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Abstract In the present study, a back propagation feedforward artificial neural network
(ANN) model was developed for the computation of event-based temporal variation of
sediment yield from the watersheds. The training of the network was performed by using
the gradient descent algorithm with automated Bayesian regularization, and different ANN
structures were tried with different input patterns. The model was developed from the storm
event data (i.e. rainfall intensity, runoff and sediment flow) registered over the two small
watersheds and the responses were computed in terms of runoff hydrographs and
sedimentographs. Selection of input variables was made by using the autocorrelation and
cross-correlation analysis of the data as well as by using the concept of travel time of the
watershed. Finally, the best fit ANN model with suitable combination of input variables
was selected using the statistical criteria such as root mean square error (RMSE),
correlation coefficient (CC) and Nash efficiency (CE), and used for the computation of
runoff hydrographs and sedimentographs. Further, the relative performance of the ANN
model was also evaluated by comparing the results obtained from the linear transfer
function model. The error criteria viz. Nash efficiency (CE), error in peak sediment flow
rate (EPS), error in time to peak (ETP) and error in total sediment yield (ESY) for the storm
events were estimated for the performance evaluation of the models. Based on these
criteria, ANN based model results better agreement than the linear transfer function model
for the computation of runoff hydrographs and sedimentographs for both the watersheds.
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ti Target output at node i
ai Network output at node i
N Number of observation
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X kþ1 Weight factor at iteration (k+1)
g ¼ rf X k

� � ¼ error gradient vector
Ynorm Normalized dimensionless variable
Yi Observed value of variable
Ymin Minimum value of variable
Ymax Maximum value of variable
O(i) Output at ith hidden node
On Net output at ith hidden node
Qt Direct runoff at time t
Q(t−r) Direct runoff at lag-r
St Sediment flow at time t
SO Observed sediment flow
SC Computed sediment flow
SO Mean of observed sediment flow
ED Sum of square error
EW Sum of square network weights
F Objective function
λ Parameter of objective function
η Parameter of objective function
S(t−p) Sediment flow at lag-p
Rt Rainfall intensity at time t
R(t−q) Rainfall intensity at lag-q
p, q, r integer
n Chosen step size
k Lag
CE Nash efficiency
EPS Error in peak sediment flow rate
ETP Error in time to peak
ESY Error in sediment yield
RMSE Root mean square error
CC Correlation coefficient

1 Introduction

The process of rainfall–runoff-sediment yield from watersheds is very complex, highly non-
linear having temporal and spatial variability. The event-based modeling of this process has
a vital role in hydrologic design and watershed management. Many models such as black-
box, conceptual, and physically-based models have been developed especially for rainfall-
runoff process. On the other hand, very few models are available for accurate estimation of
sedimentograph from the storm events. In many situations, simple tools such as linear
system theoretical models or black-box models have been used with advantage. However,
these models normally fail to represent the non-linear process of rainfall–runoff-sediment
yield transformation. The innovation of the artificial neural network (ANN) technique has
added a new dimension to model such systems and has been applied in recent years, as a
successful tool to solve various problems concerned with hydrology and water resources
engineering (ASCE 2000a,b).

An ANN is a flexible mathematical structure having an inter-connected assembly of
simple processing elements or nodes which emulates the functioning of neurons in the
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human brain. It has many distinct advantages and possesses the capability of representing
the arbitrary complex non-linear relationship between the input and the output of any
system. Mathematically, an ANN can be treated as a universal approximator having an
ability to learn from examples without explicit physics (Vemuri 1992; ASCE 2000a, b).
Such a model is easy to develop, yields satisfactory results when applied to complex
systems which is poorly defined or implicitly understood. These are more tolerant to
variable, incomplete or ambiguous input data. Hydrologic applications of ANN include the
modeling of daily rainfall–runoff-sediment yield process, water-supply-system optimiza-
tion, assessment of stream’s ecological and hydrological response to climate change,
rainfall–runoff forecasting, river flow forecasting, evapotranspiration process, drought
forecasting, reservoir inflow modeling and operation, ground water quality prediction and
ground water remediation (Smith and Eli 1995; Hsu et al. 1995; Fernando and Jayawardena
1998; Dawson and Wilby 1998; Campolo et al. 1999; Sajikumar and Thandaveswara 1999;
Tokar and Markus 2000; Thirumalaiah and Deo 2000; Zhang and Govindaraju 2000;
Birikundavyi et al. 2002; Rajurkar et al. 2002, 2004; Sudheer and Jain 2003; Kim and
Valdes 2003; Moradkhani et al. 2004; Agarwal and Singh 2004; Olsson et al. 2004;
Agarwal et al. 2005; Keskin and Terzi 2006; etc.). Minns and Hall (1996) applied ANN
models for an event-based rainfall runoff modeling. The ANN was also applied in the unit
hydrograph derivation (Lange 1998). Jain and Indurthy (2003) applied ANN models and
compared with other conceptual and linear system models for event-based discharge
predictions. Although, a few studies have been reported that focused on ANN-event-based
sediment yield modeling and sediment concentration (Tayfur 2002; Nagy et al. 2002;
Cigizoglu 2004; Agarwal et al. 2005; Raghuwanshi et al. 2006) but determination of
sedimentograph during the storm event of short duration from the watersheds is scares.
Looking into the facts, the present study is carried out to develop an event-based sediment
yield model employing Artificial Neural Network technique for small watersheds.

