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Abstract. Many models have been suggested to deal with the multi-reservoir operation planning
stochastic optimization problem involving decisions on water releases from various reservoirs in dif-
ferent time periods of the year. A new approach using genetic algorithm (GA) and linear programming
(LP) is proposed here to determine operational decisions for reservoirs of a hydro system throughout
a planning period, with the possibility of considering a variety of equally likely hydrologic sequences
representing inflows. This approach permits the evaluation of a reduced number of parameters by
GA and operational variables by LP. The proposed algorithm is a stochastic approximation to the
hydro system operation problem, with advantages such as simple implementation and the possibility
of extracting useful parameters for future operational decisions. Implementation of the method is
demonstrated through a small hypothetical hydrothermal system used in literature as an example for
stochastic dual dynamic programming (SDDP) method of Pereira and Pinto (Pereira, M. V. F. and
Pinto, L. M. V. G.: 1985, Water Res. Res. 21(6), 779–792). The proposed GA-LP approach performed
equally well as compared to the SDDP method.

Key words: genetic algorithm, hydrothermal system, linear programming, multi-reservoir systems,
optimal operation, power generation

1. Introduction

Long-term multi-reservoir operation planning (MROP) aims to determine the op-
erational decision schedule for each reservoir in a system in order to minimize the
expected operational cost over the planning period within the context of uncertainty
in natural inflows. MROP is complex as it involves consideration of the treatment of
inflow uncertainty (problem I), the influence of current decisions on future system
performance (problem II) and the form of operating rules (problem III). According
to Seifi and Hipel (2001) “. . .The variability in the demand further complicates
the problem. However, demands are somewhat more predictable or can be set by
contracts and thus may sometimes be assumed to be deterministic.”
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There is certain interplay between the three fundamental problems involved in
MROP. If operational policies encourage depletion of the reservoirs and low inflows
occur, it may be necessary to import water in the case of water supply systems or
energy in hydroelectric systems in order to meet the contracted demands. On the
other hand, if these policies keep reservoir levels high, the system may be forced to
spill even when the inflows are normal, thus wasting water and, for hydroelectric
systems, energy as well.

Literature surveys by Yeh (1985), Wurbs (1993) and, more recently, Labadie
(2004) reviewed the intensive research on the optimization of reservoir system
operation. Many models have been suggested to deal with the stochasticity in-
volved in problem I. These models are classified as simulation and explicit or
implicit stochastic optimization models. Simulation models deal with problems II
and III adopting trial seasonal operating policies which are used to simulate sys-
tem operation with synthetic inflow sequences. System performance in response
to the proposed policies is examined and the policies that produce the most de-
sirable responses are adopted for future operation. Explicit stochastic models also
deal with the three basic methodological problems mentioned above introducing
probability distributions of inflows together with simplifying considerations like
linear operating rules, reliability constraints, aggregation, decomposition, etc. to
deal with systems with a large number of reservoirs. Stochastic dynamic program-
ming (SDP) is a classic example of the explicit method. Implicit stochastic methods
employ synthetic sequences and deterministic optimization to evaluate operation
with minimum system simplification. There still remain some questions as regards
the operating policies produced by deterministic optimization in the solution of a
stochastic problem . . .“even if the deterministic problem were solved for a thousand
different sequences” (Saad and Turgeon, 1988). It must be recognized, however,
that the implicit methods explore the simplicity of deterministic optimization in the
solution of a series of small size problems instead of the real size one. According to
Labadie (2004), regression analysis applied to optimization solution to solve prob-
lem III result in poor correlations that invalidate the operating rules thus obtained.
Further, attempts to infer rules by other methods may require extensive trial and
error procedures with little general applicability.

The implicit stochastic method presented by Pereira and Pinto (1985, 1988)
called Stochastic Dual Dynamic Programming (SDDP) deals with problems I and
II accommodating, at least partially, the variety of future scenarios through a tree-
like structure of synthetically generated inflows. Reis and Chaudhry (1994) applied
SDDP to optimal operation of a cascade of six hydroelectric plants to characterize
the variability of optimal responses considering different numbers of inflow sce-
narios and planning periods. Other researchers have tried to incorporate the inflow
variety implicitly into the model. One example is the recent work by Seifi and Hipel
(2001), which employed an interior-point method (IPM) for solving the equivalent
deterministic problem for a finite number of scenarios.
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Oliveira and Loucks (1997) addressed all the three basic problems using genetic
algorithms (GAs) to explicitly derive multi-reservoir operating policies in terms of
stored volumes or target releases as piecewise linear functions for two within-year
seasons in terms of stored volumes or target releases for which the inflection points
are unknown. They set the optimization problem as that of finding the coordinates
of such inflection points to define the optimal operating policy for inflow series
obtained from a stochastic flow generator.

There have been a number of studies using GAs to solve MROP problems.
Wardlaw and Sharif (1999) demonstrate applicability of GA to reservoir systems
considering optimization of benefits for an example four-reservoir system over 2-h
operating periods. Sharif and Wardlaw (2000) applied GA approach to optimize a
three-reservoir multipurpose system over a 36 ten-day periods in the second. When
the objective function is expressed in terms of optimal reservoir storage and re-
leases to obtain rule curves for the basic problem III, these authors observed that
the number of decision variables (chromosome length) increases with the number
of reservoirs and planning periods, making it increasingly difficult to satisfy the
problem constraints. Cai et al. (2001) presented a combined GA and linear pro-
gramming (LP) strategy for solving large nonlinear problems that are difficult, if
not impossible, using currently available NLP solver. They used GA to optimize
reservoir surface levels, called “complicating variables”, for linearizing the opera-
tion problem in each time period to be later solved sequentially for different time
periods. According to these authors if careful choices of the complicating variables
are made, a fairly standard GA is capable of finding high quality solutions to reser-
voir problems in reasonable computing times. Labadie (2004) in his comprehensive
in-depth review considers also directions for future research, recognizing the ability
of GA to be linked with trusted simulation models as a great advantage.

In view of the computational advantages of combined GA-LP strategies to deal
with large non-linear problems, this paper proposes a simple alternative scheme
to solve MORP problems as posed for SDDP that uses a hybrid process involv-
ing GA and LP. It retains the SDDP advantages in dealing with problems I and II
while it generates useful parameters to produce answers to problem III. This paper
formulates the problem of optimal operation of reservoir systems for hydrother-
mal electric generation, presents the hybrid GA-LP procedure and demonstrates
the method through the application example involving a simple hydrothermal sys-
tem used previously by Pereira and Pinto (1985). The paper is organized in seven
sections. In Section 2, the optimal operation problem is posed within the classical
SDDP framework and, in Section 3, the proposed GA-LP method is presented.
Section 4 describes the optimization algorithms and Section 5 presents a solution
example for a simple hydrothermal system, presenting explicitly the procedures
involved in combined GA-LP optimization of the system operation problem. The
results for the example problem are presented and discussed in Section 6 and the
conclusions are summarized in Section 7.
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2. Optimal Reservoir Operation Problem

The optimal operation problem for a hydrothermal system can be expressed as that
of minimizing the expected cost of energy deficit resulting from variability of the
incremental inflows At (t = 1, 2, . . . , T ), over the planning period, which is here
assumed to be divided into T time periods or stages (years, months, weeks, etc.).
If αt is the expected value of the optimal operating cost of the system from any
stage t to the last stage T, and Xt is the state of the system at the beginning of stage
t, the recursive equation for stochastic dynamic programming (SDP) can be set as
(Pereira and Pinto, 1985):

αt (Xt ) = E
At /Xt

{
min

[
Ct (Ut ) + 1

β
αt+1(Xt+1)

]}
(1)

Where E At /Xt represents the expected value, over all possible inflow vectors At ,
conditional on the state vector Xt . Ct (Ut ) represents the cost of operation corre-
sponding to decision vector Ut for stage t and β is the discount factor.

The problem in (1) is subject to the following constraints:

Xt+1 = ft (Xt , At , Ut ) (2)

gt+1(Xt+1) ≥ 0 (3)

ht (Ut ) ≥ 0 (4)

The set of equations (2) represents the state transition relationships, (3) represents
reservoir volume constraints and (4) incorporates bounds on the outflows from a
hydroelectric plant.

Xt includes all variables that may influence future operational performance,
defined here as the current storage volumes in the reservoirs, Vt , and inflows during
the previous stage, At−1. Note that X0 is assumed known. Therefore

Xt =
[

Vt

At−1

]
(5)

The decision vector Ut includes the outflow through the turbines, Qt , and the outflow
over the spillway, St . Therefore

Ut =
[

Qt

St

]
(6)

The transition Equations (2) correspond to the water balance equation:

Vt+1(i) = Vt (i) + At (i) − Qt (i) − St (i) +
∑
j∈Mi

[Qt ( j) + St ( j)] (7)
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Mi is the set of hydroelectric plants immediately upstream of plant i. This assumes
that there is no time lag between release from an upland reservoir and the water
entering the downstream reservoir which is valid when the chosen time period
for a stage is much larger than the actual time lags. Further, water losses due to
evaporation from reservoir water surface are neglected in this equation obtaining
linear constraints.

The total load, Lt , has to be met through hydro generation, by thermally generated
energy, TGt , or by energy imported from other systems, IMPt , the last two usually
having higher unit cost.

∑
i∈N

[ρi Qt (i)] + T Gt + IMPt = Lt (8)

N is the number of hydro plants in the system and ρi is the generation characteristic
of the plant i considered constant to keep the problem linear.

The constraints on the system state (3) can be represented by upper and lower
bound on the volumes (Vt+1, V̄t+1) as

Vt+1 ≤ Vt+1 ≤ V̄t+1 (9)

The constraints on the decision variables define the upper bounds on the flows
through the turbines (Q̄t ), lower bound on the total outflow (QS

t
) and upper bound

on the thermal generation (TG) as

Qt ≤ Q̄t (10)

Qt + St ≥ QS
t

(11)

TGt ≤ TG (12)

Although the generation characteristics ρi depend on the reservoir water levels,
these are assumed constant corresponding to average working levels making the
problem constraints linear.

In view of the computational difficulties in the solution of the recursion in (1),
Pereira and Pinto (1985, 1988) presented an explicit method for the solution of
optimal operation problem by Stochastic Dual Dynamic Programming (SDDP)
which employs a bifurcated structure of future synthetically generated inflows.
They adopted a subdivision of a multistage problem into a sequence of various
two-stage sub-problems which were solved by a stochastic extension of Benders’
decomposition. This SDDP approach avoids the difficulties of dimensionality of
classical dynamic programming whilst retaining detailed representation of the hy-
dro systems. However, the computational effort can become prohibitively large as
the procedure for solution by Benders’ decomposition requires additional linear
constraints during successive iterations covering all stages in the planning period.
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This paper reformulates the above MROP problem in terms of GA and LP
while keeping the tree-like structure proposed by these authors to deal with the
basic problem I. The optimization problem formulated in terms of LP represents an
approximation in that it linearizes the effects of variable head and reservoir water
surface area. Although this part of the proposed procedure can also be solved by GA
or NLP, these nonlinearities can be dealt with by an iterative procedure incurring
comparably smaller computational effort.

3. GA-LP Hybrid Approach

3.1. FORMULATION OF PROBLEM I

As indicated in Section 2, future inflow variety is accommodated here through
a treelike structure of synthetically generated inflows. Instead of one possible
sequence representing future inflows, various equally probable inflow vectors
A1

t , A2
t , . . . , ASCEN(t)

t are considered at stage t. SCEN(t) represents the number of
possible inflow vectors at stage t which depends on the number of alternative in-
flows NB (one, two, or more) arranged in a branched structure (a simple sequence,
binary tree, etc.). It is given by

SCEN(t) = NB(t−1) (13)

The resulting evolution of the reservoir system state would have a treelike structure
such as that in Figure 1, where each bifurcation corresponds to alternative future
inflow vectors of a five-stage binary tree.

Figure 1. Treelike structure represented by a five-stage binary tree.
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Due to computational difficulties of the SDDP formulation for MROP problem,
an alternative approach is proposed in this paper for the solution of the same prob-
lem retaining, however, the treelike inflow structure in order to account for inflow
uncertainty. This new approach considers independent one-period minimization
sub-problems for various inflow sequences governed by their own state transition
equations.

3.2. FORMULATION OF PROBLEM II

To encourage more efficient utilization of the stored water to supply the demand
in future stages, cost reduction factors (CRFs) are introduced into the objective
function of the LP problems in the form of negative penalties on the volumes
remaining in the reservoirs at the end of each stage. These CRFs are parameterized
through weights which vary according to reservoir and yearly season, the weights
being determined from an overall optimization problem defined in terms of the
minimization of the total expected operational cost over the planning period. This
overall problem for the determination of weights is solved through using a Genetic
Algorithm. This two-step optimization is necessary for obtaining the said weights.
However, once determined, the weights may be used to update operational decisions
in the light of new inflow forecasts using LP optimization directly. These weights
summarize the system operating rule in an indirect manner and have the ability to
allow formulation of a linear optimization problem which can give system releases.
This possibility represents an important advantage since computational burden is
significantly reduced.

The LP problem for individual inflow scenario at a given stage t adopting a
linearized operational cost instead of Ct (Ut ) in the original problem in Equation
(1) is posed as

min
Ut

[
CT

t · Ut − G · CRFT
t · Vt+1] (14)

subject to constraints (7)–(12). Note that the optimization problem thus formulated
considers constraints (7) and (8) in linear form neglecting evaporation and
variable head in power generation. In case these effects are highly relevant, the
resulting nonlinearities can be managed by iterative procedures within the linear
programming framework as suggested by Loucks et al. (1981) with reference to
hydroelectric power production and by Pinheiro (2003) to account for variable
reservoir water surface area.

Ct is the vector of unit costs of the different elements of decision vector Ut

and T denotes the operation of transposition. CRFt is the vector of cost reduction
factors of size equal to the number of reservoirs in the system. As mentioned above,
the cost reduction factors are applied to the reservoir volumes Vt+1 remaining at
the end of the present stage t to discourage depletion of the reservoirs at this
stage. G is a constant multiplier to adjust the relative magnitude of the incentives
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towards conserving water in the reservoirs. A sensitivity analysis can be performed
to determine adequate value of G in order to obtain quick convergence of GA
algorithm.

An individual element of the vector of cost reduction factors in the LP objec-
tive function for stage t, CRFt , corresponding to reservoir k is constructed as a
product of seasonal weight wt and reservoir weight wT +k . Thus the vector CRFt

is:

CRFt =




wt · wT +1

wt · wT +2

· · ·
wt · wT +K


 (15)

K is the total number of reservoirs in the system.
It should be noted that we have replaced the two-period linear optimization

sub-problems of SDDP, which involved progressive augmentation of constraint
set, by one-period optimization problems solved through LP. Variable elements of
CRFt are parameterized and an overall optimization is formulated to estimate the
parameters for the whole planning horizon. Further, the weights are surrogates for
the reservoir operating rules subject of the basic problem III.

3.3. FORMULATION OF PROBLEM III

The overall unconstrained optimization problem aims at identifying optimal weights
that minimize the expected value of operational cost of the system defined as the
total sum of the minimized costs of operation, each corresponding to individual
inflow scenarios determined by LP.

The total number of LP problems to be dealt with for evaluation of each solution
obtained through GA in the hybrid procedure is

TSCEN =
T∑

t=1

SCEN(t) (16)

The solution of the overall unconstrained optimization problem is the focus of
the GA minimization for which the fitness function is evaluated by summing the
costs related to energy imports and thermal generation or water deficits determined
for various stages by LP. Thus the fitness function for GA is formulated simply
as:

Fitness =
T∑

t=1

C̄t (Ut ) (17)
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C̄t (Ut ) represents the expected value of cost for stage t, calculated as

C̄t (Ut ) = 1

SCEN(t)
.

SCEN(t)∑
j=1

C j
t

(
U j

t

)
(18)

C j
t (U j

t ) is the cost corresponding to the individual inflow vector j at stage t.
This formulation provides CRF parameter values which summarize sys-

tem operating rules in an indirect manner. Keeping CRF parameters in mem-
ory can prove useful for solving one-period linear optimization sub-problems
for inflows other than those used in the full overall optimization problem.
The absence of recourse to overall optimization can save computing time and
resources.

4. Optimization Algorithms

The proposed method for the solution of MROP problems involves two optimiza-
tion steps. The one-period optimization sub-problems are expressed in terms of LP
and the overall non-linear optimization problem is proposed for solution by GA.
Although the overall optimization problem may be computationally time consum-
ing, GAs are well-suited to the solution of large scale nonlinear water resources
management problems as noted in Section 1.

There are numerous efficient codes available for linear programming and ge-
netic algorithms. For the demonstration of the GA-LP model, an example problem
is posed and solved in the following section. The linear programming problems
involved were solved via the revised simplex algorithm DLPRS available in Mi-
crosoft Fortran PowerStation. As the example problem has few variables, a simple
steady state GA was employed using real-value representation, roulette wheel se-
lection, one-point arithmetic crossover and uniform random gene by gene mutation.
A population of 30 alternative solutions was used and the model was permitted to
run a maximum of 1500 generations, using uniform crossover probability of 0.7
and uniform mutation probability of [1/(string length)]. The value of G indicated by
sensitivity analysis produced convergence of overall optimization by GA in much
smaller number of generations. Application of GA-LP algorithms to the example
problem presented below required only a few seconds to converge on a Pentium
III-700 MHz-256 Mb computer.

5. Application Example: Four Reservoir Hydrothermal System

Implementation of the proposed GA-LP method is demonstrated through a small
hypothetical hydrothermal system (Figure 2) used in literature as an example for
stochastic dual dynamic programming (SDDP) method of Pereira and Pinto (1985).
This four-reservoir hydrothermal system is studied to calculate optimal system
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Figure 2. (a) Four-reservoir hydrothermal system and (b) binary tree of reservoir inflow vectors
A j

t at time period t, j = 1, 2, . . . , SCEN (t) (Pereira and Pinto, 1985).

trajectories, for which the initial state X0 is assumed known as well as the variety of
future inflow vectors as a binary tree in Figure 2(b). This simple problem considers
minimization of the operational costs of the hydrothermal system over three stages
only without reference to seasons.1 The generation characteristics of the system are
in Table I reproduced from Pereira and Pinto (1985). In this example, two equally
likely inflow vectors are considered at each stage and the initial reservoir state
vector is V0 = [50 40 50 50]T .

Table I. Characteristics of the Generating System

Maximum Maximum Generation
Hydro plant storage V̄ outflow Q̄ characteristic, ρ

1 500 100 0.8

2 400 140

3 500 100

4 500 240

Thermal plant Maximum capacity Unit cost

TG 50 1

IMP ∞ 10

Note. Load (L) to be met is 200 and all the data are in consistent volume
units.
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Table II. Constraints set for LP problem at a given stage for scenario SCEN(t)

Decision variables

Final volumes V Outflows Q Spillages S
Thermal Imported Known
generation TG energy IMP V1 V2 V3 V4 Q1 Q2 Q3 Q4 S1 S2 S3 S4 (V0 + ASCEN)i

0 0 1 0 0 0 1 0 0 0 1 0 0 0 =(V0 + ASCEN)1

0 0 0 1 0 0 −1 1 0 0 −1 1 0 0 =(V0 + ASCEN)2

0 0 0 0 1 0 0 0 1 0 0 0 1 0 =(V0 + ASCEN)3

0 0 0 0 0 1 0 −1 −1 1 0 −1 −1 1 =(V0 + ASCEN)4

1 1 0 0 0 0 0.8 0.8 0.8 0.8 0 0 0 0 ≥L

Note. i denotes reservoir number; ρi = 0.8.

The vector of cost reduction factors for stage t for this example is written as
CRFt = [wtwT +i ], t = 1, . . . , T ; i = 1, 2, . . . , K . Note that planning horizon
T and total number of reservoirs K in this example are respectively 3 and 4. The
number of variables in the string formed by weights in the range from 0 to 1 is thus
7 (= 3 + 4 ).

Once the decision variable vector Wl = (wl
1, w

l
2, w

l
3, w

l
4, w

l
5, w

l
6, wl

7)T repre-
senting a possible solution l is determined by GA, a chain of linear programming
problems is solved for 14 decision variables each, whose constraints are given in
Table II. In this table, the first four equations correspond to the mass balance in
reservoirs 1, 2, 3 and 4 of the system, where ASC E N k represents inflow to reservoir
k for scenario SCEN(t). The last inequality represents the load to be met by hydro
generation, thermal generation and imported energy. Table III presents the lower
and upper bounds assumed for the decision variables as well as the respective cost
coefficients in the objective function. The sensitivity analysis on constant G was
performed for 10 different random initial populations of solutions covering values
of 1, 10, 100 and 1000 in the objective function of one-period LP problems whose
solutions produce information for the GA fitness evaluation. Setting G = 1 did not
produce convergence even in the maximum number of 1500 generations allowed
for. Also G = 1000 was inadequate to have convergence of the optimization model
to the optimal solution although convergence was obtained to near optimal solu-
tions. Only constant G value of 10 always guaranteed convergence for all random
populations and produced various optimal solutions in terms of decision variables
with the same value of the objective function. On the other hand, G = 100 produced
convergence to the optimal objective function value only for 8 of the 10 initial
populations. Results of this analysis for these two G values are presented in the next
section.

Figure 3 presents the block diagrams for GA-LP hybrid procedure involving
solution of individual LP problems, GA implementation and fitness evaluation.
The two stopping criteria for termination of GA employ the coefficient of variation
(CV) of fitness values of the solutions in the population at each generation and the
maximum number of GA generations (nger).
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Figure 3. Block diagrams: (a) GA implementation; (b) Fitness evaluation for each solution Wl

vector.

6. Results and Discussion

The sensitivity analysis showed that, even for a reduced number of decision vari-
ables, the order of magnitude of G is important in the identification of good
solutions. Large G values (1000) seem to strongly penalize bad solutions, skip-
ping their neighborhood regions on the response surface and, as a result, produce
poor solutions. GA simulations suggest that G has to be only large enough to make
elements of the vector G ·CRFT

t comparable to the unit costs of thermal energy and
imports.

Once the weights have been determined, they can simply be substituted into the
objective function (Table III, last row) and the corresponding linear problem solved
subject to the constraints of Table II, to obtain the operational decision variables
such as imports, storages and releases. If any inflow forecasts are available, one
can run the linear programming problem to determine future decisions. Thus, the
weights are surrogates for the reservoir operating rules. They have the advantage
that no a priori relationship between water availability and decisions such as linear
operating rules need to be specified.

Tables IV and V present best alternative sets of optimal weights (w1, w2,

w3, w4, w5, w6, w7 ) for G values of 10 and 100, respectively, where the first
three weights refer to the stages of the planning period and the last four refer
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Table IV. Best combinations of weights for G = 10 in various best solutions

Solution w1 w2 w3 w4 w5 w6 w7

1 0.47 0.84 0.00 0.82 0.00 0.00 0.45

2 0.90 0.93 0.16 0.66 0.00 0.00 0.22

3 0.95 0.89 0.00 0.46 0.00 0.17 0.00

4 0.64 0.73 0.15 0.83 0.51 0.03 0.14

5 0.65 0.48 0.07 0.82 0.22 0.04 0.42

6 0.77 0.89 0.23 0.71 0.43 0.00 0.00

7 0.52 0.94 0.14 0.63 0.38 0.15 0.24

Table V. Best combinations of weights for G = 100 in various
best solutions

Solution w1 w2 w3 w4 w5 w6 w7

1 0.78 0.34 0.00 0.31 0.09 0.00 0.00

2 0.54 0.26 0.00 0.84 0.29 0.00 0.00

3 0.54 0.11 0.00 0.84 0.29 0.00 0.00

4 0.54 0.12 0.00 0.84 0.29 0.00 0.00

5 0.72 0.57 0.00 0.31 0.07 0.00 0.00

6 0.17 0.13 0.00 0.31 0.15 0.00 0.00

to the reservoirs. In spite of several possible optimal combinations of weights in
Tables IV and V for the same optimal total expected operational cost, a reduced
number of corresponding operational plans were identified. For G = 10, three op-
erational plans were found whose details are presented in Table VI. For G = 100
only one operational plan was obtained, which is the same as the third one shown
in Table VI, for G = 10. The results in Table VI permit the evaluation of the
lowest expected cost. Since a discount factor is not considered and each scenario
at any stage is equally likely, the expected cost corresponding to the solutions
in Tables IV or V is evaluated as [1 × 50 + 10 × 0] + [1 × 50 + 10 × 0] + [1 ×
(50 + 50 + 50 + 34.4)/4 + 10 × (21.2 + 18 + 22 + 0)/4] = 299.1 cost units.

Similar calculation for the results in Table VI revealed that the best solution
obtained by GA are identical for all the three plans in terms of minimum expected
total cost (299.1 cost units), as well as the cost at each stage of the planning period.
No spill was produced during the operation indicated by the optimal solution.
Despite the distinct differences in the evolution of volumes in reservoirs and flows
through the turbines in different plans, the final volumes (zero) are the same at the
end of the planning period. One can observe that imports of energy from neighboring
systems only occur during the third (last) stage of the planning period, when the
thermal capacity is completely exploited (TG = 50).
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Finally, the results show that the simplified scheme used to represent the prob-
lem in terms of weights was adequate for the small hypothetical system studied,
producing total expected cost of 299.1 units against 298.45 units reported by Pereira
and Pinto (1985) obtained by SDDP.

7. Conclusions

This paper proposed and evaluated a new stochastic approach to obtain optimized
decisions on the operation of reservoirs systems employing genetic algorithms and
linear programming. Future inflow variability at each stage is incorporated through
a treelike structure of synthetically generated inflows as SDDP. It is shown that the
weights, introduced into the formulation to discourage reservoir depletion in the
initial stages of the planning period, are useful parameters that can be employed
in the determination of optimal releases, imports, etc. in response to future inflow
predictions, without fixing a priori linear or non-linear rules of operation. While
these weights represent incentives towards storing water as cost reduction factors
(CRFs) in the linear programming problem objective function, the total expected
cost of operation constitutes the objective function of the overall minimization
problem by genetic algorithm.

The applicability of the proposed formulation was demonstrated through an
example considering a hypothetical hydrothermal system with four reservoirs in-
flow realizations represented by a binary tree with depth equal to three time period
which is the planning horizon of the system. The solution for the minimum addi-
tional costs of imports and thermal generation during the planning period in order
to meet energy deficits is found to be very close to the SDDP solution presented by
Pereira and Pinto (1985).

The hybrid scheme proposed in this paper offers some advantages as compared
to SDDP. First, it avoids iterations throughout the tree of inflows saving compu-
tational effort. Second, CRF parameter values (i.e., weights) summarize system
operation rules in an indirect manner any time this is necessary. This advantage
of the new method is even more important as one needs to solve only one or more
one-period optimization subproblems. Further, it is possible to replace LP by non-
linear programming or keep LP with an iterative procedure to deal with nonlinear
formulations which may result from considerations of head dependent generation
characteristics or evaporation. The new method also avoids progressive increase in
the number of linear constraints resulting from “Benders Cuts” added to the LP prob-
lems during the iterative solution process of SDDP. Although the hybrid approach is
less demanding in terms of memory requirements, it is computationally more time
consuming in view of parallel evaluations involved in GAs. However, GA remains
a promising choice for the study of hydrosystems with large number of reservoirs.
The proposed model requires a user-defined normalizing constant to scale penalty
terms introduced into the one-period LP problems whose value needs to be
identified by sensitivity analysis. More research is required regarding automatic
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choice of G instead of sensitivity analysis. The authors are preparing an application
of the proposed approach to the operation of an existing water supply reservoir
system which may bring to light more information with regard to the normalizing
constant.
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Note

1. A more realistic example differentiating explicitly between the seasons and stages in the formula-
tion of CRFs shall be presented in the follow-up paper which considers a water supply reservoir
system.
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