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Abstract In this paper, a groundwater resources management problem has been studied,
namely pumping cost minimization for any number and layout of wells. Steady state flow
in infinite and semi-infinite confined aquifers, to which the method of images applies, has
been considered. It has been proved analytically that when pumping cost is minimized,
hydraulic head is the same at all wells. Based on this proof, an analytical calculation
procedure of the respective optimal distribution of the required total flow rate to the
individual wells is also presented.
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Abbreviations
hJ distance between water level et well J and the predefined reference level (m)
N number of wells
QJ flow rate of well J (l/s) or (m3/s)
QT total flow rate pumped from the system of N wells (l/s)
R radius of influence of the system of wells (m)
r0 well radius (m)
rIJ distance between wells I and J (m)
sJ drawdown of hydraulic head at well J, due to the operation of the system of the wells (m)
T aquifer transmissivity (m2/s)
δ distance between the initial horizontal level of the hydraulic head and the predefined

reference level (m)
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1 Introduction

One of the most common problems in groundwater resources management is minimization of
the cost due to pumping (e.g. Sidiropoulos and Tolikas 2004). Quite often there are additional
constraints to the optimization process, such as flow rate limits, due to pump capacities, or
limits to hydraulic head drawdown in parts of the aquifer. In other cases pumping cost is
examined together with other cost items, such as well or pipe network construction cost.
Water quality considerations, like seawater intrusion, may also enter the optimization process
(e.g. Katsifarakis et al. 1999, Petala 2004). In many cases, pumping cost is the main item in
aquifer restoration problems (e.g. Matott et al. 2006, Papadopoulou et al. 2007).

Due to the importance of proper development of groundwater resources, many optimization
methods have been used to tackle the respective problems. They range from linear and non-linear
programming (e.g. Bear 1979; Rastogi 1989; Mylopoulos et al. 1999) to genetic algorithms and
other evolutionary techniques (e.g. Ouazar and Cheng 2000, Mantoglou et al. 2004).

In this paper the following proposition is proved (for steady flow conditions): When the
cost to pump a given total flow rate QT from any number and layout of wells in a confined
aquifer is minimized, hydraulic head levels at all wells are equal to each other, as long as
flow is due to that system of wells only. This proposition holds for infinite aquifers, as well
for semi-infinite ones, to which the method of images applies.

Based on the aforementioned proof, an analytical calculation procedure of the respective
optimal distribution of QT to the individual wells is also presented.

2 Mathematical Formulation of the Problem

Pumping cost, namely the objective function of the minimization problem, is defined as:

K1 ¼ A �
XN
J¼1

QJ � hJ ð2:1Þ

where N is the number of wells, QJ is the flow rate of well J, hJ the distance between water
level at well J and a predefined level (e.g. highest ground elevation) and A is a constant,
depending on energy cost. Treating A as constant implies that pump efficiencies are
considered as constants, too, and equal to each other.

Well flow rates QJ should not obtain negative values, since such values correspond to
recharge wells. Moreover, they should fulfill the basic constraint of the problem, namely:

XN
J¼1

QJ ¼ QT ð2:2Þ

3 Infinite Aquifers

Since flow is due to the system of wells only, the initial hydraulic head level is horizontal.
Then, Eq. 2.1 can be written as:

K1 ¼ A �
XN
J¼1

QJ � sJ þ δð Þ ð3:1Þ
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where sJ is the drawdown of the hydraulic head at well J, which is due to the operation of
the system of the wells, and δ is the distance between the initial horizontal level of the
hydraulic head and the predefined reference level. Since δ is the same everywhere, the
function K that should actually be minimized is:

K ¼
XN
J¼1

QJ � sJ ð3:2Þ

Since steady flow is considered, sJ for a system of N wells is given as (e.g. Bear, 1979):

sJ ¼ � 1

2πT
�
XN
I¼1

QI � 1n
rIJ
R

ð3:3Þ

where T is aquifer’s transmissivity, R the radius of influence of the system of wells and rIJ
the distance between wells I and J (therefore rIJ=rJI). The value of rJJ in particular, is equal
to the radius of well J, denoted by r0 for all J. Then K, referred as “variable pumping cost”
in the following paragraphs, can be written as:

K ¼ � 1

2πT
�
XN
I¼1

QI �
XN
J¼1

QJ � 1n
rIJ
R

ð3:4Þ

Well flow rates entering (3.4) are not independent of each other, since they are subject to
the constraint (2.2). We can assume, though, without loss of generality, that the first N−1 of
them are independent, while QN depends upon the rest, namely

QN ¼ QT �
XN�1

I¼1

QI ð3:5Þ

It follows that, for any M∈[1, N−1]

@QN

@QM
¼ �1 ð3:6Þ

To investigate the conditions that minimize K, we calculate its first derivative with
respect to QM. First we write K as:

K ¼ � 1

2πT
� XN�1

I¼1

QI þ QN

 ! XN�1

J¼1

QJ � 1n
rIJ
R

þ QN � 1n rIN
R

 !

) K¼ � 1

2πT

XN�1

I¼1

QI �
XN�1

J¼1

QJ � 1n
rIJ
R

þ QN �
XN�1

i¼1

QI � 1n
rIN
R

þ QN �
XN�1

J¼1

QJ � 1n
rNJ
R

þ Q2
n � 1n

r0
R

" #

) K ¼ � 1

2πT

XN�1

I¼1

QI �
XN�1

J¼1

QJ � 1n
rIJ
R

þ 2 � QN

XN�1

J¼1

QJ � 1n
rNJ
R

þ Q2
N � 1n r0

R

" #

ð3:7Þ
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To derive Eq. 3.7, the equality rIJ=rJI has been used. Then, the derivative of K with respect
to QM is:

@K

@QM
¼ � 1

2πT
2
XN�1

J¼1

QJ � ln rMJ

R
þ 2QN � ln rMN

R
þ 2

@QN

@QM
�
XN�1

J¼1

Qj� ln rNJ
R

þ 2QN
@QN

@QM
� ln r0

R

 !

¼ � 2

2πT

XN�1

J¼1

QJ � ln rMJ

R
þ QN � ln rMN

R
�
XN�1

J¼1

QJ � ln rNJR � QN � ln r0
R

 !

¼ � 2

2πT

XN
J¼1

QJ � ln rMJ

R
�
XN
J¼1

QJ � ln rNJR

 !
) @K

@QM
¼ 2 � sM � sNð Þ

ð3:8Þ
To derive Eq. 3.8, Eqs. 3.6 and 3.3 have been used. Setting the derivative of K equal to
zero, one gets:

@K

@QM
¼ 0 , sM ¼ sN ð3:9Þ

Moreover,

@K

@QM
¼ 0 )

XN
J¼1

QJ � 1n
rMJ

R
� ln

rJN
R

� �
¼ 0 ð3:10Þ

Since Eq. 3.9 holds for every M∈[1,N−1], a critical point of variable pumping cost K
corresponds to equal hydraulic head drawdowns at all wells. Its coordinates, namely the
corresponding set of QM values, can be found by solving a linear system of N equations and
N unknowns. The first N−1 equations are obtained by writing Eq. 3.10, for every M∈
[1, N−1]. The Nth equation, which completes the system, is Eq. 2.2, namely:

XN
J¼1

QJ ¼QT

The aforementioned linear system has one solution only, namely only one critical point
P exists. To verify that P corresponds to the minimum of K, the respective second
derivative conditions should be checked. Starting from Eq. 3.8 one gets:

@2K

@Q2
M

¼ � 1

πT

XN
J¼1

@QJ

@QM
� ln rMJ

R
�
XN
J¼1

@QJ

@QM
� ln rNJ

R

 !