2 Proposed Artificial Neural Network Configuration

A commonly applied three-layered feedforward type ANN network (Fig. 1) is considered
for the development of event-based sediment yield model. As shown in Fig. 1, in a
feedforward network, the input quantities are fed to input nodes, which in turn pass them on
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Fig. 1 Typical three layer feed-
forward artificial neural
network
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to the hidden layer nodes after multiplying by a weight. The weighted sum of the received
input from the each input nodes is calculated and passed to the subsequent layer. It
associates it with a bias, and then passes the result on through a transfer function. The
output nodes do the same operation as that of a hidden node. Before its application to any
problem, the network is first trained, whereby the target output at each output node is
compared with the network output, and the difference or error is minimized by adjusting the
weights and biases through some training algorithm. In this study, a back-propagation
training technique is used to make sure that the training is meanfully applied.

2.1 The Back-propagation Algorithm

In the back-propagation scheme, network weights and biases are adjusted by moving them
along the negative gradient of error function during each iteration until the desired
convergence is achieved, i.e.,

X kþ1 ¼ X k � ng ð1Þ

where, X kþ1 = weight vector at iteration (k+1), X k = weight vector at iteration k, n =
chosen step size, g ¼ error gradient vector ¼ rf X k

� �
, and f X k

� �
= error function for

weight vector X k.

2.2 Network Training

Training is done by gradient descent algorithm. There are two different ways in which this
gradient descent algorithm can be implemented e.g. incremental mode and batch mode. In
the incremental mode, the gradient is computed and the weights are updated after each
iteration whereas in the batch mode, all the pattern is applied to the network before the
weights are updated. The weights and biases of the network are updated only after the entire
training. In the present study, the gradient descent algorithm is implemented in batch mode
and is done through Automated Regularization. In this framework, the weights and biases
of the network are assumed to be random variables with specified distributions. The
regularization parameters are related to the unknown variances associated with these
distributions and carried out using the Bayesian regularization. Bayesian regularization is
the modification of the Levenberg–Marquardt training algorithm to produce networks that
generalizes well to reduce the difficulty of determining the optimum network architecture.
In this training the algorithm run until the effective number of parameters has converged.
The detailed procedure of training using Automated Bayesian Regularization is explained
as follows.

The training of the network is said to be satisfactory when the target output at each
output node is closed to the network output. The objective of the training algorithm is to
minimize the sum of square error ED, which is defined as follows.

ED ¼
XN
i¼1

ti � aið Þ2 ð2Þ

where, N = total number of output nodes; ti = target output at node i; and ai = network
output at node i. When the network satisfies this condition, the generalization is said to be
satisfactory. The process function is constrained to conform to a high degree of smoothness
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by assigning the appropriate weights to the network configuration. A further step in the
regularization adds one more additional term to objective function F=FD, so that:

F ¼ lED þ hEW ð3Þ

where EW the sum of is squared network weights, l and η are the objective function
parameters. The relative size of l and η provide the emphasis for the training. If η≪l,
training algorithm drive the errors smaller, whereas η≫l emphasize weight size reduction in
the training at the expense of network errors, thus producing smoother network response.
Hence, the main problem of implementing appropriate regularization is based on assigning
the correct values to objective function parameters. It involves optimization of objective
function parameters η and l in a Bayesian framework (Foresee and Hagan 1997; Haykin
1999; Pradhan and Ramu 2004).

2.3 Data Normalization

The data set was normalized in the range of [0, 1] using the following equation.

Ynorm ¼ Yi � Ymin

Ymax � Ymin
ð4Þ

where, Ynorm = normalized dimensionless variable; Yi = observed value of variable;
Ymin = minimum value of the variable; and Ymax = maximum value of the variable. The tan-
sigmoid transfer function can accept Ynorm values in the range [0, 1]. The tan-sigmoid
transfer can be defined as follows.

O ið Þ ¼ 2

1þ exp �On ið Þ
� �� ��1 ð5Þ

where, O(i) is the output of the ith hidden node, On(i) is the net output at ith hidden node.

