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Abstract. Saltwater intrusion management models can be used to derive optimal and efficient man-
agement strategies for controlling saltwater intrusion in coastal aquifers. To obtain physically mean-
ingful optimal management strategies, the physical processes involved need to be simulated while
deriving the management strategies. The flow and transport processes involved in coastal aquifers are
difficult to simulate especially when the density-dependent flow and transport processes need to be
modeled. Incorporation of this simulation model within an optimization-based management model
is very complex and difficult. However, as an alternative, it is possible to link a simulation model
externally with an optimization-based management model. The GA-based optimization approach is
especially suitable for externally linking the numerical simulation model within the optimization
model. Further efficiency in computational procedure can be achieved for such a linked model, if the
simulation process can be simplified by approximation, as very large number of iterations between the
optimization and simulation model is generally necessary to evolve an optimal management strategy.
A possible approach for approximating the simulation model is to use a trained Artificial Neural
Network (ANN) as the approximate simulator. Therefore, an ANN model is trained as an approxi-
mator of the three dimensional density-dependent flow and transport processes in a coastal aquifer. A
linked simulation – optimization model is then developed to link the trained ANN with the GA-based
optimization model for solving saltwater management problems. The performance of the developed
optimization model is evaluated using an illustrative study area. The evaluation results show the po-
tential applicability of the developed methodology using a GA- and ANN-based linked optimization
– simulation model for optimal management of coastal aquifer.

Key words: artificial neural networks, coastal aquifers, genetic algorithms, groundwater, manage-
ment, optimization, saltwater intrusion

1. Introduction

Unplanned exploitation of water from coastal aquifers hydraulically connected
with sea or ocean may cause saltwater intrusion in coastal aquifers. Therefore,
the exploitation of coastal aquifers is often restricted due to excessive saltwater
intrusion. Efficient management strategies are needed for optimal withdrawal of
water from coastal aquifers, while maintaining salt concentration under specified
permissible limit.
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The physical processes involved in a coastal aquifer are needed to be simulated
accurately, to obtain physically meaningful optimal management strategies. There-
fore, a saltwater intrusion simulation model needs to be incorporated within the
management model, so as to ensure feasibility of the obtained optimal strategies.
The simulation of the flow and transport processes involved in coastal aquifers is
difficult as the density-dependent flow and transport processes need to be modeled.
Incorporation of this simulation model within an optimization-based management
model is complex and difficult. Embedding technique and response matrix ap-
proach (Gorelick, 1983) are the two methods generally used to incorporate the
simulation model within the management model. Embedded optimization models
use finite difference or finite element approximation of flow and transport equations
as equality constraints within the management model, along with other physical
and managerial constraints. The use of embedding technique for saltwater intru-
sion management model (Wills and Finney, 1988; Das and Datta 1999a,b) has sev-
eral limitations for large-scale aquifer systems. This approach is also numerically
inefficient when applied to large aquifer systems with considerable heterogene-
ity. The response matrix approach is based on the principle of superposition and
linearity. This method is reported to be unsatisfactory for highly nonlinear sys-
tems (Rosenwald and Green, 1974). As an alternative to these methods, a linked
simulation – optimization (Gorelick, 1983; Emch and Yeh, 1998) approach may
be useful to solve the saltwater intrusion management model. The performance
of the linked simulation – optimization approach is highly dependent on the per-
formance of the saltwater intrusion simulation model, as repetitive simulations
are required to achieve an optimal management strategy. Simulation of density-
dependent saltwater intrusion process in coastal aquifer is complex and costly in
terms of computational time and computer memory requirements. Incorporation
of a highly nonlinear simulation model within the management model would take
considerably large computational time to achieve any optimal solution. The com-
putational time requirement can be reduced through parallel computing, or by some
approximation of the simulation model. The former approach may be more accu-
rate as a more rigorous numerical model is used, but will be more costly in terms
of computer hardware requirement, as it needs parallel computing facilities. The
later approach involves the approximation of the original simulation model. This
approach will be less costly in terms of computational time and computer hard-
ware requirements. A possible alternative is to use a trained ANN model as an
approximate simulator of the physical processes.