¼ � 1

πT
ln
rMM

R
� ln

rMN

R
� ln

rNM
R

þ ln
rNN
R

� �
) @2K

@Q2
M

¼ � 2

πT
ln
r0
R
� ln

rMN

R

� �
ð3:11Þ

The parenthesis of the right hand side of Eq. 3.11 is negative, since well radius r0 is
smaller than any distance between wells. Thus, the value of the second derivative of K with
respect to QM is positive, for every M∈[1, N−1]. This means that the critical point P
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corresponds to a minimum or to a saddle point. Suppose it corresponds to a saddle point,
namely K exhibits a maximum at P along a certain “direction” QEM with E∈[1, N−1]. Since
there is no other critical point, K should decrease continuously along QEM, as we move
away from P. But K is positive, so its value should tend asymptotically to a minimum at
infinity, implying that K is convex there, along QEM. Yet K is concave at P along QEM.
Transition from concave to convex would require a zero of the second mixed derivative of
K with respect to QM and QE, at a point between P and infinity. It results from Eq. 3.8 that
this derivative has the following form:

@2K

@QE@QM
¼ � 1

πT
ln
r0
R
þ ln

rME

R
� ln

rMN

R
� ln

rNE
R

� �

¼ � 1

πT
ln r0 � ln

rMN � rNE
rME

� �
ð3:12Þ

Namely its value (and the value of any other second derivative of K) is constant.
Consequently, the assumption that P is a saddle point does not hold. Hence it is a local
minimum. But, since P is the only critical point of K, it is the global minimum. Finally, it
can be proved that the QJ values, which correspond to the minimum variable pumping cost
and result from the solution of the aforementioned linear system of N equations and N
unknowns, are all positive. The proof is based on a physical argument: The lowest
hydraulic head level (or the maximum respective drawdown, smax), always coincides with a
pumped well, since water flows towards it and, if not pumped, it would accumulate. Since
the solution of the system leads to equal sJ for all wells, all of them are equal to smax. So
they correspond to pumped wells, namely to positive QJ values.

3.1 Illustrative Example

The analytical procedure of calculating the optimal distribution of QT to N wells and the
respective variable pumping cost is illustrated through the following example: Find the
optimal distribution of a total required flow rate QT=500 l/s to 6 wells, pumping from an
infinite confined aquifer, under steady state flow conditions. The radius of each well is r0=
0.2 m, while the radius of influence of the system of wells is R=3,000 m. The coordinates
of the wells are given in Table 1, while aquifer transmissivity T=0.0025 m2/s.

As shown in Table 1, wells 1, 2 and 3 are close to each other, wells 4 and 5 form another
cluster and well 6 is isolated. The distances between the wells are summarized in Table 2.

To find the optimal distribution of QT, a linear system of six equations and six unknowns
(namely QI, I∈ [1, 6]), should be solved. The coefficients A(I,J) of the five first equations
result from Eq. 3.10. For example, the coefficients of the first equation (M=1) are
summarized in Table 3. It can be seen that the diagonal coefficient, which includes r0, is
always different than zero.

Table 1 Well coordinates

Well 1 2 3 4 5 6

xI 100 180 100 700 800 900
yI 0 0 80 0 0 900
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The coefficients A(6,J) are all equal to 1, while the constant terms of the equations are:
C 1ð Þ ¼ C 2ð Þ ¼ C 3ð Þ ¼ C 4ð Þ ¼ C 5ð Þ ¼ 0, according to Eq. 3.10, while C 6ð Þ ¼
QT ¼ 500l=s, according to Eq. 2.2. Solution of the equation system results in the following
well flow rates (in l/s):

Q1 ¼ 70:21 Q2 ¼ 69:92 Q3 ¼ 73:46 Q4 ¼ 80:32 Q5 ¼ 85:49 Q2 ¼ 120:60

It can be seen that the flow rate of the isolated well 6 is almost twice as large as the flow
rate of well 2. Moreover, after transforming l/s to m3/s, one gets from Eq. 3.3 that the
drawdown of hydraulic head at any well J is sj=99.27 m. Finally, it results from Eq. 3.2,
that the variable pumping cost is K=0.5·99.27=49.635 m4/s.