3 Linear Transfer Function Model

Linear transfer function model for two variable, viz., rainfall and runoff, can be define as
follows.

Qt ¼
Xp
j¼1

ajRt�jþ1 þ
Xq
j¼1

bjQt�j ð6Þ

where, Qt is the dependent variable, Rt is the independent variable; p and q are the time
response; and aj, and bj are the time invariant parameters of linear transfer function. The
parameters of the linear transfer function can be computed using the ordinary least-squares
method. When the sediment yield is considered as a dependent variable over the rainfall
and runoff then the linear transfer function for rainfall–runoff-sediment yield process can be
written as follows.

St ¼
Xp
j¼1

ajSt�j þ
Xq
j¼1

bjRt�jþ1 þ
Xr

j¼1

cjQt�jþ1 ð7Þ

where, St is the dependent observation; Rt and Qt are the independent variable observation;
p, q and r are the time response; and aj, bj, and cj are the parameters of linear transfer
function. The time response, p can be approximately estimated through the auto-correlation
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function whereas q and r can be approximated through lag-k cross-correlation between the
two variables (Salas et al. 1980).

As the rainfall–runoff-sediment yield is a complex non-linear process, then the linear
transfer function of the form given in Eq. 7 can be written as:

S tð Þ ¼ f
S t � 1ð Þ; :::::S t � pð Þ;R tð Þ;R t � 1ð Þ; :::::
R t � qð Þ;Q tð Þ;Q t � 1ð Þ; :::::Q t � rð Þ

8<
:

9=
; ð8Þ

Based on Eq. 8 the input pattern of the ANN-based sediment yield model is chosen
followed be confirming the lag response of the system using the autocorrelation function
and cross-correlation coefficients.

4 Model Performance

The performance of ANN model is assessed by the satisfying the defined objective function
of the model. Also, to test the applicability of the model for hydrologic problem following
statistical criteria are also applied.

4.1 Root Mean Square Error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

SOi � SCið Þ2
vuut ð9Þ

where, RMSE is the root mean square error, N is number of observations; SOi and SCi are
the ordinates of observed and computed sedimentographs, respectively.

4.2 Correlation coefficient (CC)

CC ¼
PN
i¼1

SOi � SO
� �� SCi � SC

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

SOi � SO
� �2 �PN

i¼1
SCi � SC
� �2s ð10Þ

where CC is the correlation coefficient; SOi and SCi are the ordinates of observed and
computed sedimentographs, respectively; SO and SC are the mean value of observed and
computed values of sedimentograph for the storm event.

4.3 Nash’s Efficiency (CE)

CE ¼ 1�
PN
i¼1

SOi � SCið Þ2

PN
i¼1

SOi � S
� �2 ð11Þ
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where CE is the Nash’s efficiency (Nash and Sutcliffe 1970); SOi and SCi are the ordinates
of observed and computed sedimentographs, respectively; and S is the mean value of
observed sedimentograph of the storm event.

Along with the above statistical criteria following event based error criteria are also used
to test the results.

4.4 Error in Peak Sediment Flow (EPS)

EPS ¼ SOP � SCPð Þ
SOP

� 100% ð12Þ

where EPS = error in peak sediment flow rate; SOP=observed peak sediment flow rate; and
SCP=computed peak sediment flow rate.

4.5 Error in Time to Peak (ETP)

ETP ¼ TOP � TCPð Þ
TOP

� 100% ð13Þ

where ETP = is the error in time to peak of sediment flow rate; TOP = observed time to peak
of sediment flow rate; and TCP = computed time to peak of sediment flow rate.

4.6 Error in sediment yield (ESY)

ESY ¼ SYO � SYCð Þ
SYO

� 100% ð14Þ

where ESY = error in total sediment yield during the storm; SYO = observed sediment yield;
and SYC = computed sediment yield.

5 Study Area and Data Preparation

The ANN based sediment yield model is developed for the storm-event data of rainfall,
runoff and sediment flow from two small watersheds of different climatic and
physiographic characteristics. The two watersheds selected are W-2 watershed of Treynor
catchment (USA; Fig. 2) and W7 of Goodwin Creek experimental watershed (Mississippi;
Fig. 3). Both the watersheds are very much susceptible to soil erosion due to variable range
of surface and highly erodible nature of soil. The W-2 watershed is an experimental
watershed (Latitude: 40°10′10″ N and Longitude: 95°39′ W), which is located in
Pottawattamie Country in South-Western Iowa, USA, about 26 km east of Missouri river
near a small town of Treynor. W-2 is a micro-watershed having drainage area 0.335 km2

with average land slope of 8.0%. Length and width of the watershed is nearly 670.0 and
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500.0 m, respectively. Climatic condition of the watershed is sub-tropical with average
annual rainfall of 814.0 mm. Silty soil is the major soil group experienced in the watershed.
Major land uses of the watershed are agriculture (= 95%) and pasture (= 5%). The
watershed is looked under the Soil Conservation Service Land Resource Area M-107, Iowa
and Missouri Hills. The W-7, a sub-watershed of Goodwin Creek experimental watershed
(Latitude: 34°15′10.342″ N and Longitude: 89°51′34.479″ W) having drainage area of
1.60 km2 with average slope of nearly 6.5% is located in the southeast quarter of Panola
Country, in northern Mississippi. Length and width of the watershed is approximately
2,050.0 and 800.0 m. Major soil texture experienced in the watershed is silty in nature. A
combination of timber (= 26%), agriculture (= 14%) and pasture (= 60%) are the common
land use of the watershed. Climate of the watershed is humid with average annual rainfall
of 1,292 mm. Watershed is operated under USDA-ARS, National Sedimentation
Laboratory (NSL), Oxford, Mississippi.

Fig. 2 Topographic map of W-2 watershed of Treynor, Iowa
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In totality, twenty two storm events of unequal base time were analyzed in the
application of proposed model. Detailed description of the storm events viz. date of storm
event, duration of storm, total depth of rainfall, runoff volume and sediment yield for both
the watersheds are given in Table 1. The observations of rainfall (mm), runoff (m3/s) and
sediment concentration (ppm) for the watersheds are available in few minute intervals (1–
4 min interval) therefore, the data were first made in equal intervals of one minute through
linear interpolation and sediment concentration values were converted into sediment flow
rate (N/s) by multiplying the sediment concentration to the corresponding discharge. For
training of the network, the data sets were divided into two sets viz., training (70%) and
validation (30%; Table 1). ANN application requires normalized input and output data set
and is performed using Eq. 4 in the range of [0, 1] to avoid any saturation effect that may
arise from the use of sigmoid activation function.

6 Application of ANN Model and Results

Since the sediment flow is dependent on the discharge as well as on the grass rainfall
intensity, therefore the computation of runoff hydrograph was taken up first and discussed
in the following section.

6.1 Computation of Runoff Hydrograph

Determination of sedimentograph requires the runoff depth produced by rainfall from the
watershed. The event data of rainfall intensity and runoff with their previously lagged data

Fig. 3 Topographic map of W-7
watershed of Goodwin Creek
Watershed
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Table 1 Details of storm events used in the analysis

Watershed Storm-
event
date

Storm
duration
(min)

Rainfall
depth
(mm)

Runoff
volume
(mm)

Peak
rate of
runoff
(m3/s)

Time to
peak of
runoff
(min)

Sediment
yield (N)

Peak
sediment
flow rate
(N/s)

Time to
peak of
sediment
flow (min)

W-2:
Treynor
catchment
of IOWA,
USA

15.8.77
(C)

202.0 47.07 10.06 2.66 59.0 601786.4 776.8 57.0

12.6.80
(C)

240.0 29.35 36.0 3.70 38.0 3507955.0 3363.9 40.0

5.9.80
(C)

162.0 11.43 1.128 0.292 49.0 64725.8 81.1 50.0

8.7.81
(C)

148.0 40.35 7.65 2.38 42.0 1457606.0 1534.7 42.0

1.8.81
(C)

121.0 41.56 8.71 2.94 28.0 705759.0 807.2 25.0

14.6.82
(C)

131.0 38.14 12.88 4.27 40.0 5145998.0 6546.4 41.0

17.9.82
(C)

200.0 29.84 1.69 0.30 47.0 76827.5 69.43 47.0

29.8.75
(V)

390.0 41.85 7.44 1.50 82.0 170249.6.2 130.8 82.0

18.6.80
(V)

198.0 16.44 4.75 2.40 84.0 1201140.0 2261.6 84.0

26.8.81
(V)

226.0 19.30 0.90 0.202 71.0 33303.6 47.18 72.0

30.5.82
(V)

178.0 16.62 2.92 0.40 102.0 471122.0 269.23 111.0

30.6.82
(V)

122.0 26.21 5.83 2.15 58.0 1267358.0 1648.6 58.0

W-7:
Goodwin
Creek
watershed,
Mississippi

17.10.81
(C)

517.0 68.46 22.21 5.21 149.0 1511802.0 318.36 149.0

25.5.81
(C)

437.0 37.88 8.38 3.19 62.0 438607.3 147.7 89.0

3.6.82
(C)

864.0 46.95 2.68 0.92 112.0 165407.8 79.56 94.0

12.9.82
(C)

570.0 33.29 3.73 1.01 330.0 100885.0 31.75 322.0

30.11.82
(C)

518.0 19.40 2.11 0.49 278.0 66844.0 19.56 278.0

30.6.82
(V)

454.0 26.59 7.24 2.49 61.0 417573.7 135.53 76.0

11.8.82
(V)

658.0 42.48 8.7 2.226 210.0 239114.0 92.94 206.0

27.8.82
(V)

702.0 83.17 46.7 10.37 107.0 2683771.0 711.3 103.0

C Calibration event; V Validation event
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were considered as input to the model. Runoff hydrograph was computed utilizing the
following combination of rainfall and runoff data of previous lags up to q using the three-
layer feedforward back-propagation artificial neural network:

Q tð Þ ¼ f Q t � 1ð Þ; :::::Q t � qð Þ;R tð Þ;R t � 1ð Þ; :::::R t � pð Þf g ð15Þ
The effective lag-response of the data is decided on the basis of auto correlation function

(ACF) and Lag-k cross-correlation of the watershed’s rainfall–runoff data of the storm
events. Also, lag of the model was decided on the basis of travel time using the Kirpich
formula (Kirpich 1940) and is given as follows.

tc ¼ 0:0195L0:77S�0:385 ð16Þ
where tc is the travel time (min), L is the length of the stream (m) and S is the slope (m/m).
Based on Eq. 16, estimated values of travel time for the W-2 and W-7 watersheds were
7.72 min (≈ 8.0 min) and 19.8 min (≈ 20 min), respectively. Based on the ACF and Lag-k
cross-correlation as well as from the travel time the following model structures were
decided for W-2 watersheds.

QM1 : Q tð Þ ¼ f R t � 1ð Þ;R tð Þ;Q t � 1ð Þf g ð17Þ

QM2 : Q tð Þ ¼ f R tð Þ;R t � 8ð Þ;Q t � 1ð Þf g ð18Þ

QM3 : Q tð Þ ¼ f R tð Þ;R t � 8ð Þ;Q t � 8ð Þf g ð19Þ
Similarly for the W-7 watershed following model were used in the analysis.

QM1 : Q tð Þ ¼ f R t � 1ð Þ;R tð Þ;Q t � 1ð Þf g ð20Þ

QM2 : Q tð Þ ¼ f R tð Þ;R t � 20ð Þ;Q t � 1ð Þf g ð21Þ

QM2 : Q tð Þ ¼ f R tð Þ;R t � 20ð Þ;Q t � 20ð Þð Þ ð22Þ
For feedforward back-propagation ANN model, the number of input nodes in the input

layer was taken equal to the number of input variables (i.e. R(t−1), R(t) and Q(t−1)). Since
no clear-cut guidelines are available for the number of hidden nodes in the hidden layer(s)
(Vemuri 1992) therefore, number of hidden nodes were initially taken equal to the number
of input nodes and increased up to twice based on the minimization of error criteria.
However, corresponding to one output, only one node was taken in the output layer.
Training of the network was performed using the proposed ANN model (i.e. Section 2) at
MATLAB platform. Different ANN (p, q, r) structures were tried for the analysis in which
the variable p is the number of input nodes, q is the number of hidden nodes in the hidden
layer and r is the number of output nodes, and finally based on the performance criteria (i.e.
RMSE, CC, CE) best representing ANN model was adopted for further analysis. The
different ANN structures along with model used, and estimated values of statistical indices
for the W-2 and the W-7 watersheds are presented in Table 2. Based on the performance
criteria, model QM1 with ANN (3, 3, 1) structure was found to be best fitted with observed
data for both the watersheds and therefore selected for further evaluation of the model
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performance in the reproduction of runoff hydrographs for the watersheds. It is clear from
the Table 2 that the order of model performance for both the watersheds is
QM1 � QM2 > QM3. The model performance was also evaluated by comparing the
observed and computed runoff hydrographs in calibration and validation for these
watersheds. The comparison of observed and computed runoff hydrographs for the sample
storm events are shown in Figs. 4 and 5, respectively for W-2 and W-7 watershed. It is clear
from Figs. 4 and 5 that the results obtained from QM1 model with (3, 3, 1) structure gives
better agreement with the observed data. The results of the runoff hydrographs obtained
from the event-based rainfall–runoff model were used in the development ANN based
rainfall–runoff-sediment yield model and is discussed in the following section.