The heuristic search technique, Genetic Algorithm (GA) may be used as a tool
for solving the optimum management model, because of its relative efficiency in
identifying global optimal solutions especially for nonlinear non-convex problems.
The GA-based optimization approach is especially suitable for externally linking the
numerical simulation model within the optimization model. This trained (Artificial
Neural Network) ANN linked to a GA-based optimization model can be useful in
evolving management strategies for coastal aquifers. Therefore, an ANN model
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is developed to approximate the complex flow and transport processes in coastal
aquifers. The performance of the developed ANN model as a simulator of salt
intrusion process in coastal aquifer is evaluated using an illustrative study area. A
linked simulation – optimization model is then formulated by externally linking the
trained ANN with the GA-based optimization model to obtain optimal management
strategies.

The flow and transport processes are complex and highly nonlinear in case of
coastal aquifers, where both flow and transport processes are density dependent. A
transition zone of varying density exists between saltwater and freshwater. Most of
the earlier researchers have ignored the transition zone, and assumed that a discrete
interface (sharp interface) exists between saltwater and freshwater. The analytical
solutions for sharp interface condition were presented by Henry (1959), Bear and
Dagan (1964), Hantush (1968), and Strack (1976). Numerical solutions for sharp
interface approximation were also presented by Shamir and Dagan (1971), Pinder
and Page (1977), Mercer et al. (1980), Liu et al. (1981), and Taigbenu et al. (1984).
The sharp interface assumption will be valid, or may give expectable results, if the
transition zone is narrow. For large transition zone, sharp interface approximation
of the transition zone would result in erroneous results. The numerical simulation
of the density-dependent flow and transport processes were presented by Huyakorn
et al. (1987), Puti and Paniconi (1995), and Cheng and Chen (2001). Das and Datta
(2000) presented an optimization-based simulation model of density-dependent
saltwater intrusion process in coastal aquifers. They solved finite difference ap-
proximation of the density-dependent flow and transport equations simultaneously,
without iterating between the two. Essink (2001) modeled saltwater intrusion in a
three-dimensional large-scale coastal aquifer in Holland. They utilized a computer
code MOCDENS-3D to model the displacement of fresh, brackish, and saline
groundwater in the hydrogeolocal system. Simpson and Clement (2003) observed
that the standard Henry’s problem is largely influenced by the boundary forcing, and
not due to the density-dependent effect. Therefore, they have modified the standard
Henry’s problem by decreasing the freshwater recharge. They compared the numer-
ical results for the modified Henry’s problem against semi-analytical results. All
these saltwater intrusion simulation models are computationally intensive. There-
fore, an approximate solution of the flow and transport processes in coastal aquifer
may be useful, if it is sufficiently accurate and computationally less intensive.

An approximate simulation of the flow and transport processes may be useful for
linking with an optimization-based management model. Regression analysis and
ANN are generally used to approximate flow and transport processes in groundwa-
ter. Alley (1986) developed regression equations to relate variation in pumping and
recharge rates at five decisions wells to the concentration at nine control locations
for two dimensional transport processes in an aquifer. Lefkoff and Gorelick (1990)
presented multiple linear regression equations to approximate transport process in
an aquifer. This approximation model predicts the change of ground-water salin-
ity resulting from the hydrologic conditions and water-use decisions. Rogers and
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Dowla (1994) incorporated ANN with an optimization model to predict total solute
mass removal for treatment. They trained an ANN model to predict whether the
given set of pumping satisfies the containment constraints. Ejaz and Peralta (1985)
also presented regression equations to predict downstream concentration of several
constituents from the upstream flow rate and constituent concentration. Morshed
and Kaluarachchi (1998) presented an ANN model to approximate concentration
break-through curves for one-dimensional unsaturated flow and transport. Aly and
Parelta (1999a) trained an ANN to model the response surface within an optimiza-
tion model. They applied their model to design pump-and-treat systems for aquifer
cleanup. Johnson and Rogers (2000) evaluated the effect of using ANN and linear
approximator in conjunction with simulated annealing driven search for two differ-
ent two-dimensional ground-water remediation problems. All these studies were
confined to one or two dimensional flow and transport processes.

