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Abstract Groundwater pollution sources are characterized by spatially and temporally vary-

ing source locations, injection rates, and duration of activity. Concentration measurement data

at specified observation locations are generally utilized to identify these sources character-

istics. Identification of unknown groundwater pollution sources in terms of these source

characteristics becomes more difficult in the absence of complete breakthrough curves of

concentration history at all the time steps. If concentration observations are missing over a

length of time after an unknown source has become active, it is even more difficult to cor-

rectly identify the unknown sources. An artificial neural network (ANN) based methodology

is developed to identify these source characteristics for such a missing data scenario, when

concentration measurement data over an initial length of time is not available. The source

characteristics and the corresponding concentration measurements at time steps for which it

is not missing, constitute a pattern for training the ANN. A groundwater flow and transport

numerical simulation model is utilized to generate the necessary patterns for training the

ANN. Performance evaluation results show that the back-propagation based ANN model

is essentially capable of extracting hidden relationship between patterns of available con-

centration measurement values, and the corresponding sources characteristics, resulting in

identification of unknown groundwater pollution sources. The performance of the method-

ology is also evaluated for different levels of noise (or measurement errors) in concentration

measurement data at available time steps.
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Introduction

In real world situations, for a polluted groundwater system, it is likely that temporal variation

in concentration measurement values at an observation site may not be available at all time

steps. Some of the initial concentration measurement values may not be recorded, resulting

in only the partial breakthrough curves being available. Identification of unknown pollution

sources is a difficult task even when concentration measurement data is available for all

the time steps (Mahar and Datta, 2001; Singh et al., 2003). The complexity of the problem

increases when concentration measurement data are not available for all the time steps. In this

study, the pattern matching capability of an ANN is exploited to identify unknown sources

of pollution from these partial breakthrough curves. Data for training the ANN are simulated

using a groundwater flow and contaminant transport numerical simulation model. A typical

conservative pollutant is considered. The trained network is then utilized for the identification

of pollution sources for specified concentration observation data at given locations.

Contamination observed at a location may result from a single source or combination of

sources with varying injection rates and release periods. Often, these source characteristics

are unknown. A necessary step in addressing the issues of groundwater contamination and

its remediation is the accurate detection of the source characteristics that cause groundwater

pollution. In their pioneer work, Gorelick et al. (1983) utilized classical optimization tech-

niques to identify pollution sources in two hypothetical study areas. They used least squares

regression and linear programming together with the response matrix approach to identify

the sources. Wagner and Gorelick (1986) employed nonlinear multiple regression techniques

to estimate aquifer parameters, and a linear source term for a one dimensional hypothetical

column system. Estimation of the linear source term was found to be highly sensitive to the

introduction of measurement error.

Datta et al. (1989) used statistical pattern recognition to develop an expert system for the

identification of unknown groundwater pollution sources. The pattern learning and recogni-

tion capabilities of an optimal statistical classifier using dynamic programming, as well as

an expert knowledge base, were combined to solve the identification problem. Bagtzoglou

et al. (1992) presented the random walk method to identify sources of groundwater pollu-

tion. Wagner (1992) presented nonlinear maximum likelihood estimation for simultaneous

parameter estimation and contaminant source characterization for coupled groundwater flow

and contaminant transport modeling.

Skaggs and Kabala (1994) recovered the release history of a groundwater contaminant

using current spatial measurement of contaminant concentration. They considered effects of

measurement errors, parameter estimation errors, and numerical instability on performance

of the method. Mahar and Datta (1997) specifically considered optimal design of a dynamic

monitoring scheme for improved identification of pollution sources in groundwater. Mahar

and Datta (2000) included transient flow condition. Mahar and Datta (2001) considered si-

multaneous estimation of aquifer parameters and identification of unknown pollution sources.

Aral et al. (2001) embedded a progressive genetic algorithm with groundwater simulation

models for the identification of contaminant source locations and release history in aquifers.

Some of the recent advances in this area are discussed in Atmadja and Bagtzoglou (2001a, b)

and Bagtzoglou and Atmadja (2003).

Singh et al. (2002, 2003) presented results for identification of unknown pollution sources

using an artificial neural network, when complete breakthrough curves are available. Singh

et al. (2003) considered multiple scenarios incorporating measurement errors. The results

were promising even with large measurement errors. Datta and Chakrabarty (2003) proposed

the use of a linked optimization-simulation approach where the simulation model is externally
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linked to the optimization model to solve this source identification problem. This approach

is potentially suitable for solving large-scale identification problems.

Each of these methodologies has both advantages and limitations. Methods based on

the response matrix approach assume linearity of the groundwater system. Methods based

on embedding techniques are more computationally intensive, and are not suitable for very

large-scale problems. Gorelick (1983) concluded that numerical difficulties are likely to arise

for large scale problems using the embedding technique. Also, these methods are sensitive

to measurement errors and are affected by different starting points of solution.

In most of these previously mentioned works the issue of missing data scenario is not

addressed adequately. Therefore, an ANN based methodology is proposed to identify un-

known groundwater pollution sources, when a portion of the concentration observation data is

missing. The ANN based methodology proposed here uses patterns generated by a ground-

water simulation model to train the ANN, using back-propagation algorithm. The partial

breakthrough curves are the inputs, and corresponding source characteristics are the outputs,

constituting a pattern for the training. An ANN model trained on a number of such generated

patterns is finally utilized for the identification of unknown pollution sources in terms of

source fluxes.

Simulation of groundwater flow and transport

The equation describing steady, two dimensional areal flow of groundwater through a non-

homogeneous, anisotropic, saturated aquifer can be written in Cartesian tensor notation

(Pinder and Bredeoeft, 1968) as:

∂

∂xi

(
Ti j

∂h

∂x j

)
= W ; i, j = 1, 2 (1)

where Ti j = Transmissivity tensor (L2 T−1) = Ki j b; Ki j = hydraulic conductivity tensor

(LT−1) and b = saturated thickness of aquifer (L); h = hydraulic head (L); W = Volume flux

per unit area (positive sign for outflow and negative sign for inflow) (L T−1); and xi , x j =
Cartesian coordinates (L)

The equation describing transient, two-dimensional areal transport of a conservative solute

through a saturated, rigid, and nondeformable aquifer, in Cartesian notation, can be written

(Bear, 1972; Bredehoeft and Pinder,1973) as:

∂(cb)

∂t
= ∂

∂xi

(
bDi j

∂c

∂x j

)
− ∂

∂x j
(bcvi ) − c′W

ε
; i, j = 1, 2 (2)

where t = time (T); c = concentration of the dissolved chemical species (ML−3); Di j =
coefficient of hydrodynamic dispersion (second-order tensor) (L2 T−1); c′ = concentration

of the dissolved chemical in a source or sink fluid (ML−3); vi = seepage velocity in the

direction xi (LT−1); and ε = effective porosity of the aquifer (dimensionless). In this study,

the product of the liquid volume disposal rate and the solute concentration of the source is

treated is a single variable called source flux or disposal flux (MT−1).

The ANN based methodology is utilized in this study for groundwater systems under

steady state flow, and transient transport conditions. A numerical simulation model based

on the method of characteristics (MOC) developed by the United States Geological Survey

(USGS) (Konikow et al., 1989) is utilized for simulating flow and transport processes in the
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Fig. 1 A two layer fully
interconnected MLP architecture

aquifer. These simulated solutions results are used as necessary inputs for training and testing

the developed ANNs for source identification.

ANN based methodology

The ANN learns to solve a problem by developing a memory capable of associating a large

number of example input patterns, with a resulting set of outputs or effects. ANN is discussed

in ASCE Task Committee (2000), Rao et al. (2004), etc. An overview of artificial neural

networks and neural computing, including details of basics and origins of ANN, biological

neuron model etc. can be found in Hassoun (1999), Schalkoff (1997), and Zurada (1997).

Basic processing element of an ANN is the neuron or node. It performs work by two

processes: – (i) internal activation; and (ii) transfer function. Internal activation adds up the

values of incoming messages multiplied by a specific connection weight, also known as net.

The variable net is defined as scalar product of the weight and input vector (Zurada, 1997). The

transfer function calculates the activation level or threshold of the neuron from the internal

activation. A typical transfer function is sigmoid or hyperbolic tangent function from which

threshold is calculated as y = f (net) = 1/(1 + e−net) for sigmoidal function, and f (net) =
tanh (net) for hyperbolic tangent function. When the processing elements or node are grouped

together in a network of layers, they form the neural network architecture, also known as

multilayer perceptron (MLP), as shown in Figure 1. For clarity, only selected connections are

drawn. In Figure 1, d1, d2, . . ., represent the target values, y1, y2, . . ., the output values, and

x1, x2, . . ., represent the input values, respectively. The vector Z (z0, z1, . . . , zL ) represents

an intermediate layer of L neurons. The vector W with elements wi j to denote the weight of

j th neuron of a layer to i th neuron of previous layer. In this way, j th neuron may be from

hidden layer or output layer.

Weight-space and back-propagation algorithm

An artificial neural network learns the approximation of the desired mapping (input vector

to desired output vector) by repeatedly modifying network weights using an algorithm or

learning rules. The entire process is called training.

Training an ANN is in fact a search in the so-called weight-space; that is, the space

spanned by all possible weights in the network for a typical ANN topology (or architecture).

The goal of the search is to find a point in weight-space which minimizes a certain error

criterion. Training of an ANN is thus equivalent to performing a minimization procedure in

weight-space with respect to the error criterion. One of the most prominent and widely used
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training algorithms is the back-propagation algorithm (Rumelhart et al., 1986). It is based

on the gradient descent minimization method.

ANN based methodology for pollution source identification

The groundwater pollution source identification problem is a complex inverse problem, and

it is further complicated due to partially missing concentration observation measurement

values. Universal function approximator capability of a feed forward multilayer perceptron

with back-propagation algorithm is utilized to solve this difficult identification problem.

Spatially and temporally varying observed concentration data are used to identify unknown

source fluxes causing the contamination. In a given study area, application of the proposed

methodology involves the procedures as outlined in the schematic representation of Figure 2.

A numerical simulation model MOC (Konikow et al., 1989) is utilized for generation of

patterns for training and testing.

Fig. 2 Schematic representation of the source identification methodology using ANN
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ANN design is accepted to be satisfactorily completed when its performance during train-

ing and testing satisfies the stopping criteria based on some statistical parameters. Selection

of best performing architecture of the ANN model among the various tested architectures,

completes the training process. The trained ANN model can be subsequently used to identify

unknown groundwater pollution sources.

Illustrative application of ANN methodology for identification of sources
with missing observation data

The illustrative application of the methodology considers convective transport and hydro-

dynamic dispersion. It is assumed that the solute is conservative and that gradients of fluid

density, viscosity, and temperature do not affect the velocity distribution. Also, steady state

flow and transient transport condition is assumed. The performance of the methodology is

evaluated for the study area shown in Figure 3.

In the illustrative example, two time varying pollution sources are considered at S1 and

S2. Four observation wells O1, O2, O3 and O4 are considered. The concentration of the

pollutant in the recharge from the pond, and the initial concentration of pollutant in the

aquifer are assumed to be zero. The finite difference grid sizes, the aquifer parameter values,

the recharge rates from the pond, and true value of source fluxes used to generate observed

concentration are given in Table 1. It is assumed that a 10 year time domain can capture

the entire concentration breakthrough curve at a specified observation location. This 10 year

time domain is also divided into 40 equal time steps.

It is assumed that no concentration observation data are available for the first 3 years of

the 10 years time domain of concentration measurement. Therefore, out of a total 10 year

time domain, observation data for 7 years only are available, as first 3 years of observation

data are missing. Now the available concentration observation data for the 7 year period

contain concentration measurements corresponding to 28 equal time steps, each of 3 month

duration. For 4 observation wells, a total of 112 concentration measurement values constitute

the input for the ANN model. Source fluxes causing these concentration values are the output

for training the ANN.

The performance of the methodology is evaluated for different levels of noise (or measure-

ment errors) in concentration measurement data. The boundary and initial conditions were

Fig. 3 Study area
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Table 1 Flow and transport
parameter values and source flux
values used for simulating
observed data for study area
shown in Figure 1

Parameter or source fluxes duration Value

Parameter values

Kxx (m/s) 0.0001

Kyy (m/s) 0.001

ε 0.2

αL (m) 30.5

αT (m) 12.2

b (m) 30.5

�x (m) 91.5

�y (m) 91.5

�t (month) 3

qr (L/s)a 2.15

Source fluxb at S1

Year 1 48.8

Year 2 0.0

Year 3 10.0

Year 4 42.0

Year 5 36.0

Source flux at S2

Year 1 0.0

Year 2 0.0

Year 3 0.0

Year 4 0.0

Year 5 0.0

aClean water recharge from pond.
bUnit of source flux is in grams
per second (g/s)

assumed known. Pollution sources were assumed to release a typical conservative pollutant

in a uniform rate throughout each of the periods of activity considered.

Performance criteria

To evaluate the performance of the developed methodology, it is necessary to define the

criteria by which its performance will be evaluated. Some statistical parameters are used to

select the neural network architecture among various architectures, and to judge the predictive

accuracy of selected architecture.

Performance evaluation criteria for network architectures

The following statistical parameters are used for quantifying the errors in training and testing

for different ANN architectures.

Total error (E)

The total error of the network is defined as the normalized sum of the squared differences

between the output of the network and the target values over all outputs and all patterns

(Anguita et al., 1994). Smaller the value of E, better is the performance of ANN in training.

E = 1

P Nl

P∑
p=1

Nl∑
l=1

(
d p

l − y p
l

)2
(3)
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where, P = total number of patterns; Nl = total number of outputs y p
l = l th output value for

pth pattern; and d p
l = target value at lth output and pth pattern.

Average absolute relative error (AARE)

The average absolute relative error represents normalized sum of the deviations between the

output and target values of the ANN. It is defined as:

AARE =
∑P

p=1

∑Nl
l=1

∣∣d p
l − y p

l

∣∣∑P
p=1

∑Nl
l=1 d p

l

× 100 (4)

Threshold statistics (TS(K))

It measures the model performance at certain level of absolute relative error. Absolute relative

error (k) represents the normalized deviation between the output values and target values. It

is defined as:

k =
∣∣∣∣d p

l − y p
l

d p
l

∣∣∣∣ × 100 (5)

For the absolute relative error (k), Threshold Statistics, TS (k) is defined as:

T S(k) = n

N
× 100 (6)

where n = number of data points whose absolute relative error is less than k; and N = total

number of data points taken over all the outputs and all the patterns.

It is a measure of proportional number of data points for which the normalized errors are

less than k. Larger this value, better is the performance of the ANN.

Correlation coefficient (R)

It is defined as:

R =
∑P

p=1

∑Nl
l=1

(
�d p

l

)(
�y p

l

)√∑P
p=1

∑Nl
l=1

(
�dl

)2 ∑P
p=1

∑Nl
l=1

(
�y p

l

)2
(7)

where

�dl = dl −
Nl∑

l=1

dl

N
;

and

�yl = yl −
Nl∑

l=1

yl

N

Larger values of R represent better performance.
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Performance evaluation criteria for developed ANN models

The ANN model is first selected on the basis of the above mentioned performance evalua-

tion criteria used in the training phase. Normalized error is used as the evaluation criterion

for evaluating the performance of the selected ANN models in identifying the unknown

groundwater pollution sources.

Normalized error (NE)

The normalized error is used as a measure of over all source identification error. This is also

a measure of the methodology performance, defined as (Mahar and Datta, 2001):

N E =
∑np

p=1

∑ns
l=1

∣∣e fl,p − a fl,p

∣∣∑np
p=1

∑nl
l=1 a fl,p

× 100 (8)

where, ns = total number of potential source locations; np = total number of potential disposal

periods at each locations; e fl,p and a fl,p = model estimated average source flux and actual

source flux respectively, at lth location and during pth disposal period.

Larger values of NE represent large absolute deviation between the estimated source fluxes

and actual source fluxes.

Incorporating measurement errors

In some of the evaluation results presented, simulated values of the observed concentrations

were perturbed to represent the effect of measurements errors. The perturbation of simulated

concentrations is performed by adding randomly generated error terms to the numerically

simulated concentrations. The normally distributed error terms represents the concentra-

tion measurement errors that generally occur in field measurements or laboratory tests. The

perturbed concentration values are computed as follows (Mahar and Datta, 2001):

cobs(xn, t) = cns(xn, t) + εr (9)

where, cobs(xn , t) = measured or observed concentration at location xn , at time t ; cns(xn , t) =
numerically simulated concentration at location xn , at time t; and εr = random error term.

Here, the random variable εr is assumed to follow a normal distribution with mean = 0

and standard deviation = a · cns(xn , t). Further the error term is defined as

εr = e × a × cns(xn, t) (10)

where, a = a fraction (0 ≤ a ≤ 1.0); and e = normal deviate.

Standard normal deviate (e) are generated using MATLAB (Version 5.2.0.3084, 1998).

The value of ‘a’ is varied from 0.05 to 0.3. Higher values of ‘a’ indicates higher level of

noise in the concentration measurement data. In this study, it is assumed that values of

a < 0.10 correspond to low noise level, 0.1 ≤ a ≤ 0.15 correspond to moderate noise level,

and a > 0.15 correspond to high noise level. Also, for performance evaluation purpose, a

normal distribution of the errors is assumed. Any other suitable distribution function may

be incorporated. The value of cobs(xn , t) can be negative if ‘e’ is negative., ‘a’ is large and
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cns(xn , t) is small. Generally, such a situation is less probable if ‘a’ is small and ‘e’ is also

small. Otherwise a truncated normal distribution may be used.

Determination of network architecture

ANN architecture determines the number of connection weights (free parameters), and the

way information flows through the network. Determination of appropriate network archi-

tecture (or topology) is most important and also the most difficult task in the ANN model

building process.

In this study, the ANN model is implemented using a standard back-propagation algo-

rithm (Rumelhart et al., 1986; Anguita et. al., 1994). Hyperbolic tangent transfer function,

generalized delta learning rule, and the quadratic error function are chosen as internal param-

eters of the network. Hyperbolic tangent transfer function make back-propagation learning

perform better (Haykin, 1994, 2000). The initial weights are randomly distributed between

+ 0.1 and – 0.1. Motivation for using small weights is to prevent premature saturation, while

randomness is introduced as symmetry breaking mechanism so that the node may not become

redundant. Keeping this in mind other authors, e.g. Maier and Dandy (1996) used this range

of initial weights. Input and output values are scaled between – 0.9 and + 0.9 (close to the

range of activation function i.e., −1 to +1).

During training, a large set of patterns are presented to the network. A set of input val-

ues together with the corresponding target value constitutes a pattern. The input values are

simulated concentration measurements at the observation wells. As of concentration mea-

surements for initial three years are assumed to be missing, the inputs comprise of the

concentration measurement values for the remaining 7 years. The target values are corre-

sponding source fluxes. These concentration measurements are simulated using a numerical

simulation model (MOC) for the specified source fluxes and the study area. Source fluxes

are randomly generated using a uniform distribution with specified upper and lower bounds.

The upper and lower bounds may be determined in such a way that the ranges of possible

values for source fluxes are adequate within these bounds. Out of total, 10,725 patterns, 5775

patterns were used for the training, and 4950 patterns were used for testing.

In the course of experimentation, it was observed that single hidden layer architectures

lacked generalization ability when applied to the identification problem. In earlier work

(Singh et al., 2002) it was also observed that a network with two hidden layers performed

better than networks with a single hidden layer. Better performance with two hidden layers

may be due to the complexity and nonlinearity involved in mapping the input to the output

for this problem.

The criteria used for terminating the training of the ANN is based on a total error (E)

versus iterations graph, as well as the error criteria e.g. E, R etc. It is ensured that error surface

graph has less fluctuations, total error (E) values are less than 10 percent, and correlation

coefficients (R) are greater than 0.8. Although arbitrary, it is believed these are acceptable

stopping criteria, while limiting the CPU time required.

Training and testing with missing data

In order to train the ANN for missing observation data scenario, the input values are the

simulated concentration measurements at observation well locations shown in Figure 3.

These data exclude the concentration values for the missing initial 3 years period. Total

112 observation data for all the four observation wells, 28 at each observation site, is used

as input to ANN. The target values are 10 corresponding source fluxes (5 for each source
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Table 2 Performance evaluation during the training and testing at 1000 iterations for missing data

ANN Model AARE TS(1) TS(10) TS(25) TS(50) TS(100) R E

Training

112-10-10-10 36.4 1.7 17.0 54.1 60.2 62.8 0.817 0.095

112-12-10-10 33.8 2.0 19.8 55.2 60.9 63.4 0.838 0.086

112-16-10-10 28.8 2.8 23.6 57.7 62.9 64.9 0.873 0.068

112-20-10-10 29.4 2.7 24.0 57.6 62.5 64.4 0.869 0.071

112-30-10-10 26.7 3.5 28.3 59.6 63.7 65.4 0.889 0.061

112-30-12-10 32.1 2.5 22.9 57.4 62.1 64.0 0.854 0.078

112-30-20-10 27.8 3.1 25.4 58.5 63.4 65.3 0.879 0.065

112-40-10-10 34.0 2.2 18.7 55.5 61.5 63.9 0.836 0.086

Testing

112-10-10-10 35.4 1.9 18.7 61.7 69.3 72.6 0.755 0.113

112-12-10-10 33.2 2.2 21.4 63.4 70.1 73.4 0.780 0.103

112-16-10-10 28.7 2.8 24.7 66.4 72.7 75.4 0.827 0.083

112-20-10-10 28.7 3.0 26.1 66.4 72.2 74.9 0.828 0.083

112-30-10-10 25.4 3.7 32.5 68.8 73.7 75.9 0.854 0.072

112-30-12-10 30.8 2.7 25.1 65.5 71.4 74.0 0.809 0.092

112-30-20-10 27.2 3.1 27.3 67.5 73.3 75.8 0.839 0.078

112-40-10-10 32.9 2.3 21.0 63.6 70.9 74.1 0.784 0.101

Fig. 4 Plot of error versus
number of iterations for the ANN
model 112-30-10-10

location at S1 and S2). The performances of some of the ANN architectures at 1000 it-

eration are shown in Table 2. The network with 112 inputs, 30 neurons in first hidden

layer, 10 neurons in second hidden layer, and 10 outputs represented as 112–30–10–10,

perform well both in training and testing mode. However, to reduce the total error value

further, the training is performed with up to 60,000 iterations. From iterations versus to-

tal error graph (Figure 4), it is obvious that near 60,000 iterations the error surface value

stabilizes. Also, E, and R values are well within the bounds set for stopping criteria. The

values of AARE and TS considerably improved as the number of iterations is increased.

The performance evaluation of the 112–30–10–10 network in training and testing at 60,000

iterations is presented in Table 3. Thus the ANN model represented by 112–30–10–10 archi-

tecture is selected for identification of the sources with missing concentration observation

data.
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Table 3 Performance evaluation during the training and testing at 60,000 iterations for missing
data

ANN Model AARE TS(1) TS(10) TS(25) TS(50) TS(100) R E

Training

112-30-10-10 19.5 6.0 38.4 61.7 66.8 68.6 0.911 0.051

Testing

112-30-10-10 19.8 6.8 44.0 71.6 77.8 80.2 0.880 0.061

Table 4 Comparison of actual and predicted source fluxes using ANN model for error free concentration
measurements for missing data

Estimated source

Potential source fluxes (g/sec)

Duration (years) Location

Actual fluxes

(g/sec) No Missing Data (Singh et al., 2003) Missing data

Year 1 S1 48.800 49.865 41.618

Year1 S2 0.000 2.707 4.466

Year 2 S1 0.000 1.257 0.000

Year 2 S2 0.000 0.000 0.000

Year 3 S1 10.000 11.708 11.884

Year 3 S2 0.000 3.717 0.000

Year 4 S1 42.200 41.391 44.582

Year 4 S2 0.000 0.0000 0.096

Year 5 S1 36.000 35.958 37.507

Year 5 S2 0.000 0.000 0.000

NE 8.118 12.951

Identification results and discussion

Performances of the trained ANN models were evaluated for the two assumed scenarios:

first without concentration measurements errors, and then with concentration measurements

errors.

The identification results with missing concentration observation data are first compared

with earlier obtained identification results without any missing data. The normalized error

(NE) value increased from 8.118 with no missing data (Singh et al., 2004) to 12.951 with

missing data, assuming error-free concentration measurements. These results are shown

in Table 4. Comparison of actual source fluxes with estimated source fluxes are shown in

Figure 5. As less amount of information is utilized in the case of missing data, the deterioration

in identification accuracy is expected.

Comparison with optimization approach

The problem of identification of unknown pollution sources with missing concentration

measurement data is more complex than that with no missing data. The solution obtained by

ANN based methodology is better than those of classical optimization based methodology for

less complex design than that depicted in Figure 3 with missing data. Mahar (1995) developed

non linear embedded optimization model to identify unknown pollution sources with missing

concentration measurement data, considering only one potential source location at S1 with
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Fig. 5 Comparison of actual and estimated source fluxes

Fig. 6 Study area for optimization solution

seven observation wells. The study area is identical to that shown in Figure 3, except for the

observation location. These details of the study area (Mahar, 1995) are shown in Figure 6. The

identification problem as represented by Figure 6 and solved using the embedded optimization

method incorporates seven observation wells compared to only four in the problem solved

byusing ANN approach. Therefore, the problem solved by ANN approach is comparatively

more complex. The identification error obtained by using the optimization approach for

the missing data as represented by NE, is 11.6 percent. Identification error using ANN

approach, for the more complex scenario with additional potential sources and only four

observation locations is 12.9. It has been established (Singh, 2004) that the identification

accuracy improved as the number of observation locations increased. The identification error

is expected to further improve with seven observation wells instead of four. Also the error

should decrease as the dimensionality of the identification decreases with less number of

potential source locations. Therefore, it can be argued that the ANN approach is certainly

comparable in efficiency in identification of sources with missing concentration observatiion

data. Also, the ANN approach is much less complex computationally. This result is certainly

encouraging.

The simulated concentration measurement values are perturbed using Equations (9) and

(10). The performance of the ANN model with different levels of noise in concentration

measurements is presented in Table 5. With no missing data case (Singh et al., 2003), the
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Table 5 Identification errors with different noise levels and sample sizes for missing
data

NE (sample size 20) NE (sample size 30)

No Missing data No Missing data

A (Singh et al., 2003) Missing data (Singh et al., 2003) Missing data

0.05 8.700 12.992 8.613 13.165

0.10 9.836 16.299 9.696 16.139

0.15 11.297 21.206 11.076 20.545

0.20 12.838 26.750 12.534 25.417

0.30 16.119 38.347 15.604 35.714

identification error represented by NE values increased as the measurement noise level in-

creased. Again, it is evident that due to lesser amount of information available in the missing

data scenario, identification errors increased compared to the no missing data scenario. The

trend of increasing NE value with increasing noise level is also evident. However, for high

noise level (a > 0.15), the NE value for missing data scenario is almost two times that for

the no missing data scenario.

Therefore, assuming an initial missing concentration measurement period of three years, in

a ten years observation period since the start of activity of potential sources, the identification

error increases in terms of NE value, compared to the case when no measurement data is

missing. However, it is seen from Table 4 that even with high measurement noise (a ≥ 0.15),

the identification error are in the range of 25 percent or less. Therefore, the ANN model

appears potentially applicable for identifying unknown groundwater pollution sources, with

missing concentration measurement data.

No doubt, many limitations of the performance evaluation results presented here can be

mentioned. These results are very much dependent on the proper training of the ANNs,

as well as determination of the optimal architecture. This issue of optimal architecture has

not been adequately addressed. The final architecture of the ANNs have been determined

based on comparison of few specified architectures. Also, ANN performances would suffer

if it is used in an extrapolation mode i.e. it has to identify patterns outside the ranges for

which it has been trained and tested. Therefore, the training patterns need to be chosen

especially based on potential source characteristics. Also, the features to be extracted from

the patterns are important considerations (Datta et al., 1989) contributing to the efficiency of

the ANN. Another limitation is that a homogeneous aquifer study area was assumed for this

performance evaluation.

The missing concentration measurement scenario evaluated here assumes that concentra-

tion measurements corresponding to the initial portion of the breakthrough curve is missing.

There can be various other scenarios of missing concentration measurements. Such scenarios

need to be incorporated in the evaluation process to fully establish the applicability of the

proposed methodology.

Identification of unknown pollution sources in groundwater is an inverse problem. The

issue of uniqueness of the obtained solutions and the question if the problem is ill-posed

are vital (Datta, 2002). The identification problem becomes more complex and ill-posed

as the measurement data become more sparse, or some data are missing, or uncertainties

exist in specified parameter values or boundary conditions. Deterioration of identification

results with missing concentration measurement data is also due to the increased complexity

of the problem. Identification results based ANN architecture whose optimality can not be
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guaranteed may not be unique, even if a unique solution exists. Furthermore, the issue remains

whether unique solutions exist, even if the ANN architecture is optimal, and identification

problem is not ill-posed. Many of these issues remain to be addressed adequately.

Conclusions

The ANN based methodology is developed and evaluated for identification of unknown

groundwater pollution sources, in terms of magnitude, location and timing. A realistic sce-

nario of partially missing concentration measurement data is considered. The proposed ANN

methodology has the potential to perform satisfactorily, even when the concentration mea-

surement data are missing for a few initial time periods after the potential sources had become

active. The ANN approach is straightforward, and does not require the formulation and so-

lution of complex non-linear optimization models. The performance evaluations of ANN

models under different levels of noise in concentration measurement are encouraging. How-

ever, more rigorous evaluation is necessary before the applicability and efficiency of the ANN

approach is fully established, especially when a portion of concentration measurement data

is missing.
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