4 Semi-Infinite Aquifers

The aforementioned procedure can be used to study pumping cost minimization to semi-
infinite aquifers, to which the method of images applies. Two cases are presented in the
following paragraphs: (a) Flow fields with a rectilinear impermeable boundary and (b) Flow
fields with a rectilinear constant head boundary.

4.1 Flow Fields with a Rectilinear Impermeable Boundary

According to the method of images, a straight-line impermeable boundary has the same effect
and therefore it can be replaced by a set of N imaginary wells, symmetric of the real ones
with respect to that boundary and of the same sign. Then sJ at any real well J is given as:

sJ ¼ � 1

2πT
�
XN
I¼1

QI � 1n
rIJ � riJ
R2

ð4:1Þ

Table 3 Coefficients A(1,J)

Summary of coefficients

A 1; 1ð Þ ¼ ln r0
R � ln r16

R ¼ �8:703

A 1; 2ð Þ ¼ ln r12
R � ln r26

R ¼ �2:677

A 1; 3ð Þ ¼ ln r13
R � ln r36

R ¼ �2:662

A 1; 4ð Þ ¼ ln r14
R � ln r46

R ¼ �0:4295

A 1; 5ð Þ ¼ ln r15
R � ln r56

R ¼ �0:2575

A 1; 6ð Þ ¼ ln r16
R � ln r0

R ¼ 8:703

Table 2 Distances between wells

Well 1 2 3 4 5 6

1 0.2 80 80 600 700 1,204.16
2 80 0.2 113.14 520 620 1,152.56
3 80 113.14 0.2 605.31 704.56 1,145.60
4 600 520 605.31 0.2 100 921.96
5 700 620 704.56 100 0.2 905.54
6 1,204.16 1,152.56 1,145.60 921.96 905.54 0.2
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where small case indices refer to image wells, namely riJ is the distance between well J and
the image of well I. Due to symmetry, riJ=rJi. Then, the variable pumping cost has the
following form:

K ¼ � 1

2πT
�
XN
I¼1

QI �
XN
J¼1

QJ � 1n
rIJ � rIj
R2

ð4:2Þ

Assuming, as in the infinite aquifer case, that the first N−1 well flow rates QJ are
independent of each other, while QN depends upon the rest, the derivative of K with respect
to any QM, M∈[1, N−1] can be finally written as:

@K

@QM
¼ � 2

2πT

XN
J¼1

QJ � ln rMJ � rMj

R2
�
XN
J¼1

QJ � ln rNJ � rNjR2

 !

) @K

@QM
¼ 2 � sM � sNð Þ ð4:3Þ

Setting the derivative of K equal to zero, one gets:

@K

@QM
¼ 0 , sM ¼ sN ð4:4Þ

Moreover,

@K

@QM
¼ 0 )

XN
J¼1

QJ � 1n
rMJ � rMj

R2
� 1n

rJN � rjN
R2

� �
¼ 0 ð4:5Þ

Since (4.4) holds for every M∈[1,N−1], a critical point of variable pumping cost K
corresponds to equal hydraulic head drawdowns at all wells. Its coordinates, namely the
corresponding set of QM values, can be found by solving a linear system of N equations and
N unknowns. The first N−1 equations are obtained by writing Eq. 4.5, for every M∈
[1, N−1]. The Nth equation, which completes the system, is again Eq. 2.2. The
aforementioned linear system has one solution only, namely only one critical point exists.
To verify that this point corresponds to the minimum of K, the respective second derivative
conditions should be checked. Starting from Eq. 4.3 one gets:

@2K

@Q2
M

¼ � 1

πT

XN
J¼1

@QJ

@QM
� ln rMJ � rMj

R2
�
XN
J¼1

@QJ

@QM
� ln rNJ � rNj

R2

 !