Classical optimization techniques, e.g. linear programming, nonlinear program-
ming, mixed integer programming, are extensively used for ground-water manage-
ment models. The main disadvantage of these classical methods is that most of
these methods are based on gradient search techniques. Most of the time, these gra-
dients are calculated numerically. The numerical estimation of gradient is the most
expensive part of an optimization-based management models. Moreover, numerical
calculation of gradients may sometime lead to large errors. Another disadvantage
of these gradient search methods is that often it obtains only local optimal solutions,
especially when the response surface is highly irregular. The other limitations of
classical methods are point-to-point search, necessity of initial guesses, determin-
istic transition rule, assumption of unimodality, etc. (Deb, 2001). Nowadays, many
non-gradient based search techniques have been developed. These are GA, Simu-
lated Annealing (SA), etc. Many researches have used these algorithms for solving
optimization-based groundwater management models.

Genetic Algorithms are considered as more powerful and robust tools for func-
tion optimization. These algorithms are computationally simple, but powerful in
their search for improvement after each generation (Goldberg, 2000). GA mimics
some of the processes observed in natural evolution, such as natural selection, etc.
(Holland, 1975). The basic techniques of GA are designed to simulate the mech-
anism of population genetics and natural rules of survival in pursuit of the ideas
of adaptation. One of the great advantages of GA is that it does not require differ-
entiability of either the objective function or the constraint function. GA does not
assume unimodality of the objective function. The constraints handling capacity
of GA are also better than that of classical optimization techniques, because of the
population-based approach in GA (Deb, 2001).

Ritzel et al. (1994) applied GA to solve a two objectives steady state groundwater
pollution contaminant problem. The two objectives were: maximize reliability and
minimize cost of the hydraulic containment system. Mckinney and Lin (1994) used
GA for single objective groundwater management problems. They solved three
example problems. The first example problem determines the maximum yield from
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a homogeneous isotropic unconfined aquifer system. In the second example prob-
lem, they determined minimum cost combination of wells to supply an exogenous
demand of water from an unconfined aquifer system. The objective of the third ex-
ample problem was to minimize the cost required for pump-and-treat remediation
system design to remove a contaminant from an aquifer, using air stripping technol-
ogy. Rogers and Dowla (1994) presented an optimization model for groundwater
remediation using artificial neural networks and GA. They applied artificial neural
networks to predict the outcome of the flow and transport simulation. Cieniawski
et al. (1995) used GA to solve a multi-objective groundwater monitoring prob-
lem. The two objectives were: maximize reliability, and minimize contaminated
area at the time of first contamination detection. Aly and Peralta (1999a) presented
a methodology for optimal design of aquifer cleanup systems under uncertainty
using neural networks and GA. Again in the same year, Aly and Peralta (1999b)
presented a comparison between GA and mathematical programming for the de-
sign of groundwater cleanup system for several optimization scenarios. Morshed
and Kaluarachchi (2000) reviewed the application of GA in solving groundwater
optimization problems. More recently, Aral et al. (2002) combined groundwater
simulation model with GA for identification of contaminant source locations and
release history in aquifers.

The proposed methodology uses a trained ANN as an approximate simulator of
the three-dimensional density-dependent flow and transport processes in a coastal
aquifer. The trained ANN is linked to a GA-based optimization model. An embed-
ded optimization-based simulation model (Das and Datta, 2000) is used to generate
required patterns for training and testing of the multi-layered perceptron (ANN).
The ANN model is linked as an external module to the optimization model. The
objective of the management model is to maximize optimal extraction of water
withdrawal for beneficial use from the coastal aquifers, while maintaining salt
concentration of the pumped water under specified permissible limits. Real coded
genetic algorithm is used to solve the optimization-based management model. The
performance of the developed simulation – optimization (ANN–GA) model is eval-
uated using an illustrative study area.

2. Simulation Model

In the present study, an optimization-based simulation model (Das and Datta, 2000)
is used to generate required patterns for training and testing of the ANN model.
Density-dependent saltwater intrusion process in a coastal aquifer is simulated by
simultaneously solving the governing equations for three-dimensional advective-
dispersion flow and transport processes. The three-dimensional advective-
dispersive flow equation may be written as (Huyakorn et al., 1987):

∂

∂xi

[
Ki j

(
∂h

∂x j
+ ηce j

))
= SS

∂h

∂t
+ φη

∂c

∂t
− ρ

ρo
q (1)
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where, Ki j is the hydraulic conductivity tensor, h is the reference hydraulic head,
η is the density-coupling coefficient, c is the dimensionless solute concentration
(0 ≤ c ≤ 1), e j is the j th component of gravitational unit vector, SS is the specific
storage, t is time, φ is the porosity, q is volumetric flow rate of sources or sinks
per unit volume of the porous medium, ρ and ρo are the density of mixed fluid and
reference density, respectively.

The reference hydraulic head is defined as

h = p

ρ0g
+ Y (2)

where, p is the fluid pressure, g is the gravitational acceleration, and Y is the
elevation above datum.

The density coupling coefficient is defined as

η = ε

cS
(3)

where, ε is density difference ratio expressed as,

ε =
(

ρS − ρo

ρo

)
(4)

and, cS is the solute concentration corresponding to the maximum density ρS . The
actual hydraulic conductivity is defined as

Ki j = ki jρg

µ
(5)

Where, k is the intrinsic permeability tensor (L2), µ is the dynamic viscosity of
fluid and µo is the viscosity of the freshwater.

The density of the mixed fluid is defined as

ρ = ρo

(
1 + ε

c

cS

)
(6)

The advective-dispersive equation can be written as

∂

∂xi

(
Di j

∂c

∂x j

)
− Vi

∂c

∂xi
= φ

∂c

∂t
+ qc (7)

Where, Di j = φ D̃i j , with D̃i j is the dispersion tensor and Vi is the Darcy velocity
vector. The Darcy velocity vector is expressed as

Vi = −K o
i j

[
∂h

∂x j
+ ηce j

]
(8)

where, K o
i j is the hydraulic conductivity at the reference condition.
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The flow Equation (1) and transport Equation (7) are coupled via density cou-
pling term and Darcy’s velocity. This coupling between the flow and transport
equation make the saltwater intrusion process highly nonlinear. To simulate the
flow and transport processes, the flow and transport equations are discretized using
finite difference technique. The set of discretized equations are then solved using
nonlinear optimization system, MINOS (Murtagh and Saunders, 1993) for specified
initial and boundary conditions. A detailed description of the simulation procedure
using the optimization-based simulation model to solve flow and transport equations
is available in Das and Datta (2000).

3. Development of ANN Model

The universal approximator, Artificial Neural Networks, mimics the function of
human brain by acquiring knowledge through process of learning. The learning
process involves finding of an optimal set of weights for the synaptic connections
between artificial neurons of the network. The ability to gather knowledge through
the process of learning, like a human brain, from sufficient predictor patterns makes
it possible to apply the ANN to solve large-scale real world problems. Once the
ANN is trained, the relationship between the predictor (input) and predicted (output)
variables is encoded in the network. Then it can be used to predict the output based
on the information fed to the input nodes.

The predictive efficiency of an ANN model is largely dependent on the archi-
tecture of the ANN model. The present study adopts a single hidden layer standard
back-propagation feed-forward ANN model. This model has three neuron layers.
These are the input, output, and hidden layers. The number of neurons in the input
layer are equal to the number of input parameters. The number of neurons in the
output layer are equal to the number of output parameters. The number neurons
in the hidden layer are dependent on the complexity and nonlinearity of the prob-
lem. A unipolar sigmoidal function is used as the transfer function. The sigmoidal
function is expressed as:

f (x) = 1

1 + e−x
(9)

A study was conducted to relate the number of neurons in the hidden layer, with
the best values of learning rate and momentum rate. The best value of learning
rate and momentum rate are judged on the basis of average relative error (RE) and
average coefficient of correlation (R2). Relative error and coefficient of correlation
may be defined as follows:

RE = 1

N

N∑
n=1

(∣∣∣∣C ′
n − Cn

C ′
n

∣∣∣∣
)

(10)
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and,

R2 =
1
N

∑N
1 (C ′

n − C ′)(Cn − C)√
(C ′

n−C ′)
N

√
(Cn−C)

N

(11)

Where, C ′
n is the observed saltwater concentration, Cn is the predicted saltwater

concentration, C ′ is the mean of observed concentration, C is the mean of predicted
concentration, and N is the sample size. On the basis of trial and error evaluation
of the ANN architectures, the number of neurons in the hidden layer is taken as
number of neurons in the input layers. A constant learning rate of 0.08, and a
constant momentum rate of 0.65 are used in this study. The most commonly used
algorithm, back propagation, is used to train the networks. This algorithm first
computes the error signal at the output layer, and then it is propagated to the input
layer through hidden layer(s). After computing error signals, this algorithm will
first adjust the synaptic weights between hidden and output layers, and only then
adjust the synaptic weights between input and hidden layers. These procedures
will continue till the error between target output and the model output is less than
the specified permissible value. A C-program is developed to implement the back
propagation algorithms.

An optimization-based simulation model (Das and Datta, 2000) is used to gen-
erate training and testing patterns for the ANN model. The input to the ANN model
is the set of transient pumping rates, generated using a uniform distribution for
specified upper and lower limits. The set of transient pumping values are then used
as input to the optimization-based simulation model for transient simulation. The
resulting salt concentrations of the pumped water at different time steps are speci-
fied as output patterns. The ANN is trained by back-propagation algorithm. Once
the ANN is trained, outputs from the ANN model are the salt concentrations of the
pumped water at different time steps. In the illustrative example, we have taken
eight pumping wells, and simulation is carried over a period of one and half year.
Each time step is of 6 months. Therefore, number of input and output of the ANN
model is equal to 24. The relationship between input and output may be expressed
as:

(
Ct

i , i = 1, . . . , 8; t = 1, . . . , 3
) = f

(
Pt

i , i = 1, . . . , 8; t = 1, . . . , 3
)

(12)

Here, i is the index for pumping location, and j is the index for time step; C j
i is

the salt concentration from pumped water at pumping well, at time step t ; Pt
i is the

pumping from the pumping well i , at time step t .
The total set of generated patterns has been divided into three subsets. About 200

patterns are kept aside for validation, 200 patterns for prediction, and the remaining
2000 are used for training the neural network. The training pattern will determine
the synaptic weights of the networks during training phase. The validation error is
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carefully monitored during the training phase, and the training is just stopped before
the validation error starts increasing. Therefore, validation set will determine the
stopping criteria for training. The prediction set will determine the performance of
the ANN on a new dataset.

4. Development of Management Model

A saltwater intrusion management model is formulated using the linked simulation
– optimization approach to evolve an optimal management strategy. The objective
of the optimization model is to maximize total withdrawal of water from a coastal
aquifer while maintaining salt concentration of pumped water under specified per-
missible limit. The water is pumped from preselected pumping locations, and it is
assumed that strainers are located in a particular layer at a given pumping location.
It is also assumed that the pumping from a well is constant for a period equal to the
specified time step. The general formulation of the transient-saltwater management
model may be mathematically represented as follows.

Maximize
T∑

t=1

Nw∑
n=1

Qt
n (13)

Subjected to C = f (Q) (14)

Ct
n ≤ C(u)t

n n = 1, . . . , Nw; t = 1, . . . , T (15)

Q(l)t
n ≤ Qt

n n = 1, . . . , Nw; t = 1, . . . , T (16)

Qt
n ≤ Q(u)t

n n = 1, . . . , Nw; t = 1, . . . , T (17)

Here, Qt
n is the pumping from the nth well at time step t ; T is the total time

steps; Nw is the total number of wells; C represents a vector of simulated salt
concentrations as obtained from solution of the simulated model; Q is a vector
of spatial and temporal pumping rates from specified potential pumping loca-
tions; Ct

n is the salt concentration of the pumped water at nth well at time step
t ; C(u)t

n is the upper limit of salt concentration of the pumped water at nth well
at time step t ; Q(u)t

n is the upper limit of pumped water from the nth well at
time step t ; Q(l)t

n is the lower limit of pumped water from the nth well at time
step t .

