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Abstract In this study, an inexact multistage joint-probabilistic programming (IMJP)
method is developed for tackling uncertainties presented as interval values and
joint probabilities. IMJP improves upon the existing multistage programming and
inexact optimization approaches, which can help examine the risk of violating joint-
probabilistic constraints. Moreover, it can facilitate analyses of policy scenarios that
are associated with economic penalties when the promised targets are violated within
a multistage context. The developed method is applied to a case study of water-
resources management within a multi-stream, multi-reservoir and multi-period
context, where mixed integer linear programming (MILP) technique is introduced
into the IMJP framework to facilitate dynamic analysis for decisions of surplus-flow
diversion. The results indicate that reasonable solutions for continuous and binary
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variables have been generated. They can be used to help water resources managers
to identify desired system designs against water shortage and for flood control, and
to determine which of these designs can most efficiently accomplish optimizing the
system objective under uncertainty.

Keywords Dynamics · Inexact optimization · Multistage · Joint probability ·
Planning · Scenario analysis · Uncertainty · Water resources

1 Introduction

For decades, the growing population, developing economy, varying natural condi-
tions, shrinking water availabilities, and deteriorating quality of water resources
have exacerbated the issue of water allocation. Serious water shortage could arise
under disadvantageous river-flow conditions, leading to complexities in identifying
desired plans for resources allocation. On the other hand, flooding is becoming
one of the most destructive types of natural hazards, particularly under changing
climatic conditions. These have led to a variety of adverse impacts on the social–
economic development and human life. Furthermore, uncertainties that exist in
many system parameters and their interrelationships could intensify the complexities
of water allocation and flood control due to the temporal and spatial variations in
water availabilities and storage capacities. Decision supports for effectively plan-
ning water resources management under various uncertainties and complexities are
desired.

Previously, many researchers tried to tackle these difficulties through stochastic
mathematical programming (SMP) approaches (Loucks et al. 1981; Pereira and Pinto
1985, 1991; Tsakiris 1988; Kelman et al. 1990; Abrishamchi et al. 1991; Efremides
and Tsakiris 1994; Martin 1995; Ferrero et al. 1998; Huang and Loucks 2000;
Watkins et al. 2000; Seifi and Hipel 2001; Azaiez 2002; Luo et al. 2003, 2007; Wang
et al. 2003; Li et al. 2006; Tsakiris et al. 2007; Li and Huang 2008). Among them,
multistage stochastic programming with recourse (MSP) was an effective technique
that could handle uncertainties expressed as probability distributions as well as
permit revised decisions in each time stage based on information of sequentially
realized uncertain events (Birge and Louveaux 1997; Dupačová 2002). In MSP, the
uncertain information was often modeled as a multilayer scenario tree. The primary
advantage of scenario-based stochastic programming was the flexibility it offered in
modeling the decision processes and defining the scenarios, particularly if the state
dimension was high (Birge 1985). For example, Watkins et al. (2000) proposed a
scenario-based multistage stochastic programming model for planning water supplies
from highland lakes, where dynamics and uncertainties of water availability (and
thus water allocation) could be taken into account through generation of multiple
representative scenarios. Li et al. (2006) developed an interval-parameter multistage
stochastic linear programming method for supporting water resources decision mak-
ing, which could deal with uncertainties expressed as discrete random variables and
interval values. However, these methods were incapable of accounting for the risk
of violating joint-probabilistic constraints within a multi-reservoir system; moreover,
the reservoir’s storage capacity was neglected. In fact, spills associated with the
storage limitations are critical for reservoir operations.
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Chance-constrained programming (CCP) method can reflect the reliability of
satisfying (or risk of violating) system constraints under uncertainty (Charnes et al.
1972; Charnes and Cooper 1983). It does not require that all of the constraints be
totally satisfied. Instead, the constraints can be satisfied in a proportion of cases with
given probabilities (Loucks et al. 1981). The CCP methods contain two categories:
individual probabilistic constraints (IPC) and joint probabilistic constraints (JPC).
In the IPC problems, each individual constraint is satisfied at a probability level;
consequently, probability for all constraints will be less than probability level for
individual constraint (Zhang et al. 2002). In the JPC problems, in comparison, the
whole set of uncertain constraints are enforced to be satisfied at least a probability
level; this allows an increased robustness in controlling system risk in the opti-
mization process. There have been many applications of CCP to water resources
management (ReVelle et al. 1969; Loucks et al. 1981; Fujiwara et al. 1988; Dupačová
et al. 1991; Morgan et al. 1993; Srinivasan and Simonovic 1994; Rangarajan 1995;
Huang 1998; ReVelle 1999; Edirisinghe et al. 2000). In general, although the CCP can
deal with uncertainties (of constraints) presented as probability distributions, three
limitations may exist: (1) it has difficulties in handling independent uncertainties
in the objective coefficients (Infanger 1993); (2) when uncertainties exist in the
left-hand sides, the resulting nonlinear model would be associated with a number
of difficulties in global-optimum acquisition; (3) for many practical problems, the
quality of information that can be obtained for various uncertainties is mostly not
satisfactory enough to be presented as probability distributions (Huang and Loucks
2000). Interval-parameter programming (IPP) is an alternative for dealing with
uncertainties existing in the left- and right-hand sides and in the objective function
that cannot expressed as distribution functions (Huang et al. 1995). Nevertheless,
no previous study was reported on the development of multistage joint-probabilistic
programming associated with inexact optimization as well as the relevant application
to water resources management.

Therefore, the objective of this study is to develop an inexact multistage joint-
probabilistic programming (IMJP) method in response to the above challenges.
Techniques of multistage stochastic programming with recourse (MSP), joint-
probabilistic constraint programming (JPC), and interval-parameter programming
(IPP) will be incorporated within a general framework. IMJP will be able to deal
with uncertainties expressed as not only probability distributions but also interval
values. It can also help examine the risk of violating joint probabilistic constraints. A
case study will then be provided for demonstrating how the developed method will
support the planning of water resources management within a multi-stream, multi-
reservoir and multi-period context.

The developed IMJP method will improve upon the existing stochastic program-
ming approaches with advantages in uncertainty reflection, policy investigation, risk
assessment, and dynamic analysis (Li et al. 2006, 2007; Li and Huang 2008; Guo et al.
2008). Compared with the inexact two-stage programming methods (Li et al. 2007;
Li and Huang 2008; Guo et al. 2008), the IMJP can incorporate more dynamic and
uncertain information within its modeling framework. The dynamics of uncertainties
(and thus decisions) can be taken into account through generation of a multilayer
scenario tree, and this allows corrective actions to be undertaken dynamically for
the pre-regulated policies and can thus help minimize the expected recourse cost; in
comparison, these two-stage optimization approaches do not require a tree structure,
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where uncertainties are considered to be discrete and mutually independent. In
comparison with the interval-parameter multistage linear programming (IMSLP)
method as advanced by Li et al. (2006), the IMJP is advantageous in tackling uncer-
tainties presented as joint probabilities within a multi-stream and multi-reservoir sys-
tem; moreover, a surplus-flow-diversion plan is considered to avoid flooding event;
nevertheless, in IMSLP, the reservoir’s storage capacity is neglected. In fact, spills
associated with the storage limitations are critical for reservoir operations. Moreover,
all of these previous two-stage and multistage optimization methods are incapable of
addressing the risk of violating system constraints under uncertainty. Generally, four
special characteristics of the developed method can make the IMJP unique compared
with the existing optimization techniques: (1) it can handle uncertainties in the
model’s left-hand sides and objective function presented as interval values and those
in the right-hand sides as joint probability distributions; (2) it can reflect the dynamics
of system uncertainties and decision processes under a complete set of scenarios
within a multistage context; (3) it can help examine the reliability of satisfying (or
the risk of violating) the system constraints under uncertainty; moreover, with joint
probabilistic constraints, it possesses an increased robustness in tackling the system
risk in the optimization process; (4) it can facilitate analyses of policy scenarios that
are associated with different levels of economic penalties when the regulated policy
targets are violated.

2 Methodology

Firstly, a multistage stochastic linear programming with recourse model can be
formulated as follows:

Max f =
T∑

t=1

Ct Xt −
T∑

t=1

Kt∑

k=1

ptk DtkYtk (1a)

subject to:

Art Xt ≤ Brt, r = 1, 2, · · · , m1; t = 1, 2, · · · , T (1b)

Ait Xt + A′
itkYtk ≤ w̃itk, i = 1, 2, · · · , m2; t = 1, 2, · · · , T; k = 1, 2, · · · , Kt (1c)

x jt ≥ 0, x jt ∈ Xt, j = 1, 2, · · · , n1; t = 1, 2, · · · , T (1d)

y jtk ≥ 0, y jtk ∈ Ytk, j = 1, 2, · · · , n2; t = 1, 2, · · · , T; k = 1, 2, · · · , Kt (1e)

where ptk is probability of occurrence for scenario k in period t, with ptk > 0 and
Kt∑

k=1
ptk = 1; Dtk are coefficients of recourse variables (Ytk) in the objective function;

A′
itk are coefficients of Ytk in constraint i; w̃itk is random variable of constraint i, which

is associated with probability level ptk; Kt is number of scenarios in period t, with

the total being K =
T∑

t=1
Kt. In model (1), the decision variables are divided into two

subsets: those that must be determined before the realizations of random variables
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are disclosed (i.e., x jt), and those (recourse variables) that can be determined after
the realized random-variable values are available (i.e., y jtk).

Obviously, model (1) can deal with uncertainties in the right-hand sides presented
as random variables with known probability distributions when coefficients in the
left-hand sides and in the objective function are deterministic. However, randomness
in other right-hand-side parameters may also need to be tackled. For example,
for water resources management within a multi-reservoir system, uncertainties
presented in terms of joint probabilities may exist in storage capacities (i.e., the
storage capacities may be fixed with a level of probability, which represents the
admissible risk of violating the uncertain capacity constraints). Such uncertainties
could lead to complexities in water allocation where interactive and dynamic re-
lationships exist within a multistage context. The technique of joint probabilistic
constraints (JPC) can be used for dealing with such complexities (Miller and Wager
1965; Charnes and Cooper 1983). A general JPC formulation can be expressed as
(Miller and Wager 1965):

Min cT x (2a)

subject to:

P (Tsx ≥ εs, s = 1, 2, ..., m3) ≥ q (2b)

Ax ≥ b (2c)

x ≥ 0 (2d)

Obviously, in JPC, the entire set of uncertain constraints are enforced to be satisfied
with at least a joint probability of q (Zhang et al. 2002; Lejeune and Prekopa 2005);
thus, an increased robustness in controlling the system risk can be accomplished,
compared with the IPC problems (where each individual constraint is satisfied at a
probability level). Model (2) is generally nonlinear and possibly non-convex due to
the existence of joint probabilities for multiple random variables (εs). By letting the
random variables take a set of individual probabilistic constraints, the JPC problem
can be equivalently formulated as a linear programming model as follows (Lejeune
and Prekopa 2005):

Min cT x (3a)

subject to:

Tsx ≥ F−1
s (qs) , s = 1, 2, · · · , m3 (3b)

m3∑

s=1

(1 − qs) ≤ 1 − q (3c)

Ax ≥ b , (3d)

x ≥ 0, (3e)

where qs (s = 1, 2, . . . , m3) are random variables constrained to be larger than or
equal to q, and F−1

s refer to inverse probability distributions of the random variables
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(εs). Consequently, the JPC technique can be incorporated with the above MSP
framework to deal with uncertainties presented as joint probabilities; this leads to
a hybrid multistage joint-probabilistic programming (MJP) model as follows:

Max f =
T∑

t=1

Ct Xt −
T∑

t=1

Kt∑

k=1

ptk DtkYtk (4a)

subject to:

Art Xt ≤ Brt, r = 1, 2, · · · , m1; t = 1, 2, · · · , T (4b)

Ait Xt+ A′
itkYtk ≤ w̃itk, i=1, 2, · · · , m2; t=1, 2, · · · , T; k=1, 2, · · · , Kt (4c)

Ast Xt+ A′
stYtk ≥ F−1

st (qs) , s=1, 2, · · ·, m3; t=1, 2, · · ·, T; k = 1, 2, · · · , Kt (4d)

m3∑

s=1

(1 − qs) ≤ 1 − q (4e)

x jt ≥ 0, x jt ∈ Xt, j = 1, 2, · · · , n1; t = 1, 2, · · · , T (4f)

y jtk ≥ 0, y jtk ∈ Ytk, j = 1, 2, · · · , n2; t = 1, 2, · · · , T; k = 1, 2, · · · , Kt (4g)

Model (4) can not only address uncertainties in its right-hand sides presented
as probability distributions but also reflect the reliability of satisfying (or risk of
violating) system constraints. However, uncertainties that exist in the left-hand sides
and the objective function may also need to be reflected. In many practical problems,
the quality of information that can be obtained is often not satisfactory enough to
be presented as probabilistic distributions; besides, even if such distributions are
available, reflection of them in large-scale stochastic optimization models could be
extremely challenging (Birge and Louveaux 1997; Huang and Loucks 2000; Li et al.
2006). Therefore, for uncertainties in left-hand sides and cost/revenue parameters
in the objective function, an extended consideration is the introduction of interval-
parameter programming (IPP) technique into the MJP framework. This leads to an
inexact multistage joint-probabilistic programming (IMJP) model as follows:

Max f ± =
T∑

t=1

C±
t X±

t −
T∑

t=1

Kt∑

k=1

ptk D±
tkY±

tk (5a)

subject to:

A±
rt X±

t ≤ B±
rt , r = 1, 2, · · · , m1; t = 1, 2, · · · , T (5b)

A±
it X±

t + A′±
itkY±

tk ≤ w̃±
itk, i=1, 2,· · ·, m2; t=1, 2,· · ·, T; k=1, 2,· · ·, Kt (5c)

A±
st X±

t + A′±
st Y±

tk ≤ F−1
st (qs), s=1, 2,· · ·, m3; t=1, 2,· · ·, T; k=1, 2,· · ·, Kt (5d)
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m3∑

s=1

(1 − qs) ≤ 1 − q (5e)

x±
jt ≥ 0, x±

jt ∈ X±
t , j = 1, 2, · · · , n1; t = 1, 2, · · · , T (5f)

y±
jtk ≥ 0, y±

jtk ∈ Y±
tk, j = 1, 2, · · · , n2; t = 1, 2, · · · , T; k = 1, 2, · · · , Kt (5g)

where superscripts ‘-’ and ‘+’ represent lower and upper bounds of the interval
parameters, respectively; an interval can defined as a number with known lower and
upper bounds but unknown distribution information (Huang et al. 1995). Then, a
two-step solution method is proposed for solving the IMJP model. The submodel
corresponding to f + can be formulated in the first step when the system objective is
to be maximized; the other submodel (corresponding to f −) can then be formulated
based on the solution of the first submodel. Let x±

jt ( j = 1, 2,. . . , j1) be variables
with positive coefficients in the objective function, x±

jt ( j = j1 + 1, j1 + 2,. . . , n1)
be variables with negative coefficients, y±

jtk (k = 1, 2, . . . , Kt and j = 1, 2,. . . , j2)
be recourse variables with positive coefficients in the objective function, and y±

jtk

(k = 1, 2, . . . , Kt and j = j2 + 1, j2 + 2,. . . , n2) be recourse variables with negative
coefficients. Thus, the first submodel is (assume that B± > 0 and f ± > 0):

Max f + =
T∑

t=1

⎛

⎝
j1∑

j=1

c+
jt x

+
jt +

n1∑

j= j1+1

c+
jt x

−
jt

⎞

⎠

−
T∑

t=1

Kt∑

k=1

ptk

⎛

⎝
j2∑

j=1

d−
jtk y−

jtk +
n2∑

j= j2+1

d−
jtk y+

jtk

⎞

⎠ (6a)

subject to:

j1∑

j=1

∣∣arjt
∣∣− Sign

(
a−

rjt

)
x+

jt +
n1∑

j= j1+1

∣∣arjt
∣∣+ Sign

(
a+

rjt

)
x−

jt ≤ b+
rt , ∀r, t (6b)

j1∑

j=1

∣∣aijt
∣∣− Sign

(
a−

ijt

)
x+

jt +
n1∑

j= j1+1

∣∣aijt
∣∣+ Sign

(
a+

ijt

)
x−

jt +
j2∑

j=1

∣∣∣a′
ijtk

∣∣∣
+

Sign
(

a′+
ijtk

)
y−

jtk

+
n2∑

j= j2+1

∣∣∣a′
ijtk

∣∣∣
−

Sign
(

a′−
ijt

)
y+

jtk ≤ w̃+
itk, ∀i, t; k = 1, 2, · · · , Kt (6c)

j1∑

j=1

∣∣asjt
∣∣− Sign

(
a−

sjt

)
x+

jt +
n1∑

j= j1+1

∣∣asjt
∣∣+ Sign

(
a+

sjt

)
x−

jt +
j2∑

j=1

∣∣∣a′
sjt

∣∣∣
+

Sign
(

a′+
sjtk

)
y−

jtk

+
n2∑

j= j2+1

∣∣∣a′
sjtk

∣∣∣
−

Sign
(

a′−
sjtk

)
y+

jtk ≤ (
ε+

s

)(qs)
, ∀s, t; k = 1, 2, · · · , Kt (6d)
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m3∑

s=1

(1 − qs) ≤ 1 − q (6e)

x+
jt ≥ 0, ∀t; j = 1, 2, · · · , j1 (6f)

x−
jt ≥ 0, ∀t; j = j1 + 1, j1 + 2, · · · , n1 (6g)

y−
jtk ≥ 0, ∀t; j = 1, 2, · · · , j2; k = 1, 2, · · · , Kt (6h)

y+
jtk ≥ 0, ∀t; j = j2 + 1, j2 + 2, · · · , n2; k = 1, 2, · · · , Kt (6i)

Solutions of x+
jt opt ( j = 1, 2,. . . , j1), x−

jt opt ( j = j1 + 1, j1 + 2,. . . , n1), y−
jtk opt ( j = 1,

2,. . . , j2 and k = 1, 2, . . . , Kt) and y+
jtk opt ( j = j2 + 1, j2 + 2,. . . , n2 and k = 1, 2, . . . ,

Kt) can be obtained through solving submodel (6). Based on the above solutions, the
second submodel corresponding to f − can be formulated as follows:

Max f − =
T∑

t=1

⎛

⎝
j1∑

j=1

c−
jt x

−
jt +

n1∑

j= j1+1

c−
jt x

+
jt

⎞

⎠

−
T∑

t=1

Kt∑

k=1

ptk

⎛

⎝
j2∑

j=1

d+
jtk y+

jtk +
n2∑

j= j2+1

d+
jtk y−

jtk

⎞

⎠ (7a)

subject to:

j1∑

j=1

∣∣arjt
∣∣+ Sign

(
a+

rjt

)
x−

jt +
n1∑

j= j1+1

∣∣arjt
∣∣− Sign

(
a−

rjt

)
x+

jt ≤ b−
rt , ∀r, t (7b)

j1∑

j=1

∣∣aijt
∣∣+ Sign

(
a+

ijt

)
x−

jt +
n1∑

j= j1+1

∣∣aijt
∣∣− Sign

(
a−

ijt

)
x+

jt +
j2∑

j=1

∣∣∣a′
ijtk

∣∣∣
−

Sign
(

a′−
ijtk

)
y+

jtk

+
n2∑

j= j2+1

∣∣∣a′
ijtk

∣∣∣
+

Sign
(

a′+
ijtk

)
y−

jtk ≤ w̃−
itk, ∀i, t; k = 1, 2, · · · , Kt (7c)

j1∑

j=1

∣∣asjt
∣∣+ Sign

(
a+

sjt

)
x−

jt +
n1∑

j= j1+1

∣∣asjt
∣∣− Sign

(
a−

sjt

)
x+

jt +
j2∑

j=1

∣∣∣a′
sjt

∣∣∣
−

Sign
(

a′−
sjtk

)
y+

jtk

+
n2∑

j= j2+1

∣∣∣a′
sjtk

∣∣∣
+

Sign
(

a′+
sjtk

)
y−

jtk ≤ (
ε−

s

)(qs)
, ∀s, t; k = 1, 2, · · · , Kt (7d)
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m3∑

s=1

(1 − qs) ≤ 1 − q (7e)

0 ≤ x−
jt ≤ x+

jt opt, ∀t; j = 1, 2, · · · , j1 (7f)

x+
jt ≥ x−

jt opt, ∀t; j = j1 + 1, j1 + 2, · · · , n1 (7g)

y+
jtk ≥ y−

jtk opt, ∀t; j = 1, 2, · · · , j2; k = 1, 2, · · · , Kt (7h)

0 ≤ y−
jtk ≤ y+

jtk opt, ∀t; j = j2 + 1, j2 + 2, · · · , n2; k = 1, 2, · · · , Kt (7i)

Solutions of x−
jt opt ( j=1, 2,. . . , j1), x+

jt opt ( j= j1+1, j1+2,. . . , n1), y+
jtk opt ( j=1, 2,. . . , j2

and k = 1, 2, . . . , Kt), and y−
jtk opt ( j = j2 + 1, j2 + 2,. . . , n2 and k = 1, 2, . . . , Kt) can be

obtained through solving submodel (7). Therefore, combining solutions of submodels
(6) and (7), we have solutions for the IMJP model as follows:

x±
jt opt =

[
x−

jt opt, x+
jt opt

]
, j = 1, 2, · · · , n1; ∀t (8a)

y±
jtk opt =

[
y−

jtk opt, y+
jtk opt

]
, j = 1, 2, · · · , n2; k = 1, 2, · · · , Kt; ∀t (8b)

f ±
opt =

[
f −
opt, f +

opt

]
(8c)

3 Application to Water Resources Management

An authority is charged with delivering water to a municipality to meet demands
for regional socio-economic development; meanwhile, it is responsible for flood
control and environmental protection. In the study region, there are two streams
and two reservoirs that supply water to the municipality (Fig. 1). Due to spatial
and temporal variations of the relationships between water demand and supply,
the desired water-allocation patterns would vary among different time periods. The
authority wants to know how much water can be allocated to the municipality under
varying stream inflows. If the targeted water is delivered, revenues will be generated
for each unit of water allocated; however, if the targeted water is not delivered,

Flood diversionReservoir 1

Stream 1

Stream 2

Reservoir 2

Water allocation

Fig. 1 Schematic of water resources management system
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penalties will be generated from the shortfalls. In general, the penalties are associated
with the acquisition of water from higher-priced alternatives and/or the negative
consequences generated from the curbing of regional development plans when the
promised water is not delivered (Loucks et al. 1981).

Uncertainties exist in many system components such as stream flows, reservoir
capacities, water-allocation targets, and benefit/cost coefficients. The random char-
acteristics of various processes and conditions, the errors in acquiring the modeling
parameters, and the imprecision of the related system constraints are possible sources
of the uncertainties. For example, in such a multi-reservoir system, uncertainties
presented in terms of joint probabilities may exist in storage capacities (i.e., the
storage capacities may be fixed with a level of probability, which represents the
admissible risk of violating the uncertain capacity constraints). Moreover, the system
is associated with multiple streams and multiple reservoirs where joint probabilities
exist in terms of water availabilities and storage capacities. Such uncertainties can
lead to interactive and dynamic complexities in terms of water allocation and diver-
sion over a multistage context. Therefore, the developed IMJP method is effective
for supporting water resources management under such complexities.

On the other hand, when the inflow levels are continuously high while the
demands are confined by the maximum limitation, more surplus would be generated;
when the surplus exceeds the reservoir’s storage capacity, spill would occur that
might potentially lead to flooding events. Losses can hardly be avoided when a
flooding event occurs. As a result, a sound surplus-flow-diversion plan is desired for
releasing the reservoirs’ water to avoid overflow and thus reduce such losses. Mixed
integer linear programming (MILP) is a useful technique for tackling this issue,
where desired water diversion plans can be obtained through using binary variables
to indicate whether a particular action needs to be undertaken (Li et al. 2007).
Therefore, through introducing MILP into the IMJP framework, an inexact mul-
tistage joint-probabilistic integer programming (IMJIP) model for water resources
management within a multi-reservoir system can be formulated as follows:

Max f ± =
T∑

t=1

NB±
t X±

t −
T∑

t=1

Kt
1∑

k1=1

Kt
2∑

k2=1

ptk1 ptk2 PE±
t Y±

tk1k2

−
T∑

t=1

Kt
1∑

k1=1

Kt
2∑

k2=1

ptk1 ptk2

(
FC±

t Z ±
tk1k2

+ VC±
t W±

tk1k2

)
(9a)

subject to:

S±
(t+1)k1

= S±
tk1

+ Q̃±
tk1

−
[

Aa
1e±

1t

(
S±

tk1
+ S±

(t+1)k1

2

)
+ A0

1e±
1t

]

−R±
tk1

, ∀t; k1 = 1, 2, · · · , Kt
1 (9b)

S±
(t+1)k1k2

= S±
tk1k2

+
(

Q̃±
tk2

+ R±
tk1

)
−

[
Aa

2e±
2t

(
S±

tk1k2
+ S±

(t+1)k1k2

2

)
+ A0

2e±
2t

]
− R±

tk1k2
,

∀t; k1 = 1, 2, · · · , Kt
1; k2 = 1, 2, · · · , Kt

2 (9c)
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X±
t − Y±

tk1k2
≤ R±

tk1k2
− W±

tk1k2
, ∀t; k1 = 1, 2, · · · , Kt

1; k2 = 1, 2, · · · , Kt
2 (9d)

X±
t + W±

tk1k2
≥ R±

tk1k2
, ∀t; k1 = 1, 2, · · · , Kt

1; k2 = 1, 2, · · · , Kt
2 (9e)

Pr

{
S±

tk1
≤ RSC±

1 , ∀t; k1 = 1, 2, · · · , Kt
1

S±
tk1k2

≤ RSC±
2 , ∀t; k1 = 1, 2, · · · , Kt

1; k2 = 1, 2, · · · , Kt
2

}
≥ 1 − q (9f)

S±
tk1

≥ RSV±
1t, ∀t; k1 = 1, 2, · · · , Kt

1 (9g)

S±
tk1k2

≥ RSV±
2t, ∀t; k1 = 1, 2, · · · , Kt

1; k2 = 1, 2, · · · , Kt
2 (9h)

Demin
t ≤ X±

t ≤ Demax
t , ∀t (9i)

Z ±
tk1k2

{= 1, if surplus water diversion is undertaken

= 0, if otherwise
,

∀t; k1 = 1, 2, · · · , Kt
1; k2 = 1, 2, · · · , Kt

2

(9j)

0 ≤ W±
tk1k2

≤ Mk1k2 Z ±
tk1k2

, ∀t; k1 = 1, 2, · · · , Kt
1; k2 = 1, 2, · · · , Kt

2 (9k)

X±
t ≥ Y±

tk1k2
≥ 0, ∀t; k1 = 1, 2, · · · , Kt

1; k2 = 1, 2, · · · , Kt
2 (9l)

The detailed nomenclatures for the variables and parameters are provided in
Appendix. In model (9), the decision variables can be sorted into two categories:
continuous and binary. The continuous variables represent water-allocation tar-
gets, probabilistic shortage and surplus-flow-diversion levels, while the binary ones
indicate whether individual surplus-flow-diversion actions need be undertaken. The
objective is to maximize the expected net system benefit through allocating the water
resources to the municipality from multi-reservoir over a multistage context. The
objective value involves the benefit from suitably allocating water resources to users,
the penalty for violating the promised targets, and the cost for diverting surplus
flows. The constraints will help define the interrelationships among the decision
variables and the water-resources management conditions. In detail, constraints (9b)
and (9c) present the mass balance for water resources in each time period (i.e.,
the change in storage equals inflows minus releases and evaporation losses), where
the evaporation loss is assumed to be a linear function of the average storage of
reservoir. constraints (9d) and (9e) mean that the sum of optimal water allocated
to the users and surplus water diverted (when flow level is high) will not exceed
the amount of water released from the reservoir; constraint (9f) specify that the
storage amount must not exceed each reservoir capacity under all scenarios, where
the storage capacities are fixed with a probability level that represents the admissible
risk of violating the uncertain capacity constraints; constraints (9g) and (9h) require
that the storage in each reservoir will not lower a reserve level under all scenarios;
constraint (9i) indicates that the allocated water must satisfy the users’ minimum
necessities but not exceed their maximum requirements; constraints (9j) and (9k)
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Table 1 Stream inflows and economic data

Planning period

t = 1 t = 2 t = 3

Low flow of stream 1 (probability = 0.2) (106 m3) [59.2, 65.5] [65.1, 72.0] [54.6, 60.5]
Medium flow of stream 1 (probability = 0.6) (106 m3) [95.4, 109.4] [99.3, 113.8] [90.2, 102.8]
High flow of stream 1 (probability = 0.2) (106 m3) [148.4, 170.6] [155.6, 178.7] [143.5, 163.6]
Low flow of stream 2 (probability = 0.4) (106 m3) [31.7, 35.3] [33.4, 37.2] [29.1, 32.4]
High flow of stream 2 (probability = 0.6) (106 m3) [67.2, 75.5] [72.7, 81.6] [64.5, 72.4]
Water allocation demand (106 m3) [132.5, 181.3] [145.3, 194.2] [137.4, 183.5]
Net benefit when water demand is satisfied ($/m3) [27.6, 33.2] [32.3, 38.9] [37.6, 45.3]
Penalty when water is not delivered ($/m3) [110.0, 130.0] [120.0, 150.0] [130.0, 160.0]
Fixed cost for surplus-flow diversion ($106) [20.0, 25.0] [23.4, 29.2] [27.2, 34.0]
Variable cost for surplus-flow diversion ($/m3) [28.5, 34.0] [32.8, 39.1] [37.7, 45.2]

consider the issue of flooding management, when the flow levels are continuously
high over multiple periods, more surplus would be generated, while desired water
diversion plans can thus be obtained through using binary variables to indicate
whether a particular surplus-flow-diversion action needs to be undertaken; constraint
(9l) stipulates that the water shortage must not exceed the target and is non-negative.
Besides, there are two assumptions for the above modeling formulation. Firstly, the
random inflows of the two streams are assumed to take on discrete distributions, such
that the IMJP model can be solved through linear programming method; secondly,
the two random variables are assumed to be mutually independent, such that the
probabilistic shortages correspond to joint probabilities.

Table 1 provides the inflow levels of the two streams and economic data over the
planning horizon. Obviously, the water availabilities will fluctuate dynamically due to
the varying river inflows. Shortage in water supply may be generated if the targeted
water is not delivered; on the other hand, high stream inflows may lead to a raised
surplus and thus mandate a decision of surplus-flow diversion for reservoirs. Besides,
the storage capacities of reservoirs 1 and 2 are [27.0, 37.0] × 106 and [50.0, 63.0] ×
106 m3, respectively; the initial storages in reservoirs 1 and 2 are [19.5, 21.9] × 106

and [27.3, 30.1] × 106 m3, respectively; in each period, the reserved storage levels for
reservoirs 1 and 2 are [20.0, 24.0] × 106 and [32.5, 39.0] × 106 m3, respectively.

4 Results and Discussion

In this case, random inflows can be conceptualized into a multilayer scenario tree,
with a one-to-one correspondence between the previous random variable and one
of the nodes (states of the system) in each stage. Figure 2 shows the structure of the
scenario tree. For example, for stream 1, a three-period (four-stage) scenario tree
can be generated with a branching structure of 1-3-3-3. In detail, there are one initial
node at time 0 (the present) and three succeeding ones in period 1; each node in
period 1 has three succeeding nodes in period 2, and so on for each node in period 3.
These result in 27 nodes (scenarios) in period 3. Correspondingly, 258 scenarios will
be generated for the two streams associated with different joint probabilities over the
planning horizon. In addition, a set of chance constraints for the storage capacities of
the two reservoirs are considered, which can help investigate the risk of violating
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Fig. 2 Structure of scenario tree for stream 1

the capacity constraints and generate desired water-allocation and surplus-flow-
diversion schemes. Nine conditions (i.e. nine IMJIP models) are examined based
on multiple joint probabilities and individual probabilities. An increased probability
level means a raised risk of violating the constraints of reservoir capacities. Each
IMJIP model can be transformed into two submodels that correspond to the lower
and upper bounds of the objective function values. In each model, there are 1074
variables and 2148 constraints; among them, the number of binary variables is 258.
The results through the IMJIP model will help answer the following questions: (1)
how to identify the desired water-allocation plan with a minimized risk of penalty,
(2) how to generate an optimized surplus-flow-diversion scheme with sound timing
and sizing considerations, and (3) how to achieve a maximized system benefit with
the least risk of system disruption over a multi-period planning horizon.

Table 2 presents the solutions for system benefit, penalty level, and diversion cost;
they would vary with the joint probability (q) level. For example, under conditions
2, 5 and 8 (i.e., when q = 0.01, 0.05 and 0.10, respectively), the system benefits
( f ±) would be $[6499.8, 15550.6] × 106, $[6728.7, 15730.5] × 106 and $[6811.7,
15808.3] × 106, respectively; the penalties would be $[3145.7, 6558.8] × 106, $[3257.9,
6690.4] × 106 and $[3254.8, 6781.1] × 106, respectively; the diversion costs would be
$[829.6, 1198.4] × 106, $[705.7, 1008.2] × 106 and $[654.4, 923.2] × 106, respectively.
Moreover, the solutions for the system benefit, penalty level, and diversion cost

Table 2 Solutions of system benefits, penalty levels, and diversion costs (unit: $106)

Condition Joint Individual probability System benefit Penalty Diversion cost
probability

1 q = 0.01 q1 = 0.001, q2 = 0.009 [6,518.9, 15,577.3] [3,194.4, 6,663.8] [800.8, 1,153.3]
2 q1 = 0.005, q2 = 0.005 [6,499.8, 15,550.6] [3,145.7, 6,558.8] [829.6, 1,198.4]
3 q1 = 0.009, q2 = 0.001 [6,436.9, 15,517.2] [3,091.9, 6,474.2] [863.5, 1,274.5]
4 q = 0.05 q1 = 0.01, q2 = 0.04 [6,688.0, 15,748.4] [3,277.6, 6,758.7] [691.4, 990.4]
5 q1 = 0.025, q2 = 0.025 [6,728.7, 15,730.5] [3,257.9, 6,690.4] [705.7, 1,008.2]
6 q1 = 0.04, q2 = 0.01 [6,671.4, 15,668.5] [3,187.5, 6,666.7] [760.3, 1,069.7]
7 q = 0.10 q1 = 0.01, q2 = 0.09 [6,747.2, 15,823.4] [3,259.4, 6,854.4] [646.4, 912.9]
8 q1 = 0.05, q2 = 0.05 [6,811.7, 15,808.3] [3,254.8, 6,781.1] [654.4, 923.2]
9 q1 = 0.09, q2 = 0.01 [6,736.1, 15,692.6] [3,180.9, 6,631.2] [742.7, 1,050.1]
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would vary with individual probability (qi) level of each reservoir-capacity constraint.
For example, under conditions 4, 5 and 6 (i.e. with the same joint probability of
0.05), the system benefits would be $[6688.0, 15748.4] × 106 (q1 = 0.01 and q2 =
0.04), $[6728.7, 15730.5] × 106 (q1 = 0.025 and q2 = 0.025), and $[6671.4, 15668.5] ×
106 (q1 = 0.04 and q2 = 0.01), respectively. Figures 3 and 4 show the variations of
system-benefit and diversion-cost with the joint probability level. Variations in the q
level correspond to the decision makers’ preferences regarding the tradeoff among
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system benefit, diversion cost, and constraint-violation risk. A lower joint probability
level would result in a lower system benefit and a lower constraint-violation risk;
conversely, a higher joint probability would sacrifice the system safety in order to
reduce the surplus-flow-diversion cost.

Moreover, under each joint probability level, the solution of f ±
opt is expressed

as an interval. Given different water-availability and storage-capacity conditions as
well as their underlying probability levels, the expected system benefit would change
correspondingly between f −

opt and f +
opt. Planning for a lower system benefit would be

associated with a lower risk of violating the water-allocation constraints; conversely,
a desire for a higher benefit would correspond to a higher possibility of violating
the constraints. A tradeoff thus exists between the system benefit and the constraint-
violation risk.

Figure 5 provides the solution of water-allocation plan under q = 0.01 (i.e. condi-
tion 2 listed in Table 2). There are 258 scenarios for water allocation associated with
different probabilities over the planning horizon. Each allocated flow is the differ-
ence between the promised target and the probabilistic shortage under a given stream
condition with an associated probability level (i.e. A±

tk1k2 opt = X±
t opt − Y±

tk1k2 opt). The
results indicate that, under this condition, the optimized water-allocation targets
would be 132.5 × 106 m3 in period 1, [151.7, 179.6] × 106 m3 in period 2, and
[151.6, 179.7] × 106 m3 in period 3. Deficits would occur if the available water
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Fig. 5 Optimized water-allocation plan under q = 0.01 (condition 2)
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amounts are less than the promised targets. For example, under the worst-shortage
scenario (i.e. when inflows of the two streams are both low during the entire planning
horizon), the shortages would be [35.9, 61.6] × 106 m3 in period 1, 73.9 × 106 m3 in
period 2, and 90.3 × 106 m3 in period 3. Correspondingly, the actual water allocations
would be [70.9, 96.6] × 106 m3 in period 1, [77.8, 105.7] × 106 m3 in period 2, and
[61.3, 89.4] × 106 m3 in period 3. The total of allocated water would be 210.0 to
291.7 × 106 m3 in the three periods; however, the total water demand over the
planning horizon would be [415.2, 559.0] × 106 m3, indicating a serious shortage in
water supply. Thus, the municipality would have to obtain water from other sources
to satisfy its essential demands.

The solutions for most of the non-zero water shortage values (Y±
tk1k2

) are interval
numbers. These imply that (a) under advantageous conditions (e.g., when the
available water amounts approach their upper bounds), the shortage levels may be
low, and (b) under demanding conditions, the shortage levels may be raised. Figure 6
presents the optimized water-shortage pattern when q = 0.01 (i.e. condition 2). Un-
der advantageous conditions, the number of scenarios subjecting to water-shortage
risks would be 112; however, under demanding conditions, such a number would
be increased to 147 (occupying approximately 57.0% of the total water-allocation
scenarios; in this case, the number of total water-allocation scenarios would be 258
over the planning horizon).
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Fig. 6 Optimized water-shortage pattern under q = 0.01 (condition 2)
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The results indicate that any change in q would yield varied reservoir-storage
capacities and thus result in varied water allocation patterns. Moreover, the temporal
and spatial variations of water demand and availability may also result in varied
water-allocation plans. Figure 7 provides the optimized water-allocation plan under
condition 8 (when q = 0.10). Under this condition, the optimized water-allocation
targets would be 132.5 × 106 m3 in period 1, [152.5, 180.1] × 106 m3 in period 2, and
[157.8, 183.5] × 106 m3 in period 3, which are different from those under condition 2
(when q = 0.01). Moreover, the shortage would vary under different q levels. For
example, when inflows of streams 1 and 2 are respectively medium and low over
the planning horizon, the shortages would be [3.0, 25.4] × 106 m3 (in period 1),
37.2 × 106 m3 (in period 2), and 36.2 × 106 m3 (in period 3) under condition 8.
In comparison, under condition 2, the shortages would be [8.1, 28.2] × 106, 32.1 ×
106, and 31.9×106 m3 in periods 1, 2 and 3, respectively.

Moreover, the water-allocation plans would vary with individual probability (qi)
of each reservoir-capacity constraint (even under the same joint probability level).
Figure 8 provides the optimized water-allocation plan under condition 7 [i.e. joint
probability level is 0.10, and individual probabilities (of reservoirs 1 and 2) are 0.01
and 0.09, respectively]. In fact, different qi levels correspond to different available
storage capacities, leading to varied water allocation patterns over a multistage

1 258Scenario

1 258Scenario

(a) Lower bound

0

50

100

150

200

F
lo

w
 (

10
6  

m
3 )

(b) Upper bound

20

70

120

170

220

F
lo

w
 (

10
6  

m
3 )

Fig. 7 Optimized water-allocation plan under q = 0.10 (condition 8)
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Fig. 8 Optimized water-allocation plan under q1 = 0.01 and q2 = 0.09 (condition 7)

context. The results (in Table 2) also indicate that condition 8 would correspond
to the highest lower-bound system benefit ( f − = $6811.7 million), and condition 7
would be linked to the highest upper-bound system benefit ( f += $15823.4 million).

Surplus would occur if the flows are continuously high, and a surplus-flow-
diversion project would be undertaken to avoid spill from reservoirs. The results
indicate that varied stream inflows would lead to changed surplus-flow-diversion
schemes. Figure 9 presents the solutions of optimized surplus-flow-diversion scheme
under condition 2 (when q = 0.01). For example, when the inflows of two streams
are continuously high during the entire planning horizon, the total available flows
would be [698.7, 794.4] × 106 m3; however, the total targets would be [435.8, 491.0] ×
106 m3 while the available capacities (of the two reservoirs) would be [79.5, 102.8] ×
106 m3. Consequently, surplus flows have to be diverted to minimize flooding risk.
The results indicate that, under this scenario, the diverted flows would be 59.1 ×
106 m3 in period 1, 77.2 × 106 m3 in period 2, and 52.8 × 106 m3 in period 3. The
number of scenarios for diverting the surplus flows would be 78 under advantageous
conditions, and 107 under demanding conditions (Fig. 9).

The results also indicate that the surplus-flow-diversion schemes would be vary
with q and qi levels. Figure 10 provides the solution of surplus-flow-diversion scheme
under condition 8 (q = 0.10), which is different from that under q = 0.01 (Fig. 9).
For example, when inflows of the two streams are high during the entire planning
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Fig. 9 Optimized surplus-flow-diversion scheme under q = 0.01 (condition 2)

horizon, the diverted surplus flows would respectively be 50.6 × 106, 76.7 × 106

and 49.0 × 106 m3 in periods 1, 2 and 3; the total diverted flow would be 176.3 ×
106 m3 in the three periods, which is less than that under condition 2 (i.e. 189.1 ×
106 m3). Moreover, the number of scenarios with surplus flow diversion would be
decreased to 74 and 86 under condition 8 (q = 0.10). Generally, an increased q level
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Fig. 10 Optimized surplus-flow-diversion scheme under q = 0.10 (condition 8)
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means a raised risk of violating joint-probabilistic constraints and, at the same time, a
decreased strictness for the reservoir-capacity constraints and thus a reduced surplus-
flow-diversion cost, and vice versa.

Considering the constraints of reservoir capacities as a set of deterministic values
(i.e. q = 0), the resulting system benefit would be $[6410.0, 1545.2] × 106, which
is lower than those from IMJIP under a range of joint probabilities. Meanwhile,
the diversion cost would be $[877.3, 1310.1] × 106 when q = 0, which is higher
than that from the IMJIP model. These are attributed to the fact that no violation
(or relaxation) on the reservoir capacity constraints is allowed when q = 0, leading
to reduced system capacities, and thus raised needs for surplus-flow diversion.
Figures 11 and 12 present the solutions of water-allocation and surplus-flow-
diversion plans when q = 0. When inflows of the two streams are continuously high
during the planning horizon, the total diverted flows would be 193.3 × 106 m3 when
q = 0, which is higher than those from IMJIP (under a range of q levels). Moreover,
the number of scenarios with surplus flow diversion would be increased to 81 and
110 under q = 0, more than those from the IMJIP model. Therefore, when q = 0,
the results can only provide decision support for planning water allocation and
surplus diversion under one extreme condition. In comparison, the IMJIP model
can incorporate more uncertain information within its modeling framework, and
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Fig. 11 Optimized water-allocation plan under q = 0
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Fig. 12 Optimized surplus-flow-diversion scheme under q = 0

its results can effectively support in-depth analyses of the interrelationship between
system benefit and constraint-violation risk.

5 Conclusions

An inexact multistage joint-probabilistic programming (IMJP) method has been
developed through incorporating techniques of multistage stochastic programming
with recourse (MSP), joint-probabilistic constraint programming (JPC), and interval-
parameter programming (IPP) within a general optimization framework. The devel-
oped IMJP can deal with uncertainties expressed as joint probabilities and interval
values; moreover, dynamics of water allocation and surplus-flow diversion can be
taken into account based on multilayer scenario trees. Furthermore, it can help
examine the risk of violating joint-probabilistic constraints, and can facilitate analy-
ses of multiple policy scenarios that are associated with economic penalties and/or
possibilistic losses when the pre-regulated targets are violated.

The developed method has been applied to a case study of water-resources man-
agement within a multi-stream, multi-reservoir and multi-period context, where joint
probabilities exist in terms of water availabilities and storage capacities. The mixed
integer linear programming (MILP) technique has been introduced into the IMJP
framework to facilitate dynamic analysis for decisions of surplus-flow diversion. The
results indicate that reasonable solutions for continuous and binary variables have
been generated. They can be used to help decision makers to identify desired system
designs against water shortage and for flood control, as well as to determine which of
these designs will lead to optimized system objective. Decisions at a lower risk level
would lead to an increased reliability in fulfilling system requirements but with a
lower system benefit; conversely, a desire for increasing the benefit level could result
in a raised risk of violating the system constraints.
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Appendix

Nomenclatures

Variables:

f ± objective function value, expected net system benefit over the planning
horizon ($);

R±
tk1

auxiliary variable, released flow from reservoir 1 in period t under scenario
k1 (m3);

R±
tk1k2

auxiliary variable, released flow from reservoir 2 in period t under scenarios
k1 and k2 associated with joint probabilities of (m3);

S±
tk1

auxiliary variable, storage level in reservoir 1 in period t under scenarios k1

(m3);
S±

tk1k2
auxiliary variable, storage level in reservoir 2 in period t under scenarios k1

and k2 (m3);
X±

t first-stage decision variable, water allocation target that is promised to the
municipality in period t (m3);

Y±
tk1k2

recourse decision variable, shortage level by which the water-allocation
target is not met under scenarios k1 and k2, which is associated with joint
probabilities of (m3);

W±
tk1k2

recourse decision variable, the amount of surplus flow to be diverted in
period t under scenarios k1 and k2 (m3);

Z ±
tk1k2

binary variable, which is used for identifying whether a surplus-flow-
diversion action needs to be undertaken in period t under scenarios k1

and k2.

Parameters:

A0
1 storage-area coefficient for reservoir 1;

A0
2 storage-area coefficient for reservoir 2;

Aa
1 area (per unit of active storage volume) above ;

Aa
1 area (per unit of active storage volume) above ;

Demin
t minimum water demand of the municipality in period t (m3);

Demax
t maximum water demand of the municipality in period t (m3);

e±
1t average evaporation rate for reservoir 1 in period t;

e±
2t average evaporation rate for reservoir 2 in period t;

FC±
t fixed-charge cost for surplus-flow diversion in period t ($106);

Kt
1 number of possible scenarios for stream 1 in period t;

Kt
2 number of possible scenarios for stream 2 in period t;

Mtk1k2 variable upper bounds for surplus-flow diversion in period t under scenarios
k1 and k2, which is assumed to be sufficiently large (m3);

NB±
t net benefit per unit of water allocated in period t ($/m3);
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Ptk1 probability of occurrence of scenario k1 (for stream 1) in period t, with and
∑Kt

1
k1=1 Ptk1 = 1;

Ptk2 probability of occurrence of scenario k2 (for stream 2) in period t, with and
∑Kt

2
k2=1 Ptk2 = 1;

PE±
t penalty per unit of water not delivered in period t ($/m3), and PEt > NBt;

q joint probability of violating constraints of the reservoir-storage capacities;

Q̃±
tk1

random inflow into stream 1 in period t under scenarios k1 (m3);

Q̃±
tk2

random inflow into stream 2 in period t under scenario k2 (m3);

RSC±
1 storage capacity of reservoir 1 (m3);

RSC±
2 storage capacity of reservoir 2 (m3);

RSV±
1t reserved storage level for reservoir 1 (m3);

RSV±
2t reserved storage level for reservoir 2 (m3);

t time period, t = 1, 2, . . . , T;
VC±

t variable cost for surplus-flow diversion in period t ($/m3).
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Dupačová J, Gaivoronski A, Kos Z, Szantai T (1991) Stochastic programming in water management:

a case study and a comparison of solution techniques. Eur J Oper Res 52:28–44. doi:10.1016/
0377-2217(91)90333-Q

Edirisinghe NCP, Patterson EI, Saadouli N (2000) Capacity planning model for a multipurpose
water reservoir with target-priority operation. Ann Oper Res 100:273–303. doi:10.1023/A:
1019200623139

Efremides D, Tsakiris G (1994) Stochastic modelling of point rainfall in a Mediterranean island
environment. Water Resour Manage 8(3):171–182. doi:10.1007/BF00877085

Ferrero RW, Rivera JF, Shahidehpour SM (1998) A dynamic programming two-stage algorithm
for long-term hydrothermal scheduling of multireservoir systems. IEEE Trans Power Syst 13:
1534–1540. doi:10.1109/59.736302

Fujiwara O, Puangmaha W, Hanaki K (1988) River basin quality management in stochastic environ-
ment. J Environ Eng 114:864–880

Guo P, Huang GH, He L, Zhu H (2008) Interval-parameter two-stage stochastic semi-infinite
programming: application to water resources under uncertainty. Water Resour Manage.
doi:10.1007/s11269-008-9311-3

Huang GH (1998) A hybrid inexact-stochastic water management model. Eur J Oper Res 107:
137–158. doi:10.1016/S0377-2217(97)00144-6

Huang GH, Loucks DP (2000) An inexact two-stage stochastic programming model for water
resources management under uncertainty. Civ Eng Environ Syst 17:95–118. doi:10.1080/
02630250008970277

http://dx.doi.org/10.1061/(ASCE)0733-9496(1991)117:1(74)
http://dx.doi.org/10.1016/S0377-2217(01)00339-3
http://dx.doi.org/10.1287/opre.33.5.989
http://dx.doi.org/10.1287/mnsc.29.6.750
http://dx.doi.org/10.1016/S0377-2217(02)00070-X
http://dx.doi.org/10.1016/0377-2217(91)90333-Q
http://dx.doi.org/10.1016/0377-2217(91)90333-Q
http://dx.doi.org/10.1023/A:1019200623139
http://dx.doi.org/10.1023/A:1019200623139
http://dx.doi.org/10.1007/BF00877085
http://dx.doi.org/10.1109/59.736302
http://dx.doi.org/10.1007/s11269-008-9311-3
http://dx.doi.org/10.1016/S0377-2217(97)00144-6
http://dx.doi.org/10.1080/02630250008970277
http://dx.doi.org/10.1080/02630250008970277


2538 Y.P. Li et al.

Huang GH, Baetz BW, Patry GG (1995) Grey integer programming: an application to waste
management planning under uncertainty. Eur J Oper Res 83:594–620. doi:10.1016/0377-2217
(94)00093-R

Infanger G (1993) Monte Carlo (importance) sampling within a Benders decomposition algorithm
for stochastic linear programs. Ann Oper Res 39:69–81. doi:10.1007/BF02060936

Kelman J, Stedinger JR, Cooper LA, Hsu E, Yuan SQ (1990) Sampling stochastic dynamic program-
ming applied to reservoir operation. Water Resour Res 26(3):447–454

Lejeune MA, Prekopa A (2005) Approximations for and convexity of probabilistic constrained
problems with random right-hand sides. RRR- Rutcor Research Report, 17

Li YP, Huang GH (2008) Interval-parameter two-stage stochastic nonlinear programming for
water resources management under uncertainty. Water Resour Manage 22:681–698. doi:10.1007/
s11269-007-9186-8

Li YP, Huang GH, Nie SL (2006) An interval-parameter multi-stage stochastic programming model
for water resources management under uncertainty. Adv Water Resour 29:776–789. doi:10.1016/
j.advwatres.2005.07.008

Li YP, Huang GH, Nie SL (2007) Mixed interval-fuzzy two-stage integer programming and its appli-
cation to flood-diversion planning. Eng Optim 39(2):163–183. doi:10.1080/03052150601044831

Loucks DP, Stedinger JR, Haith DA (1981) Water resource systems planning and analysis. Prentice-
Hall, Englewood Cliffs, NJ

Luo B, Maqsood I, Yin YY, Huang GH, Cohen SJ (2003) Adaption to climate change through water
trading under uncertainty–An inexact two-stage nonlinear programming approach. J Environ
Inform 2:58–68. doi:10.3808/jei.200300022

Luo B, Maqsood I, Huang GH (2007) Planning water resources systems with interval stochastic
dynamic programming. Water Resour Manage 21:997–1014. doi:10.1007/s11269-006-9069-4

Martin QW (1995) Optimal reservoir control for hydropower on Colorado River, TX. J Water
Resour Plan Manage 121(6):438–446. doi:10.1061/(ASCE)0733-9496(1995)121:6(438)

Miller BL, Wager HM (1965) Chance constrained programming with joint constraints. Oper Res
13(6):930–945. doi:10.1287/opre.13.6.930

Morgan DR, Eheart JW, Valocchi AJ (1993) Aquifer remediation design under uncertainty using
a new chance constrained programming technique. Water Resour Res 29:551–568. doi:10.1029/
92WR02130

Pereira MVF, Pinto LMVG (1985) Stochastic optimization of a multireservior hydroelectric system:
a decomposition approach. Water Resour Res 6:779–792. doi:10.1029/WR021i006p00779

Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization applied to energy planning.
Math Program 52(2):359–375. doi:10.1007/BF01582895

Rangarajan S (1995) Sustainable planning of the operation of reservoirs for hydropower generation,
PhD Thesis, Department of Civil Engineering, University of Manitoba, Winnipeg, Canada

ReVelle C (1999) Optimizing reservoir resources: including a new model for reservoir reliability.
Wiley, New York

ReVelle C, Joeres E, Kirby W (1969) The linear decision rule in reservoir management and
design - development of the stochastic model. Water Resour Res 5(4):767–777. doi:10.1029/
WR005i004p00767

Seifi A, Hipel KW (2001) Interior-point method for reservoir operation with stochastic inflows.
J Water Resour Plan Manage 127(1):48–57. doi:10.1061/(ASCE)0733-9496(2001)127:1(48)

Srinivasan R, Simonovic SP (1994) A reliability programming model for hydropower optimization.
Can J Civ Eng 21:1061–1073

Tsakiris G (1988) Daily potential evapotranspiration modeling. Agric Water Manage 13(2–4):393–
402. doi:10.1016/0378-3774(88)90169-2

Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the recon-
naissance drought index (RDI). Water Resour Manage 21(5):821–833. doi:10.1007/s11269-006-
9105-4

Wang LZ, Fang L, Hipel KW (2003) Water resources allocation: a cooperative game theoretic
approach. J Environ Inform 2:11–22. doi:10.3808/jei.200300019

Watkins DW Jr, Mckinney DC, Lasdon LS, Nielsen SS, Martin QW (2000) A scenario-based
stochastic programming model for water supplies from the highland lakes. Int Trans Oper Res
7:211–230. doi:10.1111/j.1475-3995.2000.tb00195.x

Zhang Y, Monder D, Forbes JF (2002) Real-time optimization under parametric uncertainty: a prob-
ability constrained approach. J. Process Control 12:373–389. doi:10.1016/S0959-1524(01)00047-6

http://dx.doi.org/10.1016/0377-2217(94)00093-R
http://dx.doi.org/10.1016/0377-2217(94)00093-R
http://dx.doi.org/10.1007/BF02060936
http://dx.doi.org/10.1007/s11269-007-9186-8
http://dx.doi.org/10.1007/s11269-007-9186-8
http://dx.doi.org/10.1016/j.advwatres.2005.07.008
http://dx.doi.org/10.1016/j.advwatres.2005.07.008
http://dx.doi.org/10.1080/03052150601044831
http://dx.doi.org/10.3808/jei.200300022
http://dx.doi.org/10.1007/s11269-006-9069-4
http://dx.doi.org/10.1061/(ASCE)0733-9496(1995)121:6(438)
http://dx.doi.org/10.1287/opre.13.6.930
http://dx.doi.org/10.1029/92WR02130
http://dx.doi.org/10.1029/92WR02130
http://dx.doi.org/10.1029/WR021i006p00779
http://dx.doi.org/10.1007/BF01582895
http://dx.doi.org/10.1029/WR005i004p00767
http://dx.doi.org/10.1029/WR005i004p00767
http://dx.doi.org/10.1061/(ASCE)0733-9496(2001)127:1(48)
http://dx.doi.org/10.1016/0378-3774(88)90169-2
http://dx.doi.org/10.1007/s11269-006-9105-4
http://dx.doi.org/10.1007/s11269-006-9105-4
http://dx.doi.org/10.3808/jei.200300019
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00195.x
http://dx.doi.org/10.1016/S0959-1524(01)00047-6

	Water Resources Management and Planning under Uncertainty: an Inexact Multistage Joint-Probabilistic Programming Method
	Abstract
	Introduction
	Methodology
	Application to Water Resources Management
	Results and Discussion
	Conclusions
	Appendix
	Nomenclatures

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