¼ � 1

πT
ln
rMM � rMm

R2
� ln

rMN � rMn

R2
� ln

rNM � rNm
R2

þ ln
rNN � rNn

R2

� �

¼ � 1

πT
2 � ln r0

R
� 2 � ln rMN

R
þ ln

rMm � rNn
R2

� ln
r2Nm
R2

� �
) @2K

@Q2
M

¼ � 2

πT
ln
r0
R
� ln

rMN

R

� �
� 1

πT
ln
rMm � rNn

R2
� ln

r2Nm
R2

� �
ð4:6Þ

The first parenthesis of the right hand side of Eq. 4.6 is negative, since well radius r0 is
smaller than any distance between wells. The second parenthesis is also negative, for the
following reason: As shown in Fig. 1, wells M and N and their images m and N form an
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isosceles trapezoid, with bases rMm and rNn, while rNm is its diagonal. It follows from the
Pythagorean theorem that

r2Nm � rMm þ rMn

2

� �2
� 2 � rMm � rNn þ 2 � rMm � rNn

4
¼ rMm � rNn ð4:7Þ

Since both parentheses are negative, the value of the second derivative of K with respect
to QM is positive, for every M∈[1, N−1]. Thus, the value of the second derivative of K with
respect to QM is positive, for every M∈[1, N−1]. This means that the critical point P
corresponds to a minimum or to a saddle point. Suppose it corresponds to a saddle point,
namely K exhibits a maximum at P along a certain “direction” QEM with E∈[1, N−1]. Since
there is no other critical point, K should decrease continuously along QEM, as we move
away from P. But K is positive, so its value should tend asymptotically to a minimum at
infinity, implying that K is convex there, along QEM. Yet K is concave at P along QEM.
Transition from concave to convex would require a zero of the second mixed derivative of
K with respect to QM and QE, at a point between P and infinity. It results from (4.3) that this
derivative has the following form:

@2K

@QE@QM
¼ � 1

πT
ln
r0 � rNn

R
þ ln

rME � rMe

R
� ln

rMN � rMn

R
� ln

rNE � rNe
R

� �

¼ � 1

πT
ln

r0 � rNn � rME � rMe

rMN � rMn � rNE � rNe ð4:8Þ

Namely its value is constant and, consequently, the assumption that P is a saddle point
does not hold. Hence it is a local minimum. But, since P is the only critical point of K, it is
the global minimum.

4.2 Flow Fields with a Rectilinear Constant Head Boundary

According to the method of images, a straight line constant head boundary has the same
effect and therefore it can be replaced by a set of N imaginary wells, symmetric of the real

straight-line boundary 

m M

e E 

   n N

Fig. 1 Wells M, E and N and
their images m, e and n
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ones with respect to that boundary and with opposite sign (namely recharge wells are the
images of pumped wells). Then sJ at any real well J is given as:

sJ ¼ � 1

2πT
�
XN
I¼1

QI � 1n
rIJ
riJ

ð4:10Þ

where small case indices refer again to image wells, and, due to symmetry, riJ=rJi. Then,
the variable pumping cost has the following form:

K ¼ � 1

2πT
�
XN
I¼1

QI �
XN
J¼1

QJ � 1n
rIJ
rIj

ð4:11Þ

Assuming, as in the previous cases, that the first N−1 well flow rates QJ are independent
of each other, while QN depends upon the rest, the derivative of K with respect to QM can be
finally written as:

@K

@QM
¼ � 2

2πT

XN
J¼1

QJ � ln
rMJ

rMj
�
XN
J¼1

QJ � ln
rNJ
rNj

 !
) @K

@QM
¼ 2 � sM � sNð Þ ð4:12Þ

Setting the derivative of K equal to zero, one gets:

@K

@QM
¼ 0 , sM ¼ sN ð4:13Þ

Moreover,

@K

@QM
¼ 0 )

XN
J¼1

QJ � 1n
rMJ

rMj
� 1n

rJN
rjN

� �
¼ 0 ð4:14Þ

Since (4.13) holds for every M∈[1, N−1], a critical point of variable pumping cost K
corresponds to equal hydraulic head drawdowns at all wells. Its coordinates, namely the
corresponding set of QM values, can be found by solving a linear system of N equations and
N unknowns. The first N−1 equations are obtained by writing Eq. 4.14, for every M∈
[1, N−1]. The Nth equation, which completes the system, is again Eq. 2.2. The
aforementioned linear system has one solution only, namely only one critical point exists.
To verify that this point corresponds to the minimum of K, the respective second derivative
conditions should be checked. Starting from (4.12) one gets:

@2K

@Q2
M

¼ � 1

πT

XN
J¼1

@QJ

@QM
� ln rMJ

rMj
�
XN
J¼1

@QJ

@QM
� ln rNJ

rNj

 !

¼ � 1

πT
ln
rMM

rMm
� ln

rMN

rMn
� ln

rNM �
rNm

þ ln
rNN
rNn

� �
) @2K

@Q2
M

¼ � 1

πT
ln r20 � ln

r2MN � rMm � rNn
r2Mn

� �
ð4:15Þ
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The value of the second derivative is positive, if the value of the parenthesis is negative,
which is equivalent to

r20 �
r2MN � rMm � rNn

r2Mn

ð4:16Þ

But Eq. 4.16 holds, as long as 2·r0 is smaller than any well distance rw. The proof is
based on the triangle inequality. Applying it to triangle Mmn of Fig. 1, one gets that at least
one of rmn (which is equal to rMN) and rMm is larger than rMn/2. Similarly, from triangle
MnN one gets that at least one of rnN and rMN is larger than rMn/2. Therefore:

r2MN � rMm � rNn
r2Mn

>
r2Mn � rw1 � rw2

4 � r2Mn

¼ rw1 � rw2
4

ð4:17Þ

where rw1=min [rmn, rMm] and rw2=min[rMN, rNn]. Therefore, if 2·r0 is smaller than any rW,
Eq. 4.16 holds a fortiori, and the value of the second derivative of K is positive, for any M∈
[1, N−1]. This means that the critical point P corresponds to a minimum or to a saddle
point. The rest of the proof is similar to that of the previous case, taking into account that
any second order mixed derivative of K (e.g. with respect to QM and QE), has the following
form:

@2K

@QE@QM
¼ � 1

πT
ln

r0
rNn

þ ln
rME

rMe
� ln

rMN

rMn
� ln

rNE
rNe

� �
ð4:18Þ

5 Summary and Discussion

In this paper a common water resources management problem has been studied, namely
minimization of pumping cost in confined aquifers under steady state flow conditions. It
has been proved that when the cost to pump a given total flow rate QT from any number
and layout of wells is minimized, hydraulic head levels at all wells are equal to each other,
as long as flow is due to that system of wells only. This proposition has been proved first
for infinite aquifers and then for semi-infinite ones, to which the method of images applies.

The aforementioned result leads to an analytical calculation procedure of the respective
optimal distribution of QT, when one considers pumping cost only. But it can also be used
as a quality criterion for solutions of more complex problems, in which the optimization
process could be trapped to suboptimal solutions. If, for instance, optimization of both the
layout of the wells and the distribution of total flow rate to them is sought, differences
between si values indicate that the optimum is not reached. Local fine-tuning of the solution
could probably lead to better results in this case, without guarantying that the global
optimum is reached. In other cases, discrepancies from the si equality might be justified by
reductions in other cost items and should be evaluated accordingly.
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