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Abstract. The dynamic programming neural-network simplex (DPNS) model, which is aimed at
making some improvements to the dynamic programming neural-network (DPN) model, is proposed
and used to derive refill operating rules in reservoir planning and management. The DPNS model
consists of three stages. First, the training data set (reservoir optimal sequences of releases) is searched
by using the dynamic programming (DP) model to solve the deterministic refill operation problem.
Second, with the training data set obtained, the artificial neural network (ANN) model representing
the operating rules is trained through back-propagation (BP) algorithm. These two stages construct
the standard DPN model. The third stage of DPNS is proposed to refine the operating rules through
simulation-based optimization. By choosing maximum the hydropower generation as objective func-
tion, a nonlinear programming technique, Simplex method, is used to refine the final output of the
DPN model. Both the DPNS and DPN models are used to derive operating rules for the real time
refill operation of the Three Gorges Reservoir (TGR) for the year of 2007. It is shown that the DPNS
model can improve not only the probability of refill but also the mean hydropower generation when
compare with that of the DPN model. It’s recommended that the objective function of ANN approach
for deriving refill operating rules should maximize the yield or minimize the loss, which can be com-
puted from reservoir simulation during the refill period, rather than to fit the optimal data set as well as
possible. And the derivation of optimal or near-optimal operating rules can be carried out effectively
and efficiently using the proposed DPNS model.

Key words: artificial neural network, dynamic programming, operating rules, optimal operation,
Three Gorges Reservoir

1. Introduction

Reservoirs are one of the most efficient measures for the integrated water resources
development and management. By altering the spatial and temporal distribution
of runoff, reservoirs serve for multi-purposes, such as flood control, hydropower
generation, water supply, navigation and recreation, in which reduce human’s de-
pendence on the nature availability of water. With the rapid development of social
economy and water requirement, the function of reservoir becomes more and more
important nowadays in China (Guo et al., 2004).



338 P. LIU ET AL.

Various reservoir operation models based on optimization and simulation
method have been proposed and reviewed by many authors (Yeh, 1985; Simonovic,
1992; Wurbs, 1993; Guo, 2000; Guo et al., 2004). From these works, optimiza-
tion techniques have been discussed in detail to determine the best sequences of
releases, as well as the simulation techniques have been suggested to verify and
analyze the performance of reservoir under changing conditions. Recently, Labadie
(2004) reviewed the optimal operation of the multi-reservoir systems, along with
the application of new techniques, such as genetic algorithm (GA), artificial neural
network (ANN) and fuzzy theory.

Because of its ability in global searching and independence of the particular prob-
lem, GA has been widely applied to a variety of problems in the reservoir planning
and management (Oliveira and Loucks, 1997; Neelakantan and Pundarikanthan,
2000; Chang and Chang, 2001; Ponnambalam et al., 2003), especially in the opti-
mization of the operating rules curves of reservoirs (Chang and Chen, 1998; Chen,
2003; Koutsoyiannis and Economou, 2003). Chang and Chen (1998) compared
the real-coded and binary-coded genetic algorithms for function optimization in
the application of a flood control reservoir model. The results show that both ge-
netic algorithms are more efficient and robust than the random search method, with
the real-coded GA performing better in terms of efficiency and precision than the
binary-coded GA. Based on a real-coded genetic algorithm (RGA), Chen (2003)
derived long-term reservoir operation rules by using an optimization and simulation
model and found that RGA can minimize the water deficit and maintain the high
water level of the reservoir.

The operating rules, which are the relationships that series of optimal releases
are generally expressed as a function of reservoir state variables and hydrological
input such as storage, inflows, etc., can be found from deterministic optimiza-
tion using a linear or nonlinear regression procedure (Young, 1967; Bhaskar and
Whitlatch, 1980). This is a method of the implicit stochastic programming, where
most stochastic aspects of the problem, including spatial and temporal corrections of
unregulated inflows, are implicitly included and deterministic optimization and/or
simulation methods can be directly applied based on the past or synthetic recorders.
The implicit stochastic approach makes reservoir operation very simple in practice,
and it can work very well in median or large reservoir in terms of the capacity rela-
tive to the mean annual flow (Karamouz and Houck, 1987). In general, the implicit
stochastic approach is one of the most reliable reservoir modeling techniques today
(Simonovic, 1987). However, the selection of the operating rules proved to be the
most difficult problem to tackle in applying the implicit stochastic approach (Saad
et al., 1994).

Since the ANN approach is particularly valuable in performing classification
and pattern recognition functions for processes governed by complex nonlinear
interrelationships, it has been suggested and widely used to derive operating rules
(Saad et al., 1994; Chandramouli and Raman, 2001; Rao et al., 2001; Cancelliere
et al., 2002, 2003; Chandramouli et al., 2002). For example, Saad et al. (1994)
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illustrated an application of a five reservoirs system by the way of the learning
disaggregation technology, which the operating rules are obtained by using ANN
model to learn from optimal sequences of contents. Some hybrid ANN models,
such as neural-fuzzy system and the combinations of ANN and GA, has been
applied to derive operating rules effectively (Chang and Chang, 2001; Naresh and
Sharma, 2001; Hasebe and Nagayama, 2002; Ponnambalam et al., 2003). It has
been shown that the ANN model is very favorable for deriving operating rules and
the best way representing the operating rules due to its ability of mapping complex
nonlinear interrelationships. The ANN model was also adopted to improve the
rapidity of optimization (Neelakantan and Pundarikanthan, 2000), and it has a
particular feature in the applications of ANN model in reservoir operation.

Raman and Chandramouli (1996) proposed the dynamic programming neural-
network (DPN) model for deriving operating rules. By comparing the DPN model
with (explicit) stochastic dynamical programming, standard operating policy, and
dynamic programming regression, it is found that the DPN model is superior to other
three operation models. Similarly, Jain et al. (1999) compared the standard linear
operation policy and three operating rules based on dynamic programming (DP),
including DPN, linear regression and nonlinear regression. The results showed that
the performance of DPN model is better than other models.

The DPN model is designed to fit the optimal or near-optimal sequences of re-
leases (training data set) as well as possible, i.e., the DPN model is to minimize the
error between outputs of ANN and the optimal sequences of releases generated by
DP or other optimization techniques. However, the objective of deriving operating
rules is to maximize yield or minimize loss. The maximum R2 (the square of the
correlation coefficient, a measure of goodness of fit) criterion for selecting operating
rules may not always be appropriate and does not always produce the best operating
rules as measured by simulation in actual operation (Bhaskar and Whitlatch, 1980).
There are some errors in curve fitting that includes the ANN model, which is likely
to mislead the operation tracks deviating from optimal sequences of releases in
actual operation. Many authors have advocated the simulation-based optimization
or combined optimization and simulation approach in deriving operating rules, and
some refinements or modifications of operating rules were developed (Karamouz
and Houck, 1982; Simonovic, 1987, 1992; Wurbs, 1993; Oliveira and Loucks,
1997; Neelakantan and Pundarikanthan, 2000; Koutsoyiannis and Economou,
2003).

This paper is aimed at making some improvements to the DPN model by the
method of simulation-based optimization. A modified DPN model, named dynamic
programming neural-network simplex (DPNS), is proposed and developed. Based
on simulation, the DPNS model uses Simplex (Nelder and Mead, 1965) to refine
or re-optimize the DPN model in order to maximize the hydropower generation.
The DPNS model has been applied to derive the refill operating rules in the Three
Gorges Reservoir (TGR) that is a vitally important and backbone project in the
development and harnessing of the Yangtze River in China. The performance of



340 P. LIU ET AL.

Figure 1. General framework of the DPNS model.

the DPNS model is also compared with that of the DPN model by the method of
simulation techniques.

2. The Proposed DPNS Model

The proposed DPNS model is aimed at making some improvements to the DPN
model and used to derive reservoir real time refill operating rules. The DPNS model
consists of three stages as shown in Figure 1 and the first two stages are the same
as the DPN model.

(1) By solving the deterministic mathematical model, the optimal or near-optimal
sequences of releases (training data set) are generated through a classical opti-
mization DP.

(2) The factors affecting the decision are selected as the input variables. At the same
time, the decision variable, commonly is reservoir release or storage, is selected
as the output variable. Then the relationship between input and output variables
is mapped with ANN approach, which is trained by GA and back-propagation
(BP) algorithm.

(3) By choosing maximum the hydropower generation as objective function, the
Simplex method is used to refine the final output of the DPN model through
simulation-based optimization.

2.1. RESERVOIR REFILL OPERATION BY USING DP

According to the Chinese Flood Control Act, the water level of reservoirs should
below flood control level Z f as shown in Figure 2, in order to provide storage for
flood protection during flood season. In the refill period, water should be refilled
or impounded to normal pool level Zn for the purpose of normal water uses during
the dry season, such as agricultural irrigation and municipal water supply. It is very
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Figure 2. Reservoir storage zones and index levels.

important to determine an optimal reservoir operating rules for refilling water in
refill period, with the aim to maximize the hydropower generation during the refill
period under the condition that the reservoir is filled up.

During the refill period, reservoir water level should start from flood control
level, and rises constantly till normal pool level before the starting of dry season.
That is, the beginning and the final water levels are flood control level Z f and
normal pool level Zn if the refill operation is feasible. Mentioned that filling the
reservoir before the starting of dry season may also be treated as an operating
rule for annual or monthly operation, and an explicit rule to satisfy the constraint
(filling the reservoir by the end of refill period) strictly would be inappropriate from
a point of global optimization in whole time (months or years), but this is used for
simplifying the problem.

Assuming that there is not any flood risk during the refill period, the objective
function of reservoir operation is to maximize the sum of hydropower generation,
which can be described as

maximize
n∑

t=1

Et (1)

subject to St+1 = St + It − Rt t = 1, 2, · · · , n − 1 (2)

Nmin ≤ Nt ≤ Nmax (3)

Rmin ≤ Rt ≤ Rmax (4)

Smin ≤ St ≤ Smax (5)

where t : current time interval; Et : hydropower generation during stage t ; St : storage
at the beginning of stage t ; It : reservoir inflow during stage t ; Rt : release from reser-
voir during stage t ; Nt : power output during stage t ; Nmin: firm output for reliability
among power systems; Nmax: maximum output of hydropower generations; Rmin:
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minimum release in reservoir for other purposes, such as environment or navigation;
Rmax: maximum release in reservoir for the constraint of spill gates; Smin: minimum
storage permitted in reservoir that is the storage corresponding to the dead water
level Zd ; Smax: storage capacity of reservoir that is the storage corresponding to the
normal pool level; n: total number of optimization stages.

Based on the reservoir rule curve, the initial and final water levels Z f and
Zn can be predetermined in refill period. It is noted here that the losses of evap-
oration and leakage of reservoir are neglected in Equation (2) because they are
very small in real time operation. Since reservoir refilling in every year is inde-
pendent, this refill operation model can be established and optimized each year
respectively.

The reservoir refill operation is the same as other deterministic reservoir opera-
tion problems, which can be solved within a classical DP framework. The discrete
differential dynamic programming (DDDP) is implemented to solve Equations (1)–
(5), within considering the following recursive equation

ft+1(St+1) = max[Et + ft (St )] (6)

The DDDP is a modification of DP in order to speed the compute time and was
well reviewed by Yeh (1985) and Labadie (2004). Since the DDDP needs a good
initial policy (sequences of states) and can’t guarantee finding the global optimum
solution, many initial policies assumed are implemented and the sequences of
releases associated with the maximum objective can be selected as the final solution.
In principle, GA can be used to optimize the reservoir releases, but it may be very
time consuming to find the global optimal solution.

2.2. TRAINING OF ANN BY USING GA AND BP

2.2.1. Structure of ANN
The optimal sequences of releases (training data set) are generated by optimization
of the reservoir refill operation by solving Equations (1) to (6). The relationship
between input (independent) variables, such as current storage and forecasted in-
flow, and the dependent (output) variable (current release or next storage) should
be established. For the ability of approximating nonlinear relationship in a satis-
factory way, the ANN model has been widely used to derive operating rules, which
the inputs of ANN are the reservoir state variables and hydrological data (storage,
inflows, etc.), and the outputs of ANN are optimal releases.

The structure of the ANN model both for operating rules and the real time
reservoir simulation is shown in Figure 3. The current time, which is described as
i th day, is selected as input of ANN and the operating rules in whole refill period
can be depicted using only one ANN model (Chang and Chang, 2001). Several
pre-storages (denoted as k) and different length of lead-time forecasted inflows
(denoted as t) are chosen as inputs of ANN, and the values of k and t are selected
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Figure 3. The structure of ANN model for reservoir refill operation (B denotes backward shift
operator).

by the method of trial and error. It is well known that the precision of hydrological
forecast is reduced as the increasing of lead-time. Only finite length of lead-time
forecast can be used in practice. Since the reservoir flood forecasting and control
system software has been widely applied in China, the length of lead-time and
the precision of hydrological forecast have been greatly improved in past decades
(Guo, 2000; Guo et al., 2004).

2.2.2. Training
It’s well known that the BP algorithm is a very effective and efficient method in ANN
training based on gradient descent searching (Rumelhart et al., 1986; Xiong et al.,
2004). The BP algorithm is so sensible to the initial solution due to gradient-based
searching that advice has been given to generate the initial solution through GA
rather than random method (Belew et al., 1991; Skinnert and Broughton, 1995). GA
is a heuristic technique for searching over the solution space of a given problem in an
attempt to find the best solution or set of solutions, similar to Darwin’s principle of
evolution and was proposed by Holland (1975). Because of its character in ability of
global searching and independent of the particular problem being analyzed, GA has
been widely applied to a variety of problems. However, GA is very computer time
consuming to find the global optimal solution in a large-scale problem. Based on the
advantages and limitations of GA and ANN, they have been combined frequently
in two major ways. The first one is GA has been used to search for the weights of
the network, or to reduce the size of the training set by selecting the most relevant
features; the other one is to use GA to design the structure of the network (Belew
et al., 1991; Skinnert and Broughton, 1995). In this paper, GA is adopted to obtain
the initial solution for BP algorithm. To use the GA in ANN training, two points
have to be taken into consideration:
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(1) The objective function is set the same as the objective of BP network, i.e.,
minimize the mean square error (MSE) as following

Minimize MSE = 1

L

L∑
i=1

(Ti − Oi )
2 (7)

where Ti is the target value for the i th pattern, Oi is the output of ANN for the
i th pattern, L is the total number of patterns.

(2) In order to map neural networks onto GA strings, every weights of the ANN are
represented straightforward by the chromosomes in GA (Belew et al., 1991;
Skinnert and Broughton, 1995). The BP algorithm is implemented to train
the ANN model effectively when the initial solution is searched through GA
method.

2.3. REFINE THE OPERATING RULES BY USING SIMPLEX METHOD

Since it is aimed at minimizing the error between target and output in Equation (7),
the DPN model may not perform well in terms of maximum hydropower generation
in the actual operation, but gives a best fit to the optimal data set. Datta and Burges
(1984) have addressed the importance of the loss and utility functions, which may
affect reservoir yield significantly. The maximum R2 criterion does not always
produce the best operating rules as measured by simulation in actual operation
(Bhaskar and Whitlatch, 1980). The DPN model is an indirect method for deriving
optimal operating rules, and there are some errors when uses the ANN model for
curve fitting. The errors are likely to mislead the operation tracks deviating from
optimal sequences of releases, especially in a daily actual operation.

As an alternative way to the optimization, simulation techniques have been
widely used to verify and refine the operating rules. Although the simulation model
is not able to generate an optimal solution to a reservoir problem directly, it can de-
tect an optimal or near-optimal solution after making numerous runs of a model with
alternative decision polices (Simonovic, 1992). The simulation-based optimization
or combined optimization and simulation approach have been used for deriving
reservoir operating rules, as well as some refinements or modifications of operating
rules have been developed (Karamouz and Houck, 1982; Simonovic, 1987, 1992;
Wurbs, 1993; Oliveira and Loucks, 1997; Neelakantan and Pundarikanthan, 2000;
Koutsoyiannis and Economou, 2003).

The simulation of reservoir real time operation as shown in the Figure 3 can be
carried out according to following steps:

(1) The reservoir release Ri is calculated by analysis of current information (time,
forecasted inflow, current and pre-storages) with the operating rules that are
depicted by ANN.

(2) The release Ri is adjusted to satisfy the constraints in the refill operation model.
For example, assume that the minimum release (Rmin) is 4500 m3/s, if the
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output of ANN model is 4200 m3/s, it will be adjusted to 4500 m3/s when
consideration of Rmin. With the release adjusted, the current reservoir operation
is accomplished using the water balance Equation (2).

(3) The simulation is carried out daily by daily from the starting to the end of refill
period in each year.

With the network weights of the DPN model as initial solution, the objective
function of the DPNS model is to maximize mean hydropower energy (MHE) per
year computed from simulation, which can be described as following

maximize MHE = 1

m

m∑
i=1

n∑
j=1

Ei, j (8)

where Ei, j is the hydropower energy in j th period of i th year, m is the number
of years being simulated. To treat with the constraints in reservoir refill operation,
Equations (2)–(5) are implemented implicitly in simulation, and the final water
level of reservoir (in the ending of refill period) is guaranteed lifting to the normal
pool level by the method of penalty function. The objective function is adapted as
following

maximize
1

m

m∑
i=1

n∑
j=1

Ei, j − C × max[0, k] (9)

where k is the number of years does not fill the reservoir, C is the penalty coefficient
and often gives a very big positive value. The solutions that do not fill the reservoir
will be dropped automatically in the procedures of optimization. The objective
function (Equation (8)) is actually the same as the objective of optimization of refill
operation model (Equation (1)).

The Simplex method (Nelder and Mead, 1965) is a zero-order search method,
which not require evaluation of the function gradient, and can be applied to min-
imization n-dimensional problems without constraints. It has been widely used in
the field of hydrology and water resources management, such as the calibration
of hydrological models parameters (Xiong and O’Connor, 2000; Xiong and Guo,
2004). In principle, the Simplex can be replaced by another nonlinear unconstrained
multivariable search technique, such as Powell. Bernon et al. (2001) has found that
the Simplex is a more accurate and robust algorithm than that of the Powell. There-
fore the Simplex algorithm is selected and used to carry out the idea of DPNS model
in this study.

Since the Simplex method is very sensible to the initial solution and generally
converges to the local solution nearest to the initial solution. Clearly, it is vital
important to select an appropriate initial solution for obtaining a satisfied result. In
the third stages of the DPNS model, the Simplex method is used to re-optimize or
refine the operating rules by starting from the final solution of the DPN model. In
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the implementation of Simplex to refine the DPN model, connectionists of ANN
are straightforward mapped to the variables planned to optimize. For example,
an ANN model with structure of 5-7-1 (input nodes, hidden nodes and output
nodes) is transferred to an optimization problem with 50 (equal to (5 + 1) × 7 +
(7 + 1) × 1) variables if the activation is the sigmoid function. Obviously, the
curse of dimensionality would be inescapable when using the method of direct
search techniques with random initial solution. The Simplex method can work very
well to adjust the network because the initial solution is outputted from the DPN
model, which may have already been a near-optimal solution or around near-optimal
solution.

3. Case Study

3.1. THREE GORGES RESERVOIR

The Three Gorges Reservoir (TGR) is a vitally important project in the development
and harnessing of the Yangtze River in China (Figure 4). The Yangtze River is one
of the largest rivers in the world, which its upstream is intercepted by the TGR
with length of main course about 4.5 × 103 km and drainage area of 1 × 106 km2.
With all the profiles being narrow and deep, the TGR will still keep the original
river section’s shape of long narrow belt and belong to a typical river channel type
reservoir. The mean annual runoff at the dam site is 4.51 × 1011 m3.

The TGR is the largest multipurpose hydro-development project ever built in
the world and its comprehensive benefits mainly include flood control, power gen-
eration and navigation improvement. The design reservoir storage at the normal
pool level 156 m (the early stage) and 175 m (the normal stage) are 2.348×1010 m3

Figure 4. The location of Three Gorges Reservoir basin.
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Table I. The operation parameters during early stage (2007–2009)

The The Firm Minimum Minimum Maximum
Flood Normal initial final output/ release/ storage/ storage/
control level storage storage Nmin Rmin Smin Smax

level (m) pool (m) (×109 m3) (×109 m3) (MW) (m3/s) (×109 m3) (×109 m3)

135 156 12.4 23.48 3600 4500 12.4 23.48

and 3.93 × 1010 m3, of which 1.108 × 1010 m3 and 2.215 × 1010 m3 will be flood
protection storage, respectively. The project consists of three major parts, i.e., the
large dam across the Yangtze River, the hydroelectric power station houses and the
navigation structures. The dam is a concrete gravity type, with a crest elevation of
185 m above sea level, a dam axis length of 2,309 m, and the maximum height of
175 m. There are 14 and 12 sets of hydraulic turbo generators installed in the left
and right powerhouses, respectively. Thus the 26 sets of hydraulic turbo generators,
with 700 MW for each set, totaling 1.82×107 kW in installed capacity, will produce
an annual electricity output of 8.47 × 1010 kWh.

According to the schedule, the construction of the project started in 1993, and
in 1997 the main river course were closed. In 2003, the first batch of generating
units was put into operation and generated electricity; and by 2009 the whole TGR
project will be completed. The refill operational parameters and constraints of TGR
during 2007 to 2009 (the early stage) are listed in Table I. The operation of TGR
for the year of 2007 (first year in the early stage) is selected as the case study.

According to the statistical properties of reservoir inflow in the refill period
(October), the mean, minimum and maximum value are 51.64 × 109 m3, 28.30 ×
109 m3 and 88.87 × 109 m3 respectively. Extracting the discharge for firm output
(about 5500 m3/s), the TGR can reach the normal pool level by the end of October
even in dry year. Therefore, maximizing the sum of hydropower generation was
chosen as an objective function with the constraint that the normal pool level must
be reached by the end of October. In September, the mean and minimum inflows
are 26400 m3/s and 13200 m3/s, respectively. On the 30th September, the mean
and minimum inflows are 24500 m3/s and 9500 m3/s respectively in the past 120-
year. The inflows of the TGR are much greater than the discharge for firm output.
Therefore it is impossible that the initial reservoir level at the beginning of October
would be far below the flood control level due to the large inflow of the TGR.

3.2. DESIGNED OPERATING RULES OF TGR

In the early stage operation of TGR, the rule curve (Figure 5) has been planned to
refill water in the refill period (October). According to scheme, the reservoir refill
operation is guided by the upper and lower boundary curve. That is, water should
be spilled to ensure the reservoir water level is below the normal pool level (156 m)
when the reservoir water level of storage is on the top of upper boundary curve
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Figure 5. The rule curve of TGR during early stage (2007–2009).

(zone I), and the power station generates the firm output when the reservoir water
level is below the lower boundary curve (zone III), otherwise the generators are
turned to maximize output if the water level is in zone II. The designed operating
rules can be regarded as a standard operating policy (SOP).

Although the SOP is very easy to implement in practice, there’s several limita-
tions through simulation the rules with historical recorders. (1) The reservoir can’t
be refilled to the normal pool level in many years, especially in some dry years
the water level in the end of refill period is far less than the normal pool level. (2)
For the hydropower generation is increased at once when the water level is upon
the lower boundary curve, the hydraulic head is so low that the waterpower isn’t
utilized sufficiently and the water usage is inefficient. It’s very valuable in deriving
an optimal operating rule for more reliability in filling (probability of refill) and
more hydropower energy production. It should be noted that the storage capacity
of TGR is very small compared with the mean annual flow at dam site, and it is not
suitable for application of the implicit stochastic programming in annual operation
(Karamouz and Houck, 1987).

3.3. COMPARISON OF THE RESULTS

The daily inflow data in October from 1882 to 2001, at the Yichang hydrological
station that is located about 40 km downstream of the TGR, is used in this study.
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The data set is partitioned into two, one for the training from 1882 to 1981, and
another for validation or verification from 1982 to 2001. With the proposed refill
operation model, DDDP is implemented to solve Equations (1)–(6) with the training
and validation recorders respectively. For the optimal sequences of release may be
not unique in this case (will be discussed below), the sequences of releases that
filling reservoir as fast as possible in all the optimal sequences are selected as the
training data and used for training or verifying the DPN and DPNS models. By
analysis of the deterministic optimization results, the release usually is equal to the
inflow when the reservoir is filled up. To reduce the interferences may be caused
by them, these contents are subtracted from the training data set.

Zhang et al. (2005) has studied the hydrological forecasting precision of the TGR
and the results are listed in the Table II. It is shown that the forecasting precision
decreases as the lead-time increase. The Nash-Sutcliffe efficiency, the relative error
of the volumetric fit and the mean relative error of the peak flow are 95.87, 3.00, and
8.10%, respectively for 3-day lead-time forecasting. Four operating rules (Table III),
including two DPN and two DPNS models used the forecasted inflow of 1 day and 3
days lead-time respectively, are studied and evaluated. The number of pre-storages
(k) is set to 3 and the number of hidden nodes of ANN model is determined
by trial-and-error procedure (Raman and Chandramouli, 1996). It is noted here
that the 1 or 3 means that one or three day(s) lead-time forecast information is
used.

Three evaluation criterions are used to compare the performance of different
models, i.e.,

Table II. Hydrological forecasting error in TGR

Discharge
Stage

Lead-time Nash-Sutcliffe Relative error of Mean relative error Mean error
length efficiency (%) the volumetric fit (%) of the peak flow (%) (m)

1 day 98.11 −0.85 4.30 0.09

2 days 97.54 1.60 5.80 0.16

3 days 95.87 3.00 8.10 0.26

Table III. Four schemes of operating rules

The method
Operating Forecasted Structure of deriving
rules lead-time Input variables of ANN operating rules

DPN1 1 day Si−3, Si−2, Si−1, Ii , Ti 5-7-1 DPN

DPNS1 1 day Si−3, Si−2, Si−1, Ii , Ti 5-7-1 DPNS

DPN3 3 days Si−3, Si−2, Si−1, Ii , Ii+1, Ii+2, Ti 7-8-1 DPN

DPNS3 3 days Si−3, Si−2, Si−1, Ii , Ii+1, Ii+2, Ti 7-8-1 DPNS
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(1) The mean hydropower energy (MHE) in simulation years, which is described
as Equation (8).

(2) The probability of refill (PR) by the end of October is defined as.

PR = k
m

× 100% (10)

In which means in k out of m years refilling reach to the normal pool level.
According to the definition of the probability of refill, the operating rules would
be perfect when PR is equal to 100%.

(3) The mean relative error (MRE) of the neural network model.

MRE = 1

L

L∑
i=1

|Ti − Oi |
Ti

× 100% (11)

In which Ti is the target value for the i th pattern, Oi is the output of ANN for
the i th pattern, L is the total number of patterns. It should be pointed out that the
MRE is not consistent with the MSE in Equation (7) absolutely, but they are good
measures for indicating the goodness of fit (Raman and Chandramouli, 1996). The
MRE is used in the evaluation because it is a zero dimension term and able to give
us information more visually. Among the above three evaluation criterions, only
PR and MHE are valuable in assessment of the reservoir operation performance,
and the MRE is a criterion to assess the goodness of fit in ANN model.

The performance of six models, including SOP, DP, DPN1, DPN3, DPNS1 and
DPNS3, are compared and the results are listed in Table IV. The DP is an operation
based upon the perfect known of inflow in the whole refill period and can be seen
as an ideal operation in theory.

It can be inferred from that the SOP model is more conservative than the DPN
and DPNS models in terms of the value of PR. Though SOP can generate more
hydropower than DPN1 and DPN3 in the training period, the reservoir functions

Table IV. Comparison of operating rules in the refill operating for the year of 2007

Training Validation

MHE MHE
Operating rules PR (%) (×109 kWh) MRE (%) PR (%) (×109 kWh) MRE (%)

SOP 93 7.5267 / 85 6.9025 /

DP 100 7.9157 / 100 7.5059 /

DPN1 99 7.4463 5.53 100 7.0550 4.99

DPNS1 100 7.6158 18.63 100 7.1814 19.88

DPN3 100 7.4755 5.20 100 7.0514 4.85

DPNS3 100 7.7236 15.00 100 7.2695 15.68
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such as navigation and hydropower generation after October may be greatly affected
since it dose not reach the normal pool level. The SOP procedure has consumed
more quantity of water for littler energy. All of the DPN and DPNS models are
superior to SOP in the validation period and are effectiveness for deriving the refill
operating rules in general.

The performance of the DPNS is compared with the DPN model and the results
are listed in Table IV. It is shown that the MHE could be increased by 2.28 (3.32)
and 1.79% (3.09%) in training and validation periods, respectively. Obviously, the
DPNS models can improve not only the probability of refill but also the mean
hydropower generation and perform better than that of the DPN models.

Even though the MRE is insensible to the lengths of lead-time in forecasted in-
flow, the PR and MHE are actually related to the forecasted information. It is shown
that the longer lead-time is, the more yield gives. In other words, the model per-
formance is improved with increasing lengths of lead-time when the hydrological
forecasting is reliable.

The hydropower generation of five operating rules during the validation period
is plotted in Figure 6. Table IV and Figure 6 shows that the hydropower generation
of DPNS models are more than that of SOP and DPN models in validation period
and the reservoir is not all filled up by the end of refill period when using the
SOP model. It is shown that the MHE of the DPNS3 model is increased by 2.62
and 5.32% in training and validation period respectively, and the PR of the DPNS
model is reached 100%, as comparing to that of SOP. The DPNS3 model has the
best performance under the condition of filling up the reservoir.

The 120-year October inflow series was ranked in descending order and plotted
in the empirical frequency curve. As the October inflow volumes of 1949, 1992,
and 1959 are approximately corresponding to the 20, 50, and 80% percentiles on
the empirical frequency curve, the years of 1949, 1992 and 1959 are chosen to
represent the wet, normal and dry years. These representative years have been used
to compare the performance of DPNS model with those of DPN and SOP models,
and the results are shown in Table V and Figures 7–9. Since the reservoir is all filled

Figure 6. Comparing the hydropower generation in validation period.
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Table V. Comparison of three operating rules in representative year

Hydropower generation (×109 kWh) and increase compared to SOP
Representative

year SOP DPN1 DPNS1 DPN3 DPNS3

1949 (wet) 8.4213 8.4298 0.10% 9.1719 8.91% 8.9317 6.06% 9.3257 10.74%

1992 (normal) 5.8881 6.5680 11.55% 6.5996 12.08% 6.5971 12.04% 6.6641 13.18%

1959 (dry) 3.9524 4.2769 8.21% 4.3001 8.80% 4.2896 8.53% 4.3007 8.81%

Figure 7. Refill tracks of three operating rules in wet year (1949).

Figure 8. Refill tracks of three operating rules in normal year (1992).

up by the end of refill period in these years, the comparison can be only made in terms
of hydropower energy. As compared with the SOP, the hydropower generated by
DPNS3 increases 10.74, 13.18 and 8.81% respectively for the wet, normal and dry
representative year. And as compared with the DPN1 (DPN3) model, the DPNS1
(DPNS3) model can increase the hydropower generation 8.80 (4.41), 0.48 (1.02),
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Figure 9. Refill tracks of three operating rules in dry year (1959).

0.54% (0.26%) respectively. It is also shown that the DPNS models are very robust
in all kinds of years. The DPNS model can yield better than the DPN model,
because of two reasons: (1) In the DPN model the error is unavoidable in the fitting
to the optimal releases. Some errors between target and output of operating rules
are insensitive and even have nothing to do with performance in reality because
of some constraints in the practical operation. And the dependence of operation
between adjacent periods, such as previous-current, or current-after, distorts the
optimal sequence of release when there is only a tiny bias in previous operation.
The DPNS model has not only planned to fit for the optimal sequences of releases
but also taken into account the importance and transition of error, thus making it
perform better than the DPN model. (2) The optimal sequences of releases may be
not unique in this case. For example, two optimal tracks are shown in Figure 10
by optimizing the data of 2000, indicating there are not one sequences but a zone
can reach optimal operation in reality. Hydropower generator has a maximal limit
output (Nmax) in which does not generate more hydropower output no matter how to
increase the hydraulic head or discharge. In the refill season, because water must be

Figure 10. Two optimal operation sequences during refill period of 2000.
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Figure 11. Relationship between MRE and MHE by using the Monte Carlo experiments.

spilled due to the reservoir storage capacity in the wet year, it isn’t help to generate
more energy in the way of improvement of the hydraulic head.

In order to analyze the relationship between goodness of fit and performance in
operation further, a Monte Carlo (MC) experiment is implemented with following
steps.

(1) The weights of ANN model are generated in random method and the corre-
sponding operating rules are established.

(2) With simulation the recorder data, MHE, PR and MRE are computed using
Equations (8), (10) and (11) respectively. The performance of ANN model
established is compared based on evaluation criterions.

The MC experiments are implemented with the structure of 7-8-1 and data of
1882 to 1981, the results are shown in Figure 11. Some operating rules, which PR is
not reach 100%, have been neglected so that the comparisons are uniform. Namely,
since all points in the figure can refill reservoir in probability of 100%, only MRE
and MHE have to be compared. It is shown that smaller MRE does not always
mean more hydropower energy. By statistical analysis, the correlation coefficient
between MRE and MHE is −0.814, which the critical value at the 5% significance
level is 0.099 (392 points total).

4. Conclusions

The dynamic programming neural-network simplex (DPNS) model, which is a
modification of the dynamic programming neural-network (DPN) model, are pro-
posed and applied to derive refill-operating rules in the Three Gorges Reservoir.
The following conclusions are made:

(1) In the application of ANN model for deriving reservoir operating rules, it is
ought to maximize the hydropower energy in the actual operation, rather than to
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fit the optimal data set as well as possible. That is, the minimum MRE criterion
does not always produce the best operating rules as measured by simulation
and the goodness of fit is not direct related to the hydropower energy produced.

(2) The DPNS model can improve not only the probability of refill but also the
mean hydropower generation when compare with that of the DPN and SOP
models. The DPNS model is superior to the DPN model and is an effective and
efficient method to derive operating rules.

(3) The DPNS3 model, which uses the maximum information of hydrological
forecasting available, can produce the maximum hydropower energy under the
condition of filling up the reservoir. It is suggested to use the DPNS3 model in
TGR refill operation practice.

The DPNS model has been proposed to derive the refill rules for TGR in this
study. In a similar way, DPNS can also be implemented in the annual reservoir
operation to derive the optimal or near-optimal operating rules.
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