Event: 15/08/1977 (C)
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Fig. 4 Comparison of observed and computed runoff hydrographs for W-2 watershed (C=Calibration, V=
Validation)

Table 2 Performance criteria of ANN and linear transfer function model of rainfall–runoff processes for W-
2 and W-7 watersheds

Watershed Model ANN model ANN-based model Linear transfer function
model

RMSE CC (C) CC (V) CE (C) CE (V) RMSE CC (C) CC (V)

W-2 QM1 (3,3,1) 0.054 0.99 0.99 0.99 0.98 0.07 0.99 0.75
(3,6,1) 0.028 0.99 0.79 0.99 −0.93

QM2 (3,3,1) 0.047 0.99 0.99 0.99 0.98
QM3 (3,3,1) 0.244 0.89 0.87 0.79 0.75

W-7 QM1 (3,3,1) 0.025 0.99 0.99 0.99 0.99 0.03 0.99 0.68
(3,6,1) 0.028 1.00 0.68 1.000 −5.93

QM2 (3,3,1) 0.024 0.99 0.99 0.99 0.99 N.U.
QM3 (3,3,1) 0.270 0.94 0.48 0.90 0.18

(3,6,1) 0.265 0.95 0.95 0.90 0.90

N.U. Not utilized
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6.2 Computation of Sedimentograph

The storm event data of rainfall intensity, runoff and sediment flow rate, along with their
previously lagged data were considered as input to the model. The model input can be
given as follows.

S tð Þ ¼ f S t � 1ð Þ; :::::S t � pð Þ;R tð Þ;R t � 1ð Þ; :::::
R t � qð Þ;Q tð Þ;Q t � 1ð Þ; :::::Q t � rð Þ

( )
ð23Þ

Again, the autocorrelation function and lag cross-correlation analysis were used to know
the time response parameters, p, q, and r. Based on the autocorrelation and cross-correlation
analysis and travel time following model structures were decided for W-2 watershed were
used.

SM1 : S tð Þ ¼ f R t � 2ð Þ;R t � 1ð Þ;R tð Þ;Q t � 2ð Þ;Q t � 1ð Þ; S t � 2ð Þ; S t � 1ð Þf g ð24Þ

SM2 : S tð Þ ¼ f R t � 1ð Þ;R tð Þ;Q t � 1ð Þ;Q tð Þ; S t � 2ð Þ; S t � 1ð Þf g ð25Þ

SM3 : S tð Þ ¼ f R t � 8ð Þ;R tð Þ;Q tð Þf g ð26Þ

SM4 : S tð Þ ¼ f R t � 8ð Þ;R tð Þ;Q tð Þ;Q t � 8ð Þ; S t � 8ð Þf g ð27Þ
Similarly, for W-7 watershed, following model were used for the computation of

sediment flow rate.

SM1 : S tð Þ ¼ f R t � 1ð Þ;R tð Þ;Q t � 1ð Þ;Q tð Þ; S t � 2ð Þ; S t � 1ð Þf g ð28Þ
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Fig. 5 Comparison of observed and computed runoff hydrographs for W-7 watershed (C=Calibration, V=
Validation)
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SM2 : S tð Þ ¼ f R t � 20ð Þ;R tð Þ;Q tð Þf g ð29Þ

SM3 : S tð Þ ¼ f R t � 20ð Þ;R tð Þ;Q tð Þ;Q t � 20ð Þf g ð30Þ
The defined three layer feedforward back-propagation ANN model for rainfall–runoff-

sediment yield were developed for the selected watersheds utilizing the data of runoff
hydrograph computed from the ANN based rainfall–runoff model which has been
already explained. The different ANN structures along with model identity, and
computed values of statistical indices (i.e. RMSE, CC, CE) for W-2 and W-7 watersheds
are given in Table 3. Based on these statistical criteria, model SM1 with ANN (7, 7, 1)
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Fig. 6 Comparison of observed and computed sedimentographs for W-2 watershed (C=Calibration, V=
Validation)

Table 3 Performance criteria of ANN and linear transfer function model of rainfall–runoff-sediment flow
processes for W-2 and W-7 watersheds

Watershed Model ANN model ANN-based model Linear transfer function
model

RMSE CC (C) CC (V) CE (C) CE (V) RMSE CC (C) CC (V)

W-2 SM1 (7,7,1) 25.03 0.99 0.96 0.99 0.90 0.07 0.99 0.75
(7,14,1) 7.97 0.99 0.67 0.99 −0.82

SM2 (6,6,1) 15.07 0.99 0.82 0.99 0.64 N.U.
(6,12,1) 5.18 0.99 0.83 0.99 −3.97

SM3 (3,3,1) 127.7 0.94 0.76 0.88 0.50
(3,4,1) 133.0 0.93 0.85 0.87 0.71

SM4 (3,6,1) 35.3 0.99 0.85 0.99 0.72
(3,9,1) 30.13 0.99 0.89 0.99 0.78

W-7 SM1 (6,6,1) 0.574 0.99 0.99 0.99 0.98 0.90 0.99 0.96
(6,12,1) 0.2427 1.000 −0.522 1.0000 −29.63

SM2 (3,3,1) 34.86 0.98 0.89 0.96 0.79 N.U.
SM3 (4,5,1) 2.27 0.99 0.81 0.99 0.66

N.U. Not utilized
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structure was found to be best fitted with the observed data for W-2 watershed and
therefore, selected for further evaluation of the model performance in the reproduction of
sedimentographs. The comparative performance of the models for W-2 watershed
are SM1 7; 7; 1ð Þ> SM4 3; 9; 1ð Þ> SM3 3; 4; 1ð Þ> SM2 6; 6; 1ð Þ. On the other hand, for W-7
watershed, SM1 (6, 6, 1) model gives better prediction of sedimentographs as compared to
the other models. The performance order of all the models based on the statistical criteria is
SM1 6; 6; 1ð Þ> SM2 > SM3. Using the best fitted models the sedimentographs were further
analyzed. The model’s performance was first evaluated through the comparison of observed
and computed sedimentographs in calibration and validation for the watersheds. The
comparison of observed and computed sedimentographs for the representative storm events
are shown in Figs. 6 and 7 respectively for W-2 and W-7 watershed. The error criteria (CE,
EPS, ETP, and ESY) were also computed for each storm events of calibration as well
validation events for W-2 and W-7 watersheds and are given in Tables 4 and 5.
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Fig. 7 Comparison of observed and computed sedimentographs for W-7 watershed (C=Calibration, V=
Validation)

Table 4 Performance evaluation of ANN and linear transfer function model for W-2 watershed

Event date ANN-based model Linear transfer function model

CE EPS (%) ETP (%) ESY (%) CE EPS (%) ETP (%) ESY (%)

29/08/75 (C) 0.957 −20.106 0.000 −18.67 0.6320 −76.364 3.659 −11.95
15/08/77 (C) 0.991 6.169 −1.754 −0.206 0.9168 −20.002 −1.754 −2.67
12/06/80 (C) 0.999 −0.822 2.500 0.63 0.9970 −0.327 2.500 1.98
18/06/80 (C) 0.996 3.160 0.000 1.113 0.9780 −9.415 0.000 1.735
05/09/80 (C) 0.923 2.432 14.000 −15.95 0.8874 −7.455 12.000 −2.58
08/07/81 (C) 0.997 −1.590 0.000 1.37 0.9942 −5.515 0.000 1.32
01/08/81 (C) 0.989 −7.377 0.000 −1.68 0.9263 −43.244 0.000 −1.15
26/08/81 (C) 0.836 9.597 4.167 −27.8 0.8217 4.597 1.389 −4.72
30/05/82 (V) 0.966 17.385 −0.901 9.86 0.9768 0.710 −0.901 8.953
14/06/82 (V) 0.579 29.763 7.317 36.31 0.5900 57.954 2.439 60.70
15/06/82 (V) 0.632 19.557 25.000 14.74 0.6670 39.368 0.000 47.66
30/06/82 (V) 0.811 −3.975 5.172 2.01 0.8488 17.567 −1.724 27.92
17/09/82 (V) 0.809 −15.483 6.383 −14.64 −7.973 13.280 −2.128 63.05
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7 Comparison of ANN Model with Linear Transfer Function Model

Relative performance of the ANN based rainfall–runoff and rainfall–runoff-sediment yield
models were carried out by comparing the results obtained by fitting the linear transfer
function (i.e. Eqs. 6 and 7) models using the same input variable as used in the best fitted
ANN model. For the development of rainfall–runoff-sediment yield model, the rainfall–
runoff process was fitted first using the observed rainfall–runoff data by ordinary least-
squares method and then the rainfall–runoff process was coupled with the sediment yield
process. For both the processes, fitted linear transfer function models for W-2 watershed are
as follows.

Q tð Þ ¼ �0:0001R t � 1ð Þ þ 0:0011R tð Þ � 0:979Q t � 1ð Þ ð31Þ

S tð Þ ¼ �0:206R t � 1ð Þ þ 0:098R tð Þ � 602:84Q t � 1ð Þ þ 613:00Q tð Þ
� 0:168 S t � 2ð Þ þ 1:1398 S t � 1ð Þ ð32Þ

Similarly, for W-7 watershed, the fitted linear transfer function (LTF) models for
rainfall–runoff and rainfall–runoff-sediment flow process are given by Eqs. 33 and 34,
respectively.

Q tð Þ ¼ �0:00006R t1ð Þ þ 0:00015R tð Þ � 0:999Q t � 1ð Þ ð33Þ

S tð Þ ¼ �0:009R t1ð Þ � 0:007R tð Þ � 44:24Q t � 1ð Þ þ 45:11Q tð Þ
� 0:409 S t � 2ð Þ þ 1:386 S t � 1ð Þ ð34Þ

The fitting criteria viz., RMSE and CC for the linear transfer function models were also
computed and given in Tables 2 and 3 for W-2 and W-7 watershed respectively. Using the
linear transfer function models of rainfall–runoff process and rainfall–runoff-sediment
yield, the runoff hydrographs and sedimentographs were computed for the watersheds.
Runoff hydrographs obtained from the linear transfer function model are shown in Figs. 4
and 5 for sample storm events of W-2 and W-7 watershed, respectively. These figures

Table 5 Performance evaluation of ANN and linear transfer function model for W-7 watershed

Event Date ANN-based model Linear transfer function model

CE EPS (%) ETP (%) ESY (%) CE EPS (%) ETP (%) ESY (%)

17/10/81 (C) 0.9998 −0.059 0.000 0.076 0.9995 0.968 0.000 0.279
30/11/81 (C) 0.9899 −0.312 0.000 −0.312 0.9976 −0.654 0.000 −2.571
05/04/82 (C) 0.9687 −6.386 3.871 −5.945 0.9321 −12.697 2.581 −18.047
25/05/82 (C) 0.9504 −0.210 2.247 −0.060 0.9994 −0.765 0.000 −0.524
03/06/82 (C) 0.9787 −1.800 2.632 0.050 0.9989 −0.893 0.000 −0.659
30/06/82 (V) 0.9872 2.164 2.128 4.985 0.8330 33.507 −14.894 −3.804
11/08/82 (V) 0.9910 −1.498 −0.485 −6.131 −0.6630 −37.616 −0.485 −125.15
27/08/82 (V) 0.9718 14.941 −1.942 5.423 0.9060 20.234 −3.883 −10.12
12/09/82 (V) 0.9969 −1.039 −0.311 −3.278 −1.0400 −55.339 −0.311 −149.53
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clearly show that the runoff hydrographs of validation events are not well simulated by LTF
model with respect to hydrograph characteristics such as, peak, time to peak and time to
peak and time based.

The performance evaluation of the sediment yield model was carried out on the basis of
visual comparison of observed and computed sedimentographs as well as by computing the
error criteria such as CE, EPS, ETP and ESY (refer Section 4). The comparisons between
the observed and computed sedimentographs are shown in Figs. 6 and 7 for W-2 and W-7
watersheds, respectively. The event-wise estimated values of error criteria such as CE, EPS,
ETP and ESY are given in Tables 4 and 5 for W-2 and W-7 watersheds, respectively. The
Figs. 6 and 7 as well as the Tables 4 and 5 clearly show that the sedimentographs computed
by the LTF model are quite satisfactory for the calibration events however; the prediction
efficiency for the validation events was inferior than the proposed ANN models.

The graphical (Figs. 4 through 7) as well as the error criteria used (Tables 4 and 5) show
that the ANN based model produce the sedimentographs closer to the observed one as
compared to the LTF model. Also, the parameters of runoff hydrographs and sedimento-
graphs (i.e. peak, time to peak and volume) along with rising and recession segments was
reproduced well by ANN based model. Thus, the shape of the sedimentographs is very well
preserved in case of ANN based model for calibration as well as in validation events.

8 Conclusions

The present study used the well accepted feedforward back-propagation artificial neural
network with different structures. The training of the network was accomplished under
batch mode by gradient descent algorithm with automated Bayesian regularization. The tan-
sigmoid and pure linear transfer functions were used in the hidden layer and output layer,
respectively. Different ANN structures along with the different combinations of input
variables were used for the analysis. Based on the performance criteria viz., RMSE, CC,
and CE, a best fit ANN model was selected and used for the computation of runoff
hydrographs. Using the same methodology and output of the ANN based rainfall–runoff
model (i.e., runoff hydrographs), sedimentographs were computed and compared with
observed ones. The relative performance of ANN based model was also evaluated by
comparing the results with other existing model, for which LTF model was developed using
the similar inputs as used in the best fitted ANN based model. The fitting of the linear
transfer function model was carried out using the least-squares method. The results obtained
from ANN-based model when compared with the linear transfer function model using the
error criteria viz. Nash’s efficiency (CE), error in peak (EPS), error in time to peak (ETP)
and error in volume (ESY), endorse its applicability for the computation of runoff
hydrographs as well as the sedimentographs.

Thus, the proposed model based on the artificial neural network technique has been
found to be satisfactory for the event-based computation of sedimentograph without any
computational burdens.
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