The objective function (13) along with the constraints (14) to (17) constitute
a nonlinear optimization problem. The salt concentrations of the pumped water
are simulated using the developed ANN model. The ANN model is externally
linked with the optimization model. The pumping information from the optimiza-
tion model is sent to the ANN model. The ANN model simulates salt concentrations
of the pumped water, and sends this information back to the optimization model.
Figure 1 shows a schematic representation of the developed methodology using a
linked simulation – optimization model.
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Figure 1. Schematic representation of the simulation-optimization approach.

5. Illustrative Study Area

The performance of the developed ANN model is evaluated by applying the simu-
lation – optimization model to an illustrative study area as shown in the Figure 2.
The area of the aquifers is 2.52 km2 (1.8 (length) × 1.4 (width)) and the thickness
of the aquifer is 100 m. The confined aquifer system is subjected to saltwater in-
trusion along the coastal side of the study area. The right-hand face of the aquifer
is the ocean face, which allows the saltwater to enter in to the aquifers through
the bottom of the aquifers, and also allows the exit of the mixed water from the
top of the aquifers. It is assumed that mixed water can exit the aquifer through
the top 20% of the aquifer, at the ocean face. The left-hand side of the aquifers is
inland face, which allows fresh water to enter the aquifers. Top of the aquifer is
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Figure 2. Illustrative study area.

considered as phreatic. Uniformly distributed vertical discharges occur though the
phreatic surface. The other three faces, front, back, and the bottom of the aquifer are
considered as impermeable. The three-dimensional confined hypothetical aquifer is
assumed to be homogeneous and anisotropic, with respect to fresh water hydraulic
conductivity, molecular diffusion, and longitudinal and transverse dispersivities.
The aquifer parameters values are specified in Table I.

The boundary condition in the aquifer (Figure 2) is considered as time invari-
ant. The flow boundary condition on the ocean face is considered as hydrostatic
in vertical direction (Huyakorn et al., 1987; Das and Datta, 2000). This may be
written as:

h = ε(100 − y) (18)
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Table I. Values of aquifer parameters

Hydraulic conductivity in x direction K o
xx , m/day 25.00

Hydraulic conductivity in y direction K o
yy , m/day 0.25

Hydraulic conductivity in z direction K o
zz , m/day 25.00

Longitudinal dispersivity αl , m 80.00

Lateral dispersivity αt , m 25.00

Molecular diffusion do, m/day 0.69

Density difference ratio ε 0.025

Soil porosity φ 0.28

Vertical recharge Vr, m/year 0.02

where, ε is the density difference ratio, and y is the vertical distance from bottom
of the aquifer. The reference hydraulic head is equal to zero at top of the aquifer.
Similarly, the reference hydraulic head is equal to ε∗100 at the bottom of the aquifer,
as y = 0. The flow boundary condition is assumed to be constant throughout the
ocean face. On the inland face, the reference hydraulic head is varying linearly
along the length of the inland face. It can be noted from Figure 2 that the reference
hydraulic head is hd at the left side of inland face of the aquifer, and is decreasing
linearly at a rate of �h/1400. The boundary condition for the phreatic surface is
specified as follows (Galeati et al., 1992):

Kyy

(
∂h

∂y
+ εc

)
= Vr − Sy

∂h

∂t
(19)

where, Kyy is the actual hydraulic conductivity in y direction, Sy is the specific
yield, Vr is the vertical recharge, c is the salt concentration, h is the reference
hydraulic head. The three other faces of the aquifer are impermeable. A zero flux
boundary condition is specified for these faces.

The advective mixed outflux can exit through the top 20% portion of the aquifer.
In this portion, the concentration gradient normal to the ocean face is equal to zero.
In the rest 80% of the ocean face, the solute concentration is equal to one, as it
allows influx of saltwater into the aquifer. Freshwater enters the aquifer through the
inland face of the aquifer. Therefore, the solