present work (more than one
diameter can be proposed for a section; a section is the pipe connection between
two nodes). The possible problem, that the algorithm will propose small lengths of
particular diameters on a section could be easily overcome by including an additional
system of expressions which would fix the minimal lengths by “greater than. . . ”
conditions (greater than the fixed length or a fraction of the total length of the
section). Moreover, a discrete diameter design is possible to fix on some short
sections, when a formulation of the linear programming method with binary variables
is used. And finally, a split pipe design offers a better cost on the same network
than are those obtained from a discrete diameter design, so there is some reserve for
correction of the final solution.

When linear programming is applied in order to solve the optimal design of
pipeline networks, the unknown will be the lengths of the individual pipeline
diameters on the section. In conditions (Eq. 1) the requirement that the sum of
the unknown lengths of the individual diameters in each section has to be equal
to its total length is enforced. The second type of equations—constraints (Eq. 2)—
represents the condition that the total pressure losses in a hydraulic path between
a pump station or tank and every critical node (the end of the pipe network; the
extreme elevation inside the network) should be equal to or less than the known
value. This constraint is based on the minimum network pressure requirements
needed for the operation of the system. There should be the same number of
these constraints as there are critical nodes in the network. Given the minimization
requirement for the investment costs, the objective function (Eq. 3) is the sum of the
products of the individual pipeline unit prices and their required lengths. As will be
described later, this system of the equation should be compounded automatically in
the fitness function of the GA.

When multi-demand conditions in the LP model are incorporated, there will be a
system of constraint (Eq. 2) for every demand pattern. When pumps are also included
in a model, the main input parameter for a pump is its pump curve. The right sides of
the constraints (Eq. 2) vary according to the pump’s operating conditions. The head
of the pump may be treated as an unknown variable.
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2.2 Heuristic Part of the Proposed Method—Genetic Algorithms

In order to overcome the above-mentioned deficiencies of the linear programming
techniques, heuristic optimization techniques have been introduced for solving the
optimization of water distribution systems. Firstly, a genetic algorithms methodol-
ogy, which is also used in this study was applied. This is a search procedure inspired
by the mechanics of natural genetics and natural selection. This methodology is
finding increased application in solving difficult problems of engineering, science,
and commerce. Its basic concepts are briefly summarized below; a good introduction
to the subject is given by Goldberg (1989).

The first step is to represent a solution to the problem by a string of genes that
can take on some value from a specified finite range. This string of genes, which
represents the solution, is known as a chromosome. Then an initial population of
chromosomes is constructed at random. Genetic algorithms are implemented as a
computer simulation in which a population of chromosomes evolves toward better
solutions by means of genetic operators such as inheritance, mutation, selection, or
crossover. At each generation, the fitness of each chromosome in the population
is measured. The fitter chromosomes are more often selected probabilistically to
produce offspring for the next generation. This process is repeated until some form
of convergence in the fitness is achieved. The goal of the optimization process is to
maximize the fitness.

In the case of the design of a pipe network the optimization problem can be stated
as follows: minimize the cost of the network components subject to the satisfactory
performance of the water distribution system. If we simplify the problem to designing
only new pipes, the chromosome can be a string of the possible diameters of its
corresponding section. An efficient and effective search for the optimum design
solution of a water distribution network using genetic algorithms is governed by
factors such as a representation scheme, population size, hydraulic simulation model,
fitness function, penalty method, GA operators, number of generations and, more
importantly, the size of the search space.

2.3 Hybrid GA—LP Approach to the Optimal Design of Water Distribution
Systems

2.3.1 Basic Description of the Algorithm

The proposed method is based on a combination of linear programming methodol-
ogy and a genetic algorithms approach. The main reason is that linear programming
always finds the global optimum if it exists. But because LP is suitable only for
solving branched networks, the GA method is used for decomposing a complex
looped network into a group of branched networks. These branched networks are
characterized by hydraulic behavior identical to a looped network on the condition
of having identical diameters on the corresponding sections of the network. Identical
hydraulic behavior means that there are identical flows in the corresponding pipes
and identical pressures in the corresponding nodes in the original looped network
and branched networks investigated. The decomposition of a looped network means
that before the optimization, every loop is split in some demand node (or node in
which a branch is connected) which is part of this loop. There are many possibilities
for accomplishing such a decomposition in a water distribution network. Linear
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programming is then applied for optimizing every branch network produced by
GA from the original looped network, and GA is simultaneously applied for the
evolution of the best splitting option.

The main aspect of the motivation to propose the new optimization algorithm
presented is that the definition of a chromosome is in an obvious GA approach as
long (in the sense of the number of genes) as many pipe sections are in the water
distribution network. The definition of a chromosome proposed herein produces
significantly shorter strings (which mean a smaller search space) for most networks
because the number of genes will be the same as the number of loops in the network
and not equal to the number of pipes. This means easier searching with better results.

An example of possibilities for splitting a loop is shown in Fig. 1. Let us suppose
that all the parameters of the network in Fig. 1a) are already known (diameters,
lengths, demands, flows, etc.), so we are not in the design stage for this network, but
we can suppose that it already exists. The loop can be transformed to a branch layout
without affecting the hydraulic behavior of the network (the flows and pressures
remain the same) if the loop is split in the demand node in which the flows are
entering from the two pipes connected to this node. There is one such node for every
loop in the network. This node could be a hydrant or branch connection. In Fig. 1a)
the original loop with a node in which there is a demand 3 l s−1 is shown. As can be
seen, flow 2 l s−1 is entering this node from the left side, and flow 1 l s−1 is entering this
node from the right side. So this is the node in which it is possible to break the loop
without affecting the hydraulic behavior of the network in the current conditions. A
loop could be split in this node in such a way that a “twin” node is introduced to the
network; the identical elevation on it is assumed as in the original node (and de facto
identical position). The original demand has to be split between these two nodes: the
left node will have the demand 2 l s−1 and the right node 1 l s−1 (Fig. 1b). This is what
could be (theoretically) done on the existing network. The branch network obtained
is hydraulically identical to the original looped network.

The situation is slightly different on a network which is just in the design stage.
Because the parameters of the network such as flows, etc., are not known before the
design of the network is ready, a loop split in the computation of the optimization
should be tried and evaluated in every demand node which is part of the loop.
Moreover, the original demand in every split node selected has to be divided between
the original node and its “twin node” according to some rule with a rational number
of alternatives (e.g., Fig. 1b, c). The number of alternatives depends on the demand
rate—a high demand in a node requires more alternatives. So the number of demand
nodes multiplied by the number of demand-splitting alternatives gives the number

Fig. 1 Alternatives for
splitting the loop in one
node—a original loop
network, b original network
transformed to a branch
network, c another possibility
of dividing the demand in the
design stage

3 21 12

(a) (b) (c)

21
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of possible branch networks in which it is possible to divide one loop network. For
networks with more loops, a combination of alternatives for every loop should be
considered. Because we are now talking about designing the network, it is necessary
to propose diameters for every alternative of the branch network which we get
by this procedure. This is accomplished by LP. The cheapest one is an optimum
which an algorithm is searching for. The search for the best possibility of splitting
the loops is guided by the GA, which proposes one possible branch network for
every chromosome in which both the splitting nodes and parameters for splitting
the demand in these nodes are coded. The branch network (or this chromosome) is
evaluated by accomplishing its design by LP, which is nested in the fitness function
of the GA. This is one iteration of the algorithm. The population of chromosomes
evolves toward better solutions by means of genetic operators such as inheritance,
mutation, selection, or crossover as is usual in the application of GA. With each
generation, the fitness of each chromosome in the population is calculated, and better
splitting options are evolving.

2.3.2 Details of the Proposed Algorithm

In this part of the paper some details of the proposed algorithm are discussed. These
include formulating the definition of the chromosome and establishing the so-called
Loop Links matrix (LL) and Loop Splitting Options matrix (LSO), both of which
help to organize searching for the best loop-splitting locations on the network, and
finally the R and Rs parameters for splitting the demands in the nodes where the
loops are divided. All these concepts are explained hereinafter with the help of
Fig. 2.

Because the basic principles of GA are known and were briefly described in Part
2.2, there is no whole algorithm scheme but only one demonstrative iteration of
the proposed algorithm displayed in Fig. 2. Therefore, the scheme displayed therein
explains the structure of a chromosome, its decoding and an evaluation of its fitness.
Other things such as initialization of the population, the evolving of the population
through genetic operators to the next generations, etc., work as usual in GAs.

The first thing which should be determined in this type of algorithm is the definition
of a chromosome. The chromosome of the illustrative three-looped network dis-
played in Fig. 2 can be seen on its left side. In the proposed method the chromosome
consists of two parts. The first half of the genes holds the value of a parameter,
which defines where a particular loop should be divided. There are the same number
of these genes as the number of loops in a network. Genes are coded as integer
numbers, which indicate a row number in an LSO matrix. This matrix defines all the
splitting possibilities for every loop and will be described hereinafter. The second
half of the genes in a chromosome is also coded as an integer value, and this value
defines the ratio by which the demand in the original split node should be divided
between the original node and its “twin node” after splitting the particular loop in its
location.

For every loop the vector of links of which it consists should be determined. This
will be done in successive steps for loop after loop, and when some link has already
been assigned in preceding the algorithm run to any previously analyzed loop (it is
already part of the vector of pipes for some loop), it will not be assigned to a vector
of links of a loop subsequently analyzed. The result of this analysis is an LL matrix
(e.g., Loop Links). It has a number of columns equal to the number of loops and a
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Fig. 2 Explanation of the basic concepts of an algorithm on one of its iteration

number of rows equal to the number of links in the largest loop of the network. This
assignment of pipes to loops (or LL columns) is shown in the network scheme in
Fig. 2 (loop 1—links 9, 10, loop 2–6, 7, 8 and loop 3–1, 2, 3, 4, 5). It is visualized here
by the line types in Fig. 2.

An additional matrix is established in which the locations for splitting loops are
defined. It is the LSO (Loop Splitting Options) matrix in Fig. 2. It has a column for
every loop and a row for every splitting possibility for the loops. The main value in
the cells of this matrix is the identification (number) of the splitting node N. It is a
node in which a loop can be divided. There is also a second parameter, which has
not yet been discussed, because it belongs to the details of the method. Together
with the splitting node split link L should also be specified. The split link is chosen
from the column of the LL matrix for a particular loop, and it is the one which is
connected to N. There can be one or two possible links L for every node N. The
original node N will be cloned to its twin node N–L for the sake of splitting the
loop. This twin node N–L replaces the original node N on link L, but on the other
pipes which were in the original looped network connected to N, this original node N
remains. It is the mechanism through which the idea of splitting the loops is realized.
It is possible to explain the purpose of the second parameter L for a definition of the
splitting locations (and why only the definition of the splitting node is not enough)
with this example: as could be imagined with the help of Fig. 2, it produces different
configurations of branched networks derived from the original looped network if the
split combination N, L for loop 3 is 5, 4 or 5, 5 (in both cases the loop is split in the
node N = 5, but L is different).
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The second half of the genes in a chromosome have the purpose of defining the
splitting of the demand in the node N selected between the original node and its
“twin” node N–L for every loop. For this purpose parameters R and Rs are defined
for every loop in the network. Parameter R is a real number between 0 and 1. The
demand in the split node is equal to QN = RQoriginal

N and QN−L = (1 − R) Qoriginal
N in

its “twin” node. We can define the set of allowable R by specifying Rs—a step for
R which is a number between 0 and 0.5. If Rs is set to 0.2, then possible values of
R could be {0.2; 0.4; 0.6; 0.8}. It is usually not less than 0.01, and it is recommended
that R/Rs be an integer number. Parameter R for a particular loop is selected by
a genetic algorithm as the value of a corresponding gene from the second half of
the chromosome genes (Fig. 2). In the example in Fig. 2 Rs is equal to 0.1; for the
sake of the integer coding is R multiplied by 10. In general the set of allowable R
is every multiple of Rs between Rs and R–Rs. If there should also be a possibility
incorporated in an optimization algorithm to eliminate some pipes from the network
originally included in the input data, R could be every multiple of Rs between 0 and
1 (inclusive). In this case if R were finally set by computation to 0 or 1, then in some
pipe connected to the node there will be zero flow, so there is no need for this pipe
in the network.

The proposed algorithm in its basic form can be summarized as follows:

Read input data (Epanet INP file, Rs for all loops, GA parameters, etc.)
Matrix LL is determined
Matrix LSO containing loop splitting possibilities is determined
Initial population generation
While termination condition is not satisfied, do:
{
Decoding chromosomes with the help of LSO and Rs (which means the creation
of as many branch networks as there are chromosomes in the population)
Evaluation of the fitness of each individual in the population by LP
Select the best-ranking (cheapest) individuals to reproduce
Breed a new generation through crossover and/or mutation (genetic operations)
and give birth to offspring
Evaluate the individual fitness of the offspring
Replace the worst ranked part of the population with offspring
}
Best solution output

In the last part of this section three remarks on the details of the proposed
algorithm follow.

Firstly, one more condition should be added to the LP model in the case of using
it in the context of solving looped networks.

The principle of the conservation of energy dictates that the difference in energy
between two points must be the same regardless of the path that is taken. Thus,
the difference in energy at any two points connected in a network is equal to the
energy gains from the pumps and the energy losses in the pipes and fittings that
occur in the path between them. This equation can be written for any open path
between any two points. Of particular interest are paths around loops because the
changes in energy must sum to zero. A linear programming model must also pay
attention to this principle, so its formulation, which is expressed by formulas 1–4
for the branched network only, have to be expanded by the loop condition in the
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proposed methodology; however each one of them was split into two branches by
the described method (Figs. 1 and 2). There should be the same pressure in the node
in which the loop was breaking and in its twin node after proposing the diameters
in the network (Fig. 1). Therefore, while the LP model is being built, the following
conditions should be added, which ensure that the same pressure must be in the
original and corresponding dummy twin nodes:

Ei = A11 X11 + A12 X12 + . . . + Axy Xxy (5)

Eti = A11 X11 + A12 X12 + . . . + Axy Xxy (6)

Ei − Eti = 0 (7)

Where

Ei and Eti are energy losses from the source (pump, reservoir) to the split node on
loop i and to its twin node

Amn hydraulic loss in section m and diameter n, which belongs to the
specified path

Xij is unknown length of the selected diameter j on section i

The second remark deals with the possible refinement of the proposed method,
which could be applied especially when the larger network is being solved by it.
By applying it, even a smaller search space (relatively) is to be searched for the
sake of finding the optimal solution. This refinement is derived from the detection
of the fact that for finding the optimal solution by the proposed method, it is
much more important to find locations where the loops should be divided, than the
determination of the R factors for dividing the demands in these locations between
the two nodes mentioned. The following refinement is especially useful when one is
solving networks with a large magnitude of demands.

In the proposed model a preprocessing phase could be implemented. In this
phase the model is run with only half of the genes in the chromosome, because
for all the split nodes, ratio R is fixed at 0.5. So there is only one possibility for
dividing the demands, which means there is no need for the second half of the genes
(Fig. 2), and they are left out from the definition of the chromosome in this phase.
This produces an even smaller search space than in the basic GALP algorithm, which
can in many cases be investigated with Steady State GA (although it is not necessary).
A Steady State GA is a type of genetic algorithm in which only the worst member of
the population gets replaced with each iteration. This method of progression tends
to arrive at a good solution much faster than the Generational GA, which is used
in the main part of the algorithm (a Generational GA is a type of genetic algorithm
in which the entire population is replaced with each iteration). The preprocessing
phase is based on the experience that in searching for an optimal design, it is more
important to find the location of split nodes than to find the best ratio R for splitting
the demands between the original and split nodes. The solution, which was found in
the preprocessing phase, is seeded to the initial population of the basic part of the
algorithm with a full chromosome which is described by a pseudocode hereinbefore.
This means that one or two chromosomes from the initial population of the basic part
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of the algorithm (which run with the complete chromosome) are changed according
to the best chromosomes from the preprocessing phase. Then the main phase with
a complete chromosome is evaluated by the Generational GA. When the optimal
solution is found, the third part of the algorithm can be (eventually) run. This serves
for the refinement of the solution which was found in the main (second) phase. This
refinement consists in better splitting of the demands in the already defined splitting
locations, which were found in the previous phases. Once again there is a reduced
definition of the chromosome used in the post-processing phase, but in this case
only the second half of the genes are present in its definition. In this stage only one
splitting options from LSO which were found in the previous step are used (set of N,
L for all the loops). So there is no need for the first half of the genes (Fig. 2). For the
second half of the genes the same Rs value as in the previous phase or the smaller
one could be used. Usually there is no need to run all three phases; running only the
second phase is possible; running the first and second is another option; or running
the first and third would be enough for finding the optimal solution.

The scheme of the algorithm with these refinements is shown in Fig. 3.
The third remark on the details of the proposed algorithm relates to its compatibil-

ity with EPANET. In an obvious simulation-based GA approach a hydraulic network
solver handles the pressure and velocity constraints and simultaneously evaluates the
hydraulic performance of each trial solution. The most commonly used simulation
model to analyze the network in such a manner is EPANET. In the proposed method

Fig. 3 The scheme of the
GALP algorithm with
preprocessing and
postprocessing phases
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simulation by EPANET (or another hydraulic engine) is not incorporated in the core
of the objective function (or fitness function), but linear programming is used instead.
But for the sake of compatibility with other optimization models, the computation of
the friction headlosses Amn (Eq. 2) is executed by EPANET by calling its functions
through the EPANET Toolkit.

3 Results

The performance of the GALP model developed for the optimization of the least-
cost design of a water distribution network problem is evaluated by the optimization
of the well-known Hanoi network and the double and triple Hanoi water supply net-
works. The first problem is taken from the literature. The second and third problems
were introduced by the author for the sake of evaluating the proposed method for
greater problems than the known and thoroughly investigated benchmark models.
There is also a second reason why the Hanoi network and its multiplications were
chosen – the main goal of this paper is to find a method which offers results closer to
the global optimum than existing methods do. The global optimum for the Hanoi net-
work is known because the long usage of this benchmark in the optimization methods
development community. The double and triple Hanoi networks are derived from it
in such a way that their global optimums could also be evaluated. On this basis it
is possible to compare the results obtained in testing runs with the known global
optimums in all three cases.

The water distribution trunk network in Hanoi, Vietnam, which was first intro-
duced by Fujiwara and Khang (1990) is shown in Fig. 4. The network consists of 34
pipes, 32 nodes, and three loops. It is a gravity-fed system from a single fixed head
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source and is designed to satisfy given demands at the required pressures. In this
problem six sizes of commercial pipe diameters are available, and the cost of each
pipe i with a diameter Di and length Li is calculated from Ci = 1.1 × D1.5

i Li, where
the cost Ci is in dollars, the diameter is in inches, and the length is in meters. The
Hazen-Williams coefficient is fixed at 130 for all the pipes. The data necessary for the
optimization can be found in the work of Fujiwara and Khang (1990).

The network consists of three loops, so three LSO matrices were determined
by the algorithm. Roulette wheel selection was used to choose the parents for the
next generation. A one-point crossover was used because of the relatively short
chromosome, and the probability of the selected pair of strings being subjected
to the crossover operator was taken as pc = 0.9. The mutation rate was set to be
pm = 0.1. A very simple penalty function was used: if the LP (the final producer
of every partial solution) does not find a solution (which could happen in some
configurations), the algorithm gives this solution a significantly higher cost than the
highest cost in the previous generation. The preprocessing phase of the algorithm
runs as Steady State GA, and it found a solution of $6,116,086.98 on every run in
iteration 185 or very close to that (which is a few seconds). This means that this is a
really simple problem for the algorithm. In the main part of the algorithm the ratio
R dedicated to dividing the original demand between the twin nodes in which the
network is disjoined was chosen as 0.1, and the population was seeded with local
minima obtained in the previous step. In this part the algorithm found a solution
of $6,057,697 with 1655 iterations. The third part of the algorithm was not run for
this network. The important thing here is that these computations were performed
without any refinement of the GA settings; although the experiments were conducted
by changing the settings of the main parameters, the impact of these changes on
the results was found to be rather small, both in the terms of the optimal cost and
the number of iterations. This means that for this network and for networks of a
similar size, there is no need to perform very often tedious and time-consuming fine
tuning of the GA parameters. The author chose the alternative described in Tables 1
and 2 in which the preprocessing and main phases of the algorithm were running as
the reference (global) optimal solution. It is the best solution for the optimization
of the Hanoi network referred in the literature which is feasible in terms of the
allowable pressures (computed by EPANET). Because the proposed method has
stochastic features, the result is not exactly the same on every run, but as was
mentioned above, it is always very similar. That is why the run-time plots and other
statistical evaluations of the computation will be described hereinafter only for the
triple Hanoi network, which is larger (100 pipes).

The performance of the GALP model for the optimization of the least-cost design
of a water distribution network problem is also evaluated by its application for the
double and triple Hanoi water supply networks. Because these two networks are
derived from the basic Hanoi network, their optimal cost is known (Figs. 5 and 6).

All the parameters for the reservoir, nodes and lines in the double Hanoi water
distribution network are the same as in the original Hanoi network on both mirrored
parts except for the first pipe (from the reservoir to node 2), which is shortened from
the original 100 to 28.9 m. This change was made for the sake of obtaining the same
head in node 2 (with a diameter of 1016 mm, which will certainly be proposed here
by any optimization method) as in the original Hanoi network. In such conditions the
optimal solution for the double Hanoi network should have the same diameters on
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Table 1 Results for the Hanoi
network

Pipe ID Length (m) Diameter (mm)

1 100 1,016
2 1,350 1,016
3 900 1,016
4 1,150 1,016
5 1,450 1,016
6 450 1,016
7 850 1,016
8 850 1,016
9 97.5 762

702.5 1,016
10 950 762
11 1,200 609.6
12 3,500 609.6
13 299.5 406.4

500.5 508
14 500 406.4
15 550 304.8
16 2,730 304.8
17 1,750 406.4
18 400.3 508

399.7 609.6
19 400 609.6
20 2,200 1,016
21 489.1 406.4

1,010.9 508
22 500 304.8
23 2,650 1,016
24 1,230 762
25 1,300 762
26 850 508
27 263.7 304.8

36.3 406.4
28 750 304.8
29 1,500 406.4
30 1,629.1 304.8

370.9 406.4
31 1,600 304.8
32 150 406.4
33 860 406.4
34 59.9 508

890.1 609.6

Cost ($) 6,057,697

the corresponding pipes as in the original Hanoi network (on both mirrored parts).
In node 2 the same demand is as in the original Hanoi network; it is not doubled.
Under these conditions the reference optimal solution (global) could be evaluated as
follows:

CDH = 2CH − 2L1C1 + 28.9C1 (8)
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Table 2 Optimal pressure
heads for the Hanoi network

Node ID Pressure (m)

1 0
2 97.14
3 61.67
4 56.98
5 51.17
6 45.05
7 43.62
8 41.91
9 40.56
10 39.2
11 37.64
12 34.21
13 30
14 33.37
15 31.88
16 30.24
17 32.92
18 49.95
19 58.93
20 50.5
21 35.16
22 30
23 44.33
24 38.66
25 35.01
26 31.13
27 30
28 38.42
29 30
30 30.13
31 30.4
32 32.72

Where

CDH is the optimal cost of the double Hanoi network
CH reference optimal cost of the Hanoi network ($6,057,697)
L1 length of the first pipe on the original network (100 m)
C1 unit price of diameter 1,016 mm ($278.28)

For our solution described in Tables 1 and 2 (cost $6,057,697), which is the best
solution of the basic Hanoi network compared to the results known to the author, this
Means (according to Eq. 8) that the reference optimal solution of the double Hanoi
network should be $12,067,780.29. Only solutions which are feasible in terms of the
allowable nodal pressures computed by the EPANET network solver are taken into
consideration.

In the triple Hanoi water distribution network all the corresponding parameters
for the nodes and lines are the same as in the original Hanoi network on all three
(single Hanoi network) parts except for four pipes, the head in the reservoir and the
demand in one node. These changes were made for the sake of obtaining the same
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pressure in nodes 3, 33 and 63 (with a diameter of 1,016 mm on pipes 1, 2, 35 and
68, which will certainly be proposed here by any optimization method because of
the large flow in them) as in the original Hanoi network in node 3. In such conditions
the same diameters should be the optimal solution for the corresponding pipes as
in the original Hanoi network. These are the changes mentioned: the head in the
reservoir is set to 105 m; the length of pipe 1 is 1 m; the length of pipe 2 is 1,786.50 m;
and the lengths of pipes 35 and 68 are 1,641.69 m. In junction 3 the demand is equal
to zero. Under these conditions the reference (global) optimal solution of the triple
Hanoi network could be evaluated as follows:

CT H = 3 * CH − 3 L1C1 − 3L2C1 + (1 + 1, 786.5 + (2 × 1, 641.69)) C1 (9)

Where

CTH is the optimal cost of the triple Hanoi network
CH reference optimal cost of the Hanoi network ($6,057,744)
L1 length of the first pipe on the original network (100 m)
L2 length of the second pipe on the original network (100 m)
C1 unit price of diameter 1,016 mm ($278.28)

For our solution, which is the best solution of the basic Hanoi network compared
to the results known to the author, this means that the optimal solution of the triple
Hanoi network should be $18,373,697.49.

A comparison of the results obtained by the proposed method (which can propose
two diameters on some sections) with those published in the literature and obtained
by a discrete diameter design (only one diameter is proposed for a section) is a bit
problematic, and it is necessary to accomplish it comparatively to the corresponding
global minimums for the discrete and split pipe designs. A discrete diameter design
has somewhat limited possibilities in comparison with a split pipe design, which can
propose two diameters for some sections of the network from the point of view of the
resulting cost. Discrete diameter solutions for this reason always cost somewhat more
than split pipe design solutions. That is why the percentual differences were computed
from the reference global minimum—in the case of GALP it is the reference global
minimum for a split pipe design, and in the case of a discrete diameter design, another
reference global minimum will be taken as the basis. This will be evaluated by
Eqs. 8 and 9, but by the global minimum for the original Hanoi network, which was
obtained by the discrete diameter design methodology. So we will take as a reference
(the best) discrete diameter design solution obtained by (Geem et al. 2002). This
author used the harmony search method and found a feasible solution at a cost of
$6,081,087, and it is the best feasible solution for a discrete diameter design which
has been published in the literature. Only solutions which are feasible in terms of the
allowable nodal pressures computed by the EPANET network solver are taken into
consideration. When this is taken as the reference (optimal) discrete diameter design
of the Hanoi network, the reference (global) optimal discrete diameter solution for
the double Hanoi network should be $12,114,560.29 and $18,443,867.49 for the triple
Hanoi network.

The same parameters were also used for GALP as in the original Hanoi network
for the computations of the double Hanoi network. Through the application of the
preprocessing and main phase of the proposed algorithm, a solution of $12,073,039
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was found for the double Hanoi network. The table with the results (diameters and
pressures) is not specified here because it is too lengthy—it is available from the
author. Because the proposed method has stochastic features, the results are not
always exactly the same, but they are always very similar. That is why the run-
time plots and other statistical evaluations of the computation will be described
hereinafter only for the triple Hanoi network, which is larger (100 pipes).

More extensive testing was conducted for the triple Hanoi network, because it
is the largest of the three benchmarks used in this study, and its evaluation is the
most important. The main idea of these computations was to obtain a comparison
of GALP with the GA methodology which is incorporated as the heuristic part
of the GALP algorithm. The GALP optimization model was run with various GA
parameter settings. The size of the population was chosen as 100, 150, 200 or 250
chromosomes in various runs; the number of generations was chosen to be so big so
that there were 50,000 iterations in every optimization run (500, 334, 250 and 200).
The crossover operator was taken as pc = (0.8; 0.9; 0.95); the mutation rate was set
to be pm = (0.05; 0.1; 0.15); and every combination between all of these parameter
values served as input into the optimization run. This means that 36 runs, each with
different parameter settings and 50,000 iterations, were performed. There was no
need to run more computations, because the results were very consistent as will be
shown.

A comparison of solving all the benchmark problems with the solutions obtained
using other methods was made. The author’s own GA model (it is the GA which
was also used in the GALP), was also more intensively tested with the triple Hanoi
network. This was done for the opportunity to compare the performance of a
heuristic method with the proposed GALP method (which uses the same heuristic,
but is strengthened by including the LP). Similar settings for the GA were used as
were described for GALP in the previous paragraph. Because GALP has a little more
computationally intensive iteration for its combination of LP and GA, the GA has
the advantage of a longer run (not 50,000 iterations but 500,000 iterations in contrast
with GALP in every optimization run). In addition to more iterations, 10 runs with
every single combination of the setting of the parameters was also run by the GA
methodology, and only the best run was taken for an evaluation (this means 360 runs
every with 500,000 iterations were performed with GA).

This comparative system of testing GALP and GA is evaluated by the histograms
in Figs. 7 and 8. There it can be clearly seen that the errors of the solutions obtained
by the GA (the cost of the particular solution minus the global minimum in percents
is on the X axis) with respect to the global minimum have a higher order in
comparison with GALP. The GA results show that there was often an excess in
relation to the global optimum greater than 10%. The histogram of the GALP results
also shows that its runs are always very similar and with a significantly smaller excess
in relation to the global optimum.

The best results obtained with GALP, the GA optimization model OptiDesigner
and the HSNet model based on the Harmony Search methodology are summarized
in Table 3. The results in Table 3 demonstrate that the proposed GALP methodology
gives significantly better results in terms of closeness to the global minimum. This is
a consequence of the reduction of search space for GA in a GALP context. There
are three loops in the basic Hanoi network. This means that the chromosome for
the Hanoi network consists of 6 genes. There are 14 possibilities for splitting the first
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loop, eight for the second and seven for the third. The Rs factor used was set to be
0.1, so there are nine possibilities for splitting the demand in the split node in every
loop (01; 0.2; . . . ; 0.9). This means that there are 14 × 8 × 7 × 9 × 9 × 9 = 571,536
possibilities of which the search space of GALP for the basic Hanoi network consists.
The search space of the GA for the same problem is 634 = 2.86512E+26, which is
significantly greater. In the case of the triple Hanoi network there are 571.5363 =
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Table 3 Comparison of the best results when applying various methods

Method Hanoi Double Deviation from Triple Deviation from
Hanoi reference global Hanoi reference global

optimum (%) optimum (%)

GALP 6,057,697a 12,073,039 0.04 18,394,255 0.04
GA 6,081,087 12,600,624 4.01 19,269,160 4.47
OptiDesigner 6,115,055 12,795,541 5.62 –b –b

Harmony search 6,081,087a 12,404,680 2.39 18,839,302 2.67
aReference global solution
bA feasible solution was not found

1.86694E+17 possibilities for GALP and 6100 = 6.53319E+77 possibilities for GA.
In this case it can be seen that a three times greater problem has a smaller search
space when using GALP in comparison to when GA is used alone.

GALP is the method proposed by the author of this paper; references to other
methods are GA (Cisty 2002), Harmony search (GEEM 2002) and OptiDesigner—
http://www.optiwater.com/optidesigner.html. Other methods were also tested and
compared to GALP, but they provide similar or worst results than those in the
Table 3.

A typical run of the GALP optimization model can be seen in Fig. 9. It can be
seen here that a good result was obtained by GALP already after 60 generations (in
this particular run 100 chromosomes were in the population; crossover operator was
taken as pc = 0.95, and the mutation rate was set to be pm = 0.05).

4 Summary and Conclusions

The design of an optimal water distribution network is a complex task. Various deter-
ministic and heuristic algorithms have been proposed and attempted for solving this
problem. Researchers have focused on stochastic or so-called heuristic optimization
methods in the past two decades. Heuristic methods are used for solving a very
general class of computational problems by combining various rules for finding a
solution in a hopefully efficient way. Heuristic methods are generally applied to
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problems for which there is no satisfactory problem-specific algorithm or when it
is not practical to implement such a method. The advantage of heuristic optimization
techniques over the conventional optimization techniques is their robustness, speed,
flexibility and ability to solve large and complex combinatorial problems. If, in the
general optimization community, a heuristic algorithm already exists, its application
for water distribution optimization usually involves only coding a chromosome
and fitness function, and it is potentially applicable for the optimization of every
parameter and type of network which could be run in a simulation program (e.g.,
EPANET). This and some other issues are the reason why they are so popular.
Although the heuristic methods offer very good results from many points of view
(and it is sure that they will be consecutively developed and used), they also have
some disadvantages:

• They cannot guarantee the generation of a global or near global optimal solution,
particularly for large-scale systems

• They require extensive fine-tuning of the algorithm’s parameters, which are
highly dependent on the individual problem

• They can produce solutions in which the diameters can be optimally found
from an economic point of view, but the diameters can in some conditions be
distributed randomly: for instance, for the branched part of networks, there could
be larger diameters in some parts after the smaller ones in the direction of the
flow, which is wrong.

For these reasons the author has proposed a method in which genetic algorithms
(the heuristic method) are incorporated, but the final solution is produced by linear
programming. This method is described in the paper and successfully tested on the
benchmark networks. It was determined that the method gives results that are more
trustworthy in terms of closeness to a global minimum. This is because of the fact that
involving LP in an algorithm reduces the search space for heuristics very dramatically
on most network configurations. Although one iteration of the proposed method is a
little more computationally intensive than in the case of using GA only, this reduction
is finally more important for the effectiveness of the algorithm.

This paper is a first effort to present a novel methodology, so only the basic task
of optimizing water distribution systems is presented. Some suggestions for the scope
of future research are therefore proposed in this paragraph. In this paper a method
is applied, while a single demand loading is given as the input for optimization,
but a solution for multi-demand loading is described in some remarks hereinabove.
The effectiveness of the proposed concept should be tested, but the possibility of
accomplishing this exists by adding the set of conditions described in Eq. 2 for
every demand loading. In a practical design only two sets of demands are usually
considered—peak demands and fire flow demands. Also, a solution for a split pipe
design is preferred here, but a solution for designing only one pipe in a section is
possible using a mixed integer programming definition of the LP problem, which
is known. Split pipe design is often criticized in the water distribution systems
optimization community because of the preconception that it can propose small
sections with different diameters on a network—how to avoid this is described in
Part 2.1 of this paper. Also, pump head sizing is possible (but should be tested) by
the proposed GALP algorithm if the energy cost evaluation is known by adding the
unknown variable for the head to Eq. 2 and the corresponding cost parameter to
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the objective function (Eq. 3). The application of the method for the rehabilitation
or enlargement of existing systems is just a matter of software implementation—for
instance, when the rehabilitation of an existing network is to be solved, every first
unknown Xi1 in Eq. 1 should have a cost Di in the objective function (Eq. 3) equal
to zero (it is the cost of leaving the original pipe diameter in the section).

The method is proposed as an alternative to existing methods, mainly when a least-
cost design is to be solved. Its extension to solving multi-objective tasks should be
evaluated in future research. Nevertheless, the author supposes it should be tested
too, if it is not better to use a more precise method for this single objective task and
then refine the output from the least-cost design according to other criteria (or with
other demand pattern) by applying a simulation model. The design is always multi
objective, but that does not mean that this multi-objectivity must be covered in one
computation with too many objectives (and less precision). That is why the author
believes that this method can also be practically useful also in the stage described
and tested in this paper.

In this work only the basic GA method was used in the stochastic part of the
algorithm. It gives good results, but there is a possibility open to replace it with
some of the other and more effective heuristic methods which are available in the
optimization community. The author expects that this can even refine the method in
the future. The effect of such a refinement will mainly be revealed when significantly
larger networks than those tested here will be solved.
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