
Water Resour Manage (2009) 23:2119–2139
DOI 10.1007/s11269-008-9373-2

An Improved Continuous Ant Algorithm
for Optimization of Water Resources Problems

S. Madadgar · A. Afshar

Received: 9 November 2007 / Accepted: 14 October 2008 /
Published online: 18 November 2008
© Springer Science + Business Media B.V. 2008

Abstract Ant colony optimization was initially proposed for discrete search spaces
while in continuous domains, discretization of the search space has been widely prac-
ticed. Attempts for direct extension of ant algorithms to continuous decision spaces
are rapidly growing. This paper briefly reviews the central idea and mathematical
representation of a recently proposed algorithm for continuous domains followed by
further improvements in order to make the algorithm adaptive and more efficient in
locating near optimal solutions. Performance of the proposed improved algorithm
has been tested on few well-known benchmark problems as well as a real-world
water resource optimization problem. The comparison of the results obtained by the
present method with those of other ant-based algorithms emphasizes the robustness
of the proposed algorithm in searching the continuous space more efficiently as
locating the closest, among other ant methods, to the global optimal solution.

Keywords ACO · Continuous ant algorithm · Reservoir operation optimization ·
Explorer ants · Adaptation operator

1 Introduction

Most of meta-heuristic methods benefit from a population of intelligent swarms that
search the decision space biasing toward an optimal solution. Of the most popular

S. Madadgar (B)
Hydroinformatic Research Center, Department of Civil Engineering,
Iran University of Science and Technology, Tehran, Iran
e-mail: sh_madadgar@civileng.iust.ac.ir

A. Afshar
Center of Excellence for Fundamental Studies in Structural Mechanics,
Iran University of Science and Technology, Tehran, Iran
e-mail: a_afshar@iust.ac.ir

2120 S. Madadgar, A. Afshar

meta-heuristic methods, Genetic Algorithms (GAs) have been applied to some
reservoir operation optimization problems (Esat and Hall 1994; Fahmy et al. 1994;
Oliveira and Loucks 1997; Wardlaw and Sharif 1999). Labadie (2004) presented
a state-of-the-art review over the application of mathematical and heuristic opti-
mization algorithms such as genetic algorithms, artificial neural networks, and fuzzy-
based approach to the multi-reservoir operation optimization problem. Bozorg
Haddad and Afshar (2004) applied Honey Bees Mating Optimization (HBMO)
meta-heuristic algorithm to a single reservoir operation problem with 60 operating
periods.

Inspiration from ant colonies’ foraging behavior led to a group of swarm-based
optimization algorithms named Ant Colony Optimization (ACO) that was first
introduced in the early 1990s to solve Combinatorial Optimization Problems (COPs)
such as the traveling salesman and the quadratic assignment problems (Dorigo
1992; Dorigo et al. 1996). First application of ACO algorithms to water engineering
problems was reported by Abbaspour et al. (2001). They employed ACO algorithms
in estimating hydraulic parameters of unsaturated soils. Simpson et al. (2001) studied
the selection of tuning parameters in ant algorithms for optimizing pipe network
systems. Maier et al. (2003) applied ACO algorithms to find optimal design of water
distribution systems. They concluded that ACO algorithms may form a competitive
alternative to genetic algorithms. Zecchin et al. (2003) used the original ant system
(Dorigo et al. 1996) for optimization of water distribution networks and compared
their performance with the min–max ant system, a modified version of the ant system
proposed by Stützle and Hoos (1997a, b). Jalali et al. (2005) proposed an improved
version of the ACO algorithm in single water-reservoir operation optimization.
They employed explorer ants as a local search technique in a standard ACO
algorithm. Nagesh Kumar and Janga Reddy (2006) compared the performance of
ACO algorithm with real coded GA to derive operating policies for a multi-purpose
reservoir system. They emphasized superior performance of ACO, especially in long-
time horizon operation models.

Ant colony optimization algorithms were originally proposed for discrete search
spaces. In continuous domains, discretization of the search space has been success-
fully implemented. Jalali et al. (2007) proposed a multi-colony ant algorithm to
discretize the continuous search space non-homogenously in order to focus on the
area surrounding the optimum solution.

Early attempts for direct extension of ant algorithms to continuous decision space
led to the Continuous ACO (CACO) algorithm which was initially proposed by
Bilchev and Parmee (1995). Later, other ant-based methods for continuous domains
like Asynchronous Parallel Implementation (API) and Continuous Interacting Ant
Colony (CIAC) were proposed (Monmarche et al. 2000; Dreo and Siarry 2002).
Conceptually, however, they are far from the original spirit of ant colony opti-
mization. Mostly benefiting from the original concepts of ACO, Socha and Dorigo
(2006) proposed a new algorithm called ACOR. They tested the algorithm with
standard benchmark problems and emphasized the better performance of ACOR

in comparison with other ant-related algorithms in continuous domains.
Benefiting from the general concepts of ACOR, this paper presents an improved

and adaptive ant colony algorithm which integrates both adaptation operator and
explorer ants into the structure of the original ACOR for optimization of water
resources problems in continuous domains. Performance of the proposed model is

An improved continuous ant algorithm 2121

discussed on some well-known benchmark problems. As real-world water resource
problem, the optimization of a nonlinear and non-convex hydropower reservoir
operation is considered. It is indicated that for the tested benchmark problems as well
as the present case study, the proposed algorithmoutperforms the original ACORin
locating a good near optimum solutions.

2 Ant Colony Optimization Algorithms: Spirit and Original Concepts

Ant Colony Optimization (ACO) algorithms are inspired by real-ants foraging
behavior. Ants start searching for food by exploring the area around their nest
in a completely random manner. During the return trip from the food source to
the nest, ants deposit some chemical liquid called pheromone on the ground. The
amount of pheromone deposited by an ant may depend on the quantity and quality
of the food. The amount of pheromone on the ground encourages, but not obligates,
other ants to follow the trail. This behavior of real ant colonies has inspired the de-
finition of artificial ant colonies to find approximate solutions of hard combinatorial
optimization problems.

The central component of any ACO algorithm is the pheromone model, which is
to probabilistically sample the search space. At each construction step, the solution
components are selected through a probability rule which vary across different
variants of ACO. The probability rule in the original Ant System (AS) is defined
as follows (Dorigo et al. 1996):

P
(

cij
∣∣ sp, t

) =
[
τij (t)

]α × [
η

(
cij

)]β

J∑

j=1

[
τij (t)

]α × [
η

(
cij

)]β

, ∀cij ∈ allowable set (1)

in which p
(
cij |sp, t

)
is the probability of adding the solution component to the

current partial solution sp at iteration t; τ ij(t) is the pheromone value associated
with component at iteration t; η(·) is a weighting function which assigns the heuristic
value to represent the cost of choosing the solution component cij; α and β are two
parameters to control the relative importance of the pheromone trail and heuristic
value; and i is the current construction step including J component solutions in the
allowable set. The heuristic value η is the same as providing the ants with sight and
is sometimes called visibility.

The pheromone deposit is made once all ants have constructed their solutions.
The pheromone is updated to increase the pheromone concentrations associated
with good or promising solutions, and decrease those that are associated with
less desirable ones. This is usually achieved by increasing the pheromone levels
associated with chosen good solution, sch by a certain value, �τ , and decreasing all
the pheromone values through pheromone evaporation:

τij (t + 1) =
{

(1 − ρ) τij (t) + ρ�τ if τij (t) ∈ sch

(1 − ρ) τij (t) otherwise
(2)

where 0 < ρ ≤ 1 is the evaporation coefficient. Pheromone evaporation is mainly
included to avoid pre-mature convergence of the algorithm. It is in favor of the

2122 S. Madadgar, A. Afshar

exploration of new areas in the search space. In order to increase the probability
of the search by subsequent ants in the promising regions of the search space, good
solutions found earlier by the ants are used to update the pheromone.

Different ACO algorithms, such as Ant Colony System (ACS) (Dorigo and
Gambardella 1997) or MAX–MIN Ant System (MMAS) (Stützle and Hoos 2000)
differ in the way of pheromone updating. In principle, algorithms update pheromone
using either the iteration-best solution or the global-best solution. Combination of
several solutions found by the ants has also been used. Updating by global-best
solution results in a faster convergence, while the iteration-best update allows for
more diversification of the search (Stützle and Dorigo 1999).

3 Continuous Ant Colony Algorithms: Concepts and Mathematical Presentation

Ant colony optimization algorithms were basically developed for discrete opti-
mization problems. Therefore, the application of the original ACOs to continuous
optimization problems is possible by discretization of the continuous decision space.
Thus, the allowable continuous range of decision variables are usually discretized
into discrete set of allowable values; and the search process is then conducted over
the resulting discrete search space. Since search is restricted to a finite number of
discrete values, missing the optimal solution is probable. If the optimal solution is
embedded in ignored spaces between allowable values, there may not be any chance
to catch it. Therefore, discretization of original space may result in relatively poor
performance of the ACO algorithms in continuous problems.

Jalali et al. (2007) employed the inherent potential of multi-colony ant system
to tackle a continuous optimization problem. They utilized a multi-colony system
with heterogeneous discretization scheme and possibility of information exchange
between the colonies to provide a non-homogeneous and dynamic discretization
scheme in the search space. The non-homogenous discretized scheme helped them
to search for the optimal solution in the continuous search space.

As stated, there have been some attempts to apply ACO meta-heuristic to the
continuous domains without discretization requirement. Note that most of these
approaches follow rather loosely the original concept of ACOs.

Continuous ACO (CACO) is one of the first attempts to develop and apply an ant-
related algorithm to continuous optimization problems (Bilchev and Parmee 1995).
The CACO employs a nest situated somewhere in the search space where the ants
start searching from. The good solutions found are stored as a set of vectors, which
initiate in the nest. At any iteration, ants choose one of the vectors probabilistically.
Ants continue the search process from the end-point of the chosen vector by making
some random moves from there. Then the vectors are updated with the best results
found. Since the CACO does not construct incremental solutions, which is one of the
main characteristics of the ACO meta-heuristic, it may not qualify to be an extension
of ACO. API algorithm (Monmarche et al. 2000) is another ant-related approach to
continuous optimization in which ants perform their search independently, starting
from the same nest that is moved periodically. Ants use tandem running which is a
type of recruitment strategy. It is an ant-related algorithm that may be used to tackle
both discrete and continuous optimization problems. As an ant-based approach,
Continuous Interacting Ant Colony (CIAC) was also introduced for continuous

An improved continuous ant algorithm 2123

optimization (Dreo and Siarry 2002). In CIAC, ants communicate via pheromone
deposition and also direct communication. The ants move through the search space
where attracted by pheromone laid in spots, and guided by direct communication
between the individuals. The CIAC claims to draw its original inspiration from
ACO, however, existence of direct communication between ants and absence of
constructive incremental solutions may disqualify it as an extension of ACO.

The most recent approach to continuous problems proposed by Socha and Dorigo
(2006) is the closest to the spirit of ACO algorithms. As they stated, ACOR

enables one to tackle both continuous and mixed-variable optimization problems.
The central idea in ACOR is the incremental construction of solutions based on
the biased (by pheromone) probabilistic choice of solution components. In discrete
ACO algorithms, the problem formulation defines the set of available solution
components. In order to construct a solution, ants make a probabilistic choice to
select cij from the allowable set of solution components according to Eq. 1. In
fact, an ant samples from a discrete probability distribution (Fig. 1a) in order to

Fig. 1 Schematic of a discrete
probability distribution of a set
of allowable components
[ci1,...,ci9] in construction step
i, b continuous probability
density function with a
possible range of
x ∈ [xmin, xmax] (adopted from
Socha and Dorigo 2006)

c i1 c i2 c i3 c i4 c i5 c i6 c i7 c i8 c i9

cij |s
p

p(c ij|s
p
)

XmaxXmin

x| s
p

p(x |s
p
)

(a)

(b)

2124 S. Madadgar, A. Afshar

choose a component to be added to the current partial solution, sp. The probabilities
associated with the elements of the available components in each construction step
form such probability distribution (Socha and Dorigo 2006).

As the number of available options at each construction step increases, the dis-
crete probability distribution approaches to a probability density function (Fig. 1b).
This concept forms the fundamental idea underlying the algorithm proposed by
Socha and Dorigo (2006). In this case, an ant samples the solution components
from a continuous probability density function (pdf) instead of choosing a solution
component from an allowable set according to Eq. 1.

Gaussian function, as the most popular pdf, has some clear advantages such as
reasonably easy way of sampling, although it is not able to describe a situation where
two disjoint areas of the search space are promising (i.e. bi-modal pdf). In order to
overcome this problem, a Gaussian kernel pdf has been suggested (Socha and Dorigo
2006).

Weighted sum of several one-dimensional Gaussian functions form a Gaussian
kernel pdf, Gi(x) as, (Socha and Dorigo 2006):

Gi (x) =
k∑

l=1

ωlgi
l (x) =

k∑

l=1

ωl
1

σ i
l

√
2π

e
− (x−μi

l)
2

2σ i2
l (3)

in which k is the number of single pdfs, gi
l (x), contributing to Gaussian kernel pdf

at ith construction step. Gi(x) is parameterized with three vectors of parameters(
ω,μi,σi

)
. In any function, ω defines the vector of weights of the individual

Gaussian functions, μi represents the vector of means, and σi defines the vector of
standard deviations. The size of all these vectors is equal to the number of Gaussian
functions constituting the Gaussian kernel (k), hence |ω| = ∣∣μi

∣∣ = ∣∣σi
∣∣ = k.

Gaussian kernel pdf provides more flexible sampling shape, compared to a single
Gaussian function and allows a relatively easy sampling (Fig. 2).

To define the three noted vectors in Gaussian kernel pdf, a solution archive (T)

is formed. To update the pheromone concentration, a certain number (k) of the
solutions are kept in the solution archive. In an n-dimensional problem, the archive
stores the values of n variables associated with any selected solution sl . The ith

Fig. 2 Example of a Gaussian
kernel pdf consisting of four
Gaussian functions
(illustration is limited to the
range x ∈ [−3, 3]) (adopted
from Socha and Dorigo 2006)

-3 -2 -1 0 1

Indivisual Gaussian functions

Gaussian kernel

32

An improved continuous ant algorithm 2125

component of the ith solution is hereby denoted by si
l . Figure 3 shows the structure

of the solution archive. The size of an archive is equal to k which is a parameter of
the algorithm. At the end of any iteration, pheromone is updated by adding the set
of new superior solutions to the solution archive. Therefore, only the best solutions
remain in the archive, and will be used to guide the ants in the search process.

To update the archive at the end of any iteration, all current solutions (newly
produced ones and those already in the archive) are evaluated and ranked according
to their fitness values. Afterward, the k number of superior solutions are sorted
and stored in the archive according to their ranks (i.e., solution sl has rank l). The
remaining solutions are discarded and the next iteration of the algorithm launches.
Clearly, the archive size does not change through updating process; as the entering
of superior solutions to the archive continues until the archive fills up.

The solutions in the archive are used to determine the vectors ω, μi, and σ i which
define the final shape of the Gaussian kernel pdf. As illustrated in Fig. 3, in each
dimension i = 1, . . ., n of the problem, a different Gi is included. Each Gi is formed
by the ith variable values of the archived solutions.

For any Gaussian kernel pdf, Gi, Socha and Dorigo (2006) considered the values
of the ith variable of all the solutions in the archive become the elements of the
vector μi:

μi
l = si

l (4)

The weight, ωl , of the solution sl , and corresponding single pdf, is a value of the
Gaussian function with argument l, mean 1.0, and standard deviation qk, as (Socha
and Dorigo 2006):

ωl = 1

qk
√

2π
e
− (l−1)2

2q2k2 (5)

where q is a tuning parameter of the algorithm which must be specified. The influence
of q is similar to adjusting the balance between the iteration-best and the global-best

Fig. 3 The solution archive
used in ACOR. The solutions
are stored according to their
rank (s1 has the best quality).
ω is the weight of each
Gaussian function
proportional to the rank of
associated solution. Hence,
ω1 ≥ ... ≥ ωl ≥ ... ≥ ωk.
Gi is the kernel pdf at ith
construction step using only
the ith component of all k
solutions in the archive
(adopted from Socha and
Dorigo 2006)

S
1

1 S
2

1 … S
l

1 … S
n

1 ω1

…

…

… …

… …

…

S
1

l S
2

l … S
l

l … S
n

l ω l

…

…

… …

… …

…

S
1

k S
2

k … S
l

k … S
n

k ω k

G
1

G
2

G
l

G
n

2126 S. Madadgar, A. Afshar

pheromone updating in ACO. For small values of q, the best-ranked solutions are
strongly preferred. When q approaches zero, only the Gaussian function of the best
solution found so far is used for constructing new solutions. For larger values of q,
the probability becomes more uniform; and the algorithm samples the search space
based on a larger number of reasonably good solutions. In this case, the search is
more diversified and the final optimal solution is more reliable. However, the higher
robustness usually means slower convergence speed.

Sampling the Gaussian kernel pdf as defined by Eq. 3 is accomplished with the
following procedure. Before starting a solution construction, each ant chooses one
of the individual Gaussian functions, gl(x), for all n construction steps which allows
exploiting the possibly existing correlation between the decision variables. Then, a
Gaussian function with rank l is chosen with the probability distribution expressed as
(Socha and Dorigo 2006):

pl = ωl

k∑

j=1
ω j

∀l = 1, . . . , k (6)

where ω j is the weight of the jth Gaussian function.
It should be noticed that each ant samples the Gaussian functions of the same

rank at any construction step. However, the shapes of the chosen Gaussian functions
differ from one step to another. For step i, μi

l = si
l , and σ i

l is calculated dynamically
as (Socha and Dorigo 2006):

σ i
l = ξ

k∑

e=1

∣∣si
e − si

l

∣∣

k − 1
(7)

in which, at each step i, the average distance from the chosen solution sl to other
solutions in the archive is determined and multiplied by the parameter ξ . The
parameter ξ > 0, behaves similar to the pheromone evaporation rate in ACO.
Appropriate selection of ξ will affect the search process to be less biased towards the
points that have been already explored and stored in the archive. The higher values
of ξ , will slow down the convergence of the algorithm. This whole process is repeated
for any ith construction step, i = 1, . . ., n, and the average distance is calculated upon
the variable values at the ongoing step.

The number of memorized solutions in the archive, (k), determines the complexity
of the resulted Gis. As inferred from Figs. 2 and 3, larger archive increases the
complexity of the kernel pdfs owing to the fact that every solution in the archive
represents a single pdf at each construction step.

In the first iteration, if no prior information is provided, the kernel pdfs may be
initialized by selecting a more or less uniform distribution over the search domain
(a, b). In this case, a set of k normal distributions Gi(x) with uniformly distributed
means are initialized and employed as:

Gi (x) =
k∑

l=1

1

k
gi

l

(
x, a + (2l − 1)

b − a
2k

,
b − a

2k

)
(8)

An improved continuous ant algorithm 2127

where ωl (Eq. 3) is equal to 1
k , and the second and third terms define the mean and

standard deviation of the ith pdf, respectively. At the end of the first iteration, the
fitness function is evaluated for each solution and the first k solutions are transferred
to the archive T for pheromone updating.

4 Proposed Improvements

This section presents the proposed improvements on the original ACOR algorithm
developed by Socha and Dorigo (2006). The improved version benefits from (1)
adaptation operator and (2) explorer ants, which highly affect the performance of
the algorithm.

4.1 Adaptation Operator

As mentioned, parameter q in Eq. 5 plays an important role in calculation of the
weight of each Gaussian function in the Gaussian kernel pdfs.

For small values of q, a significant proportion of the total weight will be allotted
to the most superior solutions in the archive. That is, the weights’ allocation is
excessively biased toward the high-ranked solutions. Since ants choose any single pdf
probabilistically upon its weight, the superior solutions will be strongly preferred to
inferior ones. This affects the search space to narrow down around the best available
solutions, resulting in a rapid convergence. As an extreme case, when q approaches
to zero, all ants will only choose the Gaussian function associated with the best-so-far
solution in the archive. Hence, the algorithm converges before efficiently exploring
the entire search space. Indeed, the final solution strongly depends on the random
population in the first iteration.

For extremely large values of q, the weight distribution will be almost uniform
among solutions in the archive. Therefore, single pdfs of different ranks will be
available to sample from. As a result, ants sample from different parts of the search
space; and a wide range of diverse solutions is generated. Although the decision space
is broadly searched, a very slow convergence may result. The final solution may be
more robust and reliable; however, the decision space is extensively searched with
the cost of reduction in convergence rate. Therefore, an extensive sensitivity analysis
might be needed to trade-off between the higher rate of convergence and the more
robust solution.

On the other hand, the most efficient search is due to an initial wide skim of deci-
sion space; and accurate scan, afterward. While skimming the decision space, a rough
estimation of promised areas is exerted; and the most probable regions encircling the
optimum solution are defined. The latter scanning finely searches through superb
areas, and enables the algorithm to precisely tune the final solution. Such process
is executed only if either the value of q could change through advancement of the
algorithm or an extensive sensitivity analysis may be needed to locate a good near
optimal solution. For instance, the small value of q implies the large value for archive
size to prevent the pre-mature convergence at initial generations. But, large archive
extensively and unfavorably increases the computational effort and run-time. Hence,
the archive size must be tuned finely in order to result a satisfactory performance of

2128 S. Madadgar, A. Afshar

the algorithm without great computational effort. As clarified, the constant value for
q imposes some unsuitable conditions on the algorithm.

To enhance the performance of the original algorithm, this paper presents an
adaptation operator which automatically changes the value of q through successive
iterations. The influence of the adaptation process on the algorithm is the same as
choosing a small q and a large archive size in the original ACOR but, by contrast, it
does not require the great computational, run-time and sensitivity analysis effort.

In adaptation process, a primary rough amount of q is given to the algorithm;
and it is gradually adjusted as the algorithm proceeds. The initial value is relatively
large to lead a comprehensive search of the decision space. As the algorithm
advances, this value is gently reduced. Such procedure causes the initial general
search adaptively concentrates around the high-quality regions. Furthermore, the
archive size is set to a reasonably moderate value. The proposed methodology
benefits from both global and local search concepts. At initial iterations, when q is
large, ants extensively explore different regions of the search space, locating diverse
solutions. The adaptation routine reduces the value of q according to a pre-defined
scheme. As iteration proceeds and q becomes smaller, few highly ranked solutions
receive more chance to be chosen by the ants and search process is slowly localized.
Therefore, the convergence speeds up and the best solution is tuned finely.

The following expression is defined by the authors to adaptively reduce the value
of q through successive iterations:

qit = qit−1 × Ait (9)

In which qit and qit−1 are the values of q in iteration it and it −1, respectively; and
Ait is the value of adaptation operator in iteration it. It changes non-increasingly
through successive iterations. The following relation is proposed to calculateAit at
given iteration it:

Ait =

⎧
⎪⎨

⎪⎩

1 if
(

Mean(f1...m)

Mean(f1...n)

)

it
=

(
Mean(f1...m)

Mean(f1...n)

)

it−1

Mean(f1...m)

Mean(f1...n)
if

(
Mean(f1...m)

Mean(f1...n)

)

it
�=

(
Mean(f1...m)

Mean(f1...n)

)

it−1

(10)

where Mean(f1...m) and Mean(f1...n) are the mean fitness values over first m and
n(m < n) ranked solutions in the archive at any iteration, respectively; and (·)it and
(·)it−1 return the associated values to iteration it and it − 1, respectively. Note that
the solutions in the archive are stored in ascending order where rank 1 is assigned to
the solution with the least fitness value. Hence, for m < n, the values of Ait remain
less than or equal to one.

Definition of the necessary conditions is the most important point in Eq. 10. These
conditions show how the changes in the mean fitness values of the solutions in the
archive affect the restriction on the search space. If this criterion in the archive
remains unchanged through iterations it and it −1, the first condition is satisfied; and
Ait becomes equal to 1. Thus, according to Eq. 9, the value of q does not reduce
for current iteration which means more localization is not suitable. As the algorithm
fails to find any superior solution, it is reasonable not to impose more restriction on
the search space, keeping the search diversity at the same level as the last iteration.

An improved continuous ant algorithm 2129

On the other hand, if the mean fitness values of the solutions in the archive change;
the second condition will be satisfied, and the value of adaptation operator is reduced
upon the severity of the changes in the archive. As the algorithm finds some desirable
solutions, the value of Mean(f1...m)

Mean(f1...n)
may noticeably drop. For n >> m, this drop will be

more pronounced and the search space will be severely reduced accordingly.
In problems with large allowable range for decision variable, undesirable fast

decreasing rate of Ait during initial iterations is possible. In order to reduce the
chance of pre-mature convergence of the algorithm, a start criterion for adaptation
process may be beneficial. The start criterion controls the stage where the adaptation
operator must become active. It should be defined upon the problem under consider-
ation. In a highly constrained optimization problem, one may activate the adaptation
operator when at least one ant decides in feasible space.

4.2 Explorer Ants as Mutation Operators

This paper borrows the concept of explorer ants from Jalali et al. (2005). They
employed the explorer ants as local search agents in the standard ACO algorithm
to search the decision space in a completely random manner. This non-biased
manner enables the algorithm to meet new areas where have not yet visited by the
typical ants.

The behavior of explorer ants in this paper differs from those proposed by Jalali
et al. (2005). Here, the explorer ants are biased towards the superior areas of search
space but less severe than the typical ants. They first choose a single solution from
the archive in order to use it during the construction steps. At any construction step,
an explorer ant generates a trial value from the selected Gaussian function similar to
the typical ants. Then, it is permitted to probabilistically mutate the value of the trial
decision variable within a pre-defined range (Fig. 4). It provides a localized search

rank k . . .
 . .
 . .
 . .

rank l

mutation
 . .
 . .
 . .

rank 1 . . .

 step 1 step 2 step 3 step 4 step n

Fig. 4 Schematic presentation of solution construction by an explorer ant

2130 S. Madadgar, A. Afshar

possibility for the explorer ants. As the mutation range extends, the explorer ants
are less impressed by the Gaussian functions; and a relatively large area around the
initially generated values will be randomly searched. Therefore, the final value has
more random essence. On the contrary, if the mutation range is small; the search
process will be concentrated to a rather small area around the initial value.

The most important role of the explorer ants is to help original algorithm escape
from the local optimums. When algorithm traps in a local optimum, almost all ants
search about the same value for some decision variables. As the archive consists
of superior solutions, some of these solutions may be selected to enter the archive.
Since, at some steps, the variable values of all solutions are almost equal, the means
of associated Gaussian functions become nearly the same. From Eq. 7, the standard
deviation of these Gaussian functions approach zero. That is, all Gaussian functions
in some steps become overlaid; and they represent a certain value rather than a range
of values in search space. In this condition, all ants will generate the mean value of
Gaussian pdf because the standard deviation, as the only factor to widen the pdf,
is almost equal to zero. Since the mean values of Gaussian pdfs remain unchanged,
extra search will not help the algorithm to escape from the local optimum. As stated,
all Gaussian functions become overlaid, and jumping from one pdf to another will not
change the result. In other words, if the original ACOR traps in local optimums, there
is almost no chance to survive. By contrast, discrete ACOs always have a little chance
to survive from the local optimums. Any option at any construction step must have a
minimum amount of pheromone all through the algorithm advancement. Certainly,
pheromone existence, regardless of its value, provides a chance of generating diverse
solutions even in local-trapped conditions.

Definition of explorer ants in continuous ant algorithm is quite helpful to escape
from local optimums. Explorer ants can mutate the initial generated value, which
leads to a different value from the mean of chosen pdf. If the resultant solution enters
the archive, a pdf with a new mean value enters to local-trapped steps. Consequently,
the standard deviations of all pdfs become greater than zero; and Gaussian functions
become widened. This helps the population to generate more diverse solutions. In
this case, jumping among Gaussian functions will certainly change the results.

From descriptions, the following expression is proposed by the authors to deter-
mine the mutation range:

MRi
it = f

(
σ i

it

)
(11)

in which, MRi
it is the mutation range and σ i

it is the vector of standard deviation at step
i and iteration it. Equation 11 implies that, at any construction step, mutation range is
calculated as a function of the standard deviations which steadily change through the
algorithm. However, one may choose a rough mutation range upon own experience.
The function of explorer ants may be more useful in multimodal problems which
frequently face local-trapping issue.

5 Applications of the Model

To compare the performance of the proposed modified continuous ant algorithm
with those of some other algorithms, a number of mathematical test functions are

An improved continuous ant algorithm 2131

employed. Thereafter, both original and modified versions of ACOR are applied to
optimally operate a hydropower reservoir.

5.1 Mathematical Functions

In order to compare the performance of the proposed algorithm with the original
ACOR and few other methods for continuous optimization, a set of benchmark
problems are employed as summarized in Table 1 (Socha and Dorigo 2006). To have
a fair comparison, the same initialization intervals and required accuracy are used as
reported in the literature.

The performances of the algorithms have been judged based on the mean number
of function evaluations to reach the required accuracy. That is, certain accuracy is
known as the stop criterion. The stop criterion is not the same for all test functions
as employed by Socha and Dorigo (2006):

{ | f − f ∗| < ε1 f + ε2 function : B2, R2, Z2, GP, MG and SM

| f − f ∗| < εmin functions : CG,TB and EL
(12)

where f is the function value associated to the best solution found by the applied
method; f ∗ is the prior known optimum; ε1 and ε2 are the relative and absolute

Table 1 Summary of test functions

Function Formula

B2 	x ∈ [−100, 100]n , n = 2 fB2 (x) = x2
1 + 2x2

2 − 3
10 cos (3πx1)

− 2
5 cos (4πx2) + 7

10 , G. Min. = 0

Rosenbrock(Rn) 	x ∈ [−5, 10]n , n = 2 fRn (x) =
n−1∑

i=1

(
100

(
x2

i − xi+1
)2 + (xi − 1)2

)
,

G. Min. = 0

Zakharov(Zn) 	x ∈ [−5, 10]n , n = 2 fZn (x) =
(

n∑

i=1
x2

i

)
+

(
n∑

i=1

ixi
2

)2

+
(

n∑

i=1

ixi
2

)4

,

G. Min. = 0

Goldstein and Price fGP

(
	x
)

=
[
1 + (

x1 + x2 + 1
)2

(GP) 	x ∈ [−2, 2]n , n = 2 × (
19−14x1+3x2

1−14x2+6x1x2+3x2
2

)]

∗
[
30 + (2x1 − 3x2)

2

×(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
,

G. Min. = 3

Martin and Gaddy fMG (x) = (x1 − x2)
2 +

(
x1+x2−10

2

)2
, G. Min. = 0

(MG) 	x ∈ [−20, 20]n , n = 2

Sphere model fSM (x) =
n∑

i=1
x2

i , G. Min. = 0

(SM) 	x ∈ [−5.12, 5.12]n , n = 6

Cigar(CG) 	x ∈ [−3, 7]n , n = 10 fCG (x) = x2
1 + 104

n∑

i=2
x2

i , G. Min. = 0

Tablet(TB) 	x ∈ [−3, 7]n , n = 10 fTB (x) = 104x2
1 +

n∑

i=2
x2

i , G. Min. = 0

Ellipsoid(EL) 	x ∈ [−3, 7]n , n = 10 fEL (x) =
n∑

i=1

(
100

i−1
n−1 xi

)2
, G. Min. = 0

2132 S. Madadgar, A. Afshar

Table 2 Performances of proposed algorithm and other probability-learning algorithms

Test function Proposed ACOa
R (1 + 1)ESa CSA-ESa CMA-ESa IDEAa MBOAa

Ellipsoid 2,082 11,570 293,700 489,500 4,450 7,120 62,300
Cigar 2,195 5,376 2,342,400 3,072,000 3,840 17,664 46,080
Tablet 1,942 2,567 118,082 166,855 4,364 7,444 61,608
aReported by Socha and Dorigo (2006)

errors, respectively; and εmin is the required accuracy. Here, the same values reported
in the literature are used, i.e. ε1 = ε2 = 10−4 and εmin = 10−10 (Socha and Dorigo
2006).

Since the allowable ranges of the decision variables were relatively small in the test
functions, no special start-criterion for the adaptation process on q was required, and
it started from the second iteration. Tables 2, 3, and 4 present the results obtained by
proposed algorithm based on 20 independent runs and other ant and non-ant based
methods reported by Socha and Dorigo (2006). The methods presented in Tables 2,
3, and 4 are discussed by Socha and Dorigo (2006) in appropriate details. Reported
values are the mean number of function evaluations and the best performances are
marked in bold.

As the results for all algorithms were not fully reported, it was not possible to
conduct detail statistical analysis. Hence, the average number of function evaluations
was selected as the only criterion for the purpose of performance comparison.

In the case of tuning parameters, the archive of varying size from 5 to 20 is used for
different test functions for the proposed algorithm which is comparable with those
employed by Socha and Dorigo (2006). They used the archive size k = 50 which
redundantly increases the calculation process. Since the proposed algorithm tunes
the parameter q adaptively, this parameter initially takes a relatively large value
without requiring serious sensitivity analysis. In the original algorithm, however, the
parameter q must be finely tuned through extensive trial tests.

The results demonstrates the satisfactory performance of the proposed modifica-
tions on the ACOR in given benchmark problems. The performance is pronounced
in the minimization problems with dimensions varying from 2 to 10. In comparison
to other ant and non-ant related algorithms, the proposed algorithm performed bet-
ter for all test problems. It required much less mean number of function evaluations
in order to fulfill the stop criteria. The results of ACOR in comparison with other
methods are discussed by Socha and Dorigo (2006). Here, results show that the

Table 3 Performances of proposed algorithm and other ant-related algorithms

Test function Proposed ACOa
R CACOa APIa CIACa

B2 160 544 –b –b 11,968
Rosenbrock (R2) 591 820 6,806 9,840 11,480
Goldstein and Price (GP) 155 384 5,376 –b 23,424
Martin and Gaddy (MG) 125 345 1,725 –b 11,730
Sphere model (SM) 361 781 21,868 10,153 49,984
aReported by Socha and Dorigo (2006)
bResults were not available

An improved continuous ant algorithm 2133

Table 4 Performances of proposed algorithm and other meta-heuristics for continuous optimization

Test function Proposed ACOa
R CGAa ECTSa ESAa

B2 160 544 430 –b –b

Rosenbrock (R2) 591 820 960 480 816
Goldstein and Price (GP) 155 384 416 231 786
Zakharov (Z2) 64 293 624 195 15,795
aReported by Socha and Dorigo (2006)
bResults were not available

proposed improvements help the modified algorithm to outperform other methods
in functions under consideration. Faster convergence of the proposed algorithm in
comparison with original one may be related to the behavior of the adaptation
operator. In original ACOR, a large archive and a small value for q were reasonably
considered by Socha and Dorigo (2006). Certainly, the constant small value for q
leads the method to converge to the global solution in a relatively slow rate. On the
contrary, the modified version benefits from the adaptation operator which adjusts
the convergence speed through the advancement of the algorithm. It gradually
hastens the convergence speed while visiting most of the promising areas of the
search space. In addition, some suitable mutations may occur by means of explorer
ants, which locate the algorithm properly near the global solution.

5.2 Operation of Hydropower Reservoir

In order to illustrate the performance of the proposed algorithm in highly nonlinear-
non-convex water resources problems, operation of a hydropower reservoir has been
considered.

The objective function is to minimize a measure of the sum of relative deficit of
power generation from the installed capacity of the hydropower plant over operating
period. The problem is considered for 240 operating periods for which the data is
taken from Dez hydropower reservoir in south of Iran. The reservoir’s minimum
and maximum capacities are known to be 830 and 3340 MCM, respectively. Time
distribution of the inflow to the reservoir for the assumed 240 operating periods is
presented in Fig. 5. Each operating period is considered as a solution construction
step with reservoir releases as decision variables. All ants assume a specified initial
storage and calculate the reservoir storages according to the inflows to the reservoir
using the continuity equation. Upper and lower limits for both reservoir releases
and storages have been considered as constraints to the model. In mathematical
statement, the objective function is defined as:

O.F. = Min
T∑

t=1

(
1 − Pt

Power

)
(13)

where Pt (kilowatt) is the generated power at time period t; Power (kW) = 650 kW is
the installed capacity of the hydropower plant; and T is the total number of operating
periods.

2134 S. Madadgar, A. Afshar

0

200

400

600

800

1000

1200

1400

1600

1800

0 60 120 180 240

Period (month)

I
n

fl
o

w
 (

M
C

M
)

Fig. 5 The volumes of inflows to Dez reservoir during 240 operating periods

The problem is subjected to:

St+1 = St + It − Rt (14)

Pt (kW) = Min
(

e
PF

γ Qt Ht

1, 000
, Power

)
(15)

Ht = ht + ht+1

2
− TW (16)

ht = a + b × St + c × S2
t + d × S3

t (17)

Smin < St < Smax (18)

Rmin < Rt < Rmax (19)

where γ (newton per cubic meter) is the specific weight of water; Q (cubic meter
per second) is the discharge entering turbine at time period t; Ht (meter) is the
effective head for energy production at time period t; e is efficiency coefficient;
PF is the plant factor; ht (meter) is water head available at time period t; and
TW is the head of tail water; a, b , c and d are the coefficients determined
by topography of the dam site. In the case, e = 0.9, PF = 0.417, TW = 172 masl,
Smin = 830 MCM, Smax = 3, 340 MCM, Rmin =0, Rmax =1, 000 MCM, a=249.83, b =
5.9 × 10−2, c = −1 × 10−5 and d = 2 × 10−9 are specified.

An improved continuous ant algorithm 2135

Table 5 Summary of
parameters used in original
and improved ACOR for
hydropower reservoir problem
with 240 operating periods

Case A Case B

Total ants 40 40
No. of iterations 6,000 6,000
Archive size (k) 20 20
ξ 0.8 0.8
Q 0.5 0.1

Equation 15 imposes an upper bound on the actual energy production by taking
the smaller value from the installed capacity and the potential power of the released
water from the reservoir.

The nonlinear non-convex hydropower formulation is considered to emphasize
the capabilities of the proposed algorithm. The decision variables are defined as
releases during operating periods. An ant is penalized if the storage volume at any
operating period violates the storage constraint represented by Eq. 18. The penalty
function for reservoir storage deviation from its allowable range is expressed as:

Penaltyt =

⎧
⎪⎨

⎪⎩

C ×
(

1 − St
Smin

)
if St < Smin

C ×
(

St
Smax

− 1
)

if St > Smax

(20)

where Penaltyt defines the value of the penalty imposed on the solution for violating
the storage constraint at time period t; and C(>1) is the penalty factor which accounts
for the severity of the storage constraint violation. The penalty factor of C = 10 was
used in the case considered. If any ant is penalized at different time periods during
solution construction, a total penalty value equal to the sum of all penalties will be
imposed on the agent.

In order to illustrate the contributions of the proposed adaptation operator and
explorer ants to overall performance of the algorithm in the hydropower reservoir
operation problem, two different combination of the operators (identified as cases
A and B) are considered. Case A assumes an initial large value for q, whereas case
B starts with a quite smaller value. As expected, initially large value of q relatively
expands the search space causing slow rate of convergence. Whereas, small value
of q results a fairly intensive search causing potential trapping in local optimums.
Therefore, it is anticipated that adaptation in case A and explorer ants in case B
might efficiently improve the quality of the final solution. Table 5 summarizes the

Table 6 Results obtained for hydropower reservoir problem with 240 operating periods using case-A
conditions

Original ACOR Improved ACOR

Exp. = 0a Exp. = 5b Exp. = 8 Exp. = 10

Mean 43.315 30.848 26.202 26.123 25.552
SD 5.53 4.77 2.20 1.25 1.05
aAdaptation operator without explorer ants
bNumber of explorer ants

2136 S. Madadgar, A. Afshar

Table 7 Results obtained for hydropower reservoir problem with 240 operating periods using case-B
conditions

Original ACOR Improved ACOR

Exp. = 0a Exp. = 5b Exp. = 8 Exp. = 10

Mean 29.790 30.282 24.946 24.464 24.183
SD 1.61 1.70 0.66 0.89 0.62
aAdaptation operator without explorer ants
bNumber of explorer ants

values of the parameters used for cases A and B corresponding to the problem with
240 operating periods.

Results of the model application to the defined hydropower reservoir operation
for 240 operating periods under cases A and B are presented in Tables 6 and 7.
According to Table 6, when adaptation operator is implemented in case A, the mean
value and standard deviation of the objective function over 20 independent runs
drop from 43.315 and 5.53 to 30.848 and 4.77 for original and improved algorithms,
respectively. Inclusion of the explorer ants further drops the objective value to 26.202
as five explorer ants are employed. It is interesting to note that the standard deviation
has been reduced by 50%. According to Table 7, in case B, the contribution of the
adaptation operator to improvement of the solutions is not as significant. In this
case, however, the explorer ants play an important role in solution improvement.
As presented in Table 7, the first five explorer ants reduced the mean value and
the standard deviation of the objective function by more than 17% and 60%,

0.00

0.05

0.10

0.15

0.20

0.25

450 470 490 510 530 550

Release (MCM)

G
a

u
s
s
ia

n
 k

e
r
n

e
l

p
d

f
a

t
1

0
0

th
 d

e
c
is

io
n

 s
te

p

Iteration =1000 Iteration = 2000 Iteration =3000

Fig. 6 The Gaussian kernel pdfs obtained by the best ant for 100th decision step at different
iterations through the advancement of the algorithm

An improved continuous ant algorithm 2137

0

6

12

18

24

0 60 120 180 240

Period (month)

Best available optimum

Best found solution

Fig. 7 Comparison between the results of the best found solution by the improved algorithm with
those of the best available optimum

respectively. The best solutions found with the improved algorithm under cases A
and B are determined as 24.04 and 22.95 units, respectively. Results clearly show how
effectively the proposed improvements locate better near optimum solutions, both
for the best solution and the average performance over large number of independent
runs. Further consideration on results clarifies the remarkably less sensitivity of the
improved algorithm, in comparison with the original one, to the initial value of
parameter q.

Figure 6 illustrates how the Gaussian kernel pdf, obtained by the best ant at one
of the construction steps, changes through the advancement of the algorithm. As
shown, the Gaussian kernel pdf is gradually retracted from a relatively wide area
in the decision space to a small area around the final value. At initial iterations, a
rather uniform Gaussian kernel pdf provides a broad search for the ants while by the
advancement of the algorithm, the Gaussian kernel pdf is contracted and the search
process is finely tuned.

Figure 7 presents the cumulative values for relative deviation of the generated
power from the installed capacity of the hydropower plant under the best solution.
The results of the best solution obtained by the proposed improved ACOR algorithm
follows almost the same pattern as those of the best available optimum, the objective
value of which is reported as 20.62 (Moeini 2007).

6 Conclusion

Ant colony optimization was initially proposed for discrete search space while in
continuous domain, discretization of the search space has been practiced. Most of the

2138 S. Madadgar, A. Afshar

proposed ant-based methods for continuous optimization are far from the original
spirit of ant colony optimization algorithm. This paper presented an improved
version of ACOR algorithm which integrated adaptation operator and explorer
ants into the original structure. Performance of the proposed model on some
mathematical benchmark problems was quite satisfactory in comparison with those
of some other ant and non-ant based methods. With the same stop criteria, the
proposed model required remarkably less number of function evaluations. Inclusion
of adaptation operator and explorer ants in the algorithm reduced the possibility of
trapping into local optimums. Application of the algorithm to a single hydropower
reservoir operation problem showed that the model is relatively robust in locating
the good near optimal solutions. More desirable value of the objective function
and lower standard deviation of the results may be realized as the strength of the
proposed improved version of the algorithm compared to the original method.

The results of the model application showed that the adaptation operator was
more effective in cases with large initial values for parameter q. For all cases consid-
ered in this study, few numbers of explorer ants significantly improved the overall
performance of the algorithm. The profound assessment of the results demonstrated
that the improved algorithm is not seriously sensitive to the number of explorer
ants. That is, the number of explorer ants may not impose any serious restriction
on the model application and results. It was highly recommended to include a small
population of explorer ants along with the proposed adaptation operator to enhance
the algorithm’s performances.

References

Abbaspour KC, Schulin R, van Genuchten MT (2001) Estimating unsaturated soil hydraulic
parameters using ant colony optimization. Adv Water Resour 24(8):827–841. doi:10.1016/S0309-
1708(01)00018-5

Bilchev G, Parmee IC (1995) The ant colony metaphor for searching continuous design spaces.
In: Fogarty TC (ed) Proceedings of the AISB workshop on evolutionary computation, vol 993 of
LNCS. Springer, Berlin, pp 25–39

Bozorg Haddad O, Afshar A (2004) MBO (Marriage Bees Optimization), a new heuristic approach
in hydrosystems design and operation. In: Proceedings of the 1st international conference on
managing rivers in the 21st century: issues and challenges. Penang, Malaysia, 21–23 Sep 2004,
pp 499–504

Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano,
Milan, Italy

Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66. doi:10.1109/4235.585892

Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating
ants. IEEE Trans Syst Man Cybern 26:29–42. doi:10.1109/3477.484436

Dreo J, Siarry P (2002) A new ant colony algorithm using the hierarchical concept aimed at optimiza-
tion of multiminima continuous functions. In: Dorigo M, Caro GD, Sampels M (eds) Proceedings
of the 3rd international workshop on ant algorithms (ANTS 2002), vol 2463 of LNCS. Springer,
Berlin, pp 216–221

Esat V, Hall MJ (1994) Water resources system optimization using genetic algorithms. In: Hydroin-
formatics ’94, Proceedings of the 1st international conference on hydroinformatics. Balkema,
Rotterdam, The Netherlands, pp 225–231

Fahmy HS, King JP, Wentzel MW, Seton JA (1994) Economic optimization of river management
using genetic algorithms (paper no 943034). International summer meeting, American Society of
Agricultural Engineers, St Joseph, MI

http://dx.doi.org/10.1016/S0309-1708(01)00018-5
http://dx.doi.org/10.1016/S0309-1708(01)00018-5
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1109/3477.484436

An improved continuous ant algorithm 2139

Jalali MR, Afshar A, Mariño MA (2005) Improved ant colony optimization algorithm for reservoir
operation (technical report). Hydroinformatics Center, Civil Engineering Department, Iran
University of Science and Technology, Tehran, Iran

Jalali MR, Afshar A, Marino MA (2007) Multi-colony ant algorithm for continuous multi-reservoir
operation optimization problem. Water Resour Manage 21:1429–1447. doi:10.1007/s11269-006-
9092-5

Labadie JW (2004) Optimal operation of multireservoir systems: state of-the-art review. J Water
Resour Plan Manage 130(2):93–111. doi:10.1061/(ASCE)0733-9496(2004)130:2(93)

Maier HR, Simpson AR, Zecchin AC, Foong WK, Phang KY, Seah HY, Tan CL (2003) Ant colony
optimization for design of water distribution systems. J Water Resour Plan Manage 129(3):
200–209. doi:10.1061/(ASCE)0733-9496(2003)129:3(200)

Moeini R (2007) Fully and partially constrained ant algorithm for the optimization of sequential
problems: application to optimal operation of reservoirs, M. Sc Thesis, Iran University of Science
and Technology, Department of Civil Engineering

Monmarche N, Venturini G, Slimane M (2000) On how Pachycondyla apicalis ants suggest a new
search algorithm. Future Gener Comput Syst 16:937–946. doi:10.1016/S0167-739X(00)00047-9

Nagesh Kumar D, Janga Reddy M (2006) Ant colony optimization for multi-purpose reservoir
operation. Water Resour Manage 20:879–898. doi:10.1007/s11269-005-9012-0

Oliveira R, Loucks D (1997) Operating rules for multireservoir systems. Water Resour Res
33(4):839–852. doi:10.1029/96WR03745

Simpson AR, Maier HR, Foong WK, Phang KY, Seah HY, Tan CL (2001) Selection of parameters
for ant colony optimization applied to the optimal design of water distribution systems. In:
Ghassemi F et al (eds) Proceedings of the international congress on modeling and simulation.
Canberra, Australia, pp 1931–1936

Socha K, Dorigo M (2006) Ant colony optimization for continuous domains. Eur J Oper Res
185(3):1155–1173. doi:10.1016/j.ejor.2006.06.046

Stützle T, Dorigo M (1999) ACO algorithms for the traveling salesman problem. In: Miettinen K,
Mäkelä MM, Neittaanmäki P, Périaux J (eds) Evolutionary algorithms in engineering and
computer science. Wiley, Chichester, UK, pp 163–183

Stützle T, Hoos HH (1997a) The MAX–MIN ant system and local search for the traveling sales-
man problem. In: Baeck T, Michalewicz Z, Yao X (eds) Proceedings of IEEE-ICEC-EPS ’97,
IEEE international conference on evolutionary computation and evolutionary programming
conference. IEEE, Piscataway, NJ, pp 309–314

Stützle T, Hoos HH (1997b) Improvements on the ant system: introducing MAX–MIN ant system.
In: Smith GD, Steele NC, Albrecht RF (eds) Proceedings of the international conference on
artificial neural networks and genetic algorithms. Springer, Berlin, pp 245–249

Stützle T, Hoos HH (2000) MAX–MIN ant system. Future Gener Comput Syst 16(8):889–914.
doi:10.1016/S0167-739X(00)00043-1

Wardlaw R, Sharif M (1999) Evaluation of genetic algorithms for optimal reservoir system operation.
J Water Resour Plan Manage 125(1):25–33. doi:10.1061/(ASCE)0733-9496(1999)125:1(25)

Zecchin AC, Maier HR, Simpson AR, Roberts A, Berrisford MJ, Leonard M (2003) Max–min
ant system applied to water distribution system optimization. In: Post DA (ed) Modsim
2003—international congress on modelling and simulation. Modelling and Simulation Society
of Australia and New Zealand, Townsville, Australia, 2, pp 795–800

http://dx.doi.org/10.1007/s11269-006-9092-5
http://dx.doi.org/10.1007/s11269-006-9092-5
http://dx.doi.org/10.1061/(ASCE)0733-9496(2004)130:2(93)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)
http://dx.doi.org/10.1016/S0167-739X(00)00047-9
http://dx.doi.org/10.1007/s11269-005-9012-0
http://dx.doi.org/10.1029/96WR03745
http://dx.doi.org/10.1016/j.ejor.2006.06.046
http://dx.doi.org/10.1016/S0167-739X(00)00043-1
http://dx.doi.org/10.1061/(ASCE)0733-9496(1999)125:1(25)

	An Improved Continuous Ant Algorithm for Optimization of Water Resources Problems
	Abstract
	Introduction
	Ant Colony Optimization Algorithms: Spirit and Original Concepts
	Continuous Ant Colony Algorithms: Concepts and Mathematical Presentation
	Proposed Improvements
	Adaptation Operator
	Explorer Ants as Mutation Operators

	Applications of the Model
	Mathematical Functions
	Operation of Hydropower Reservoir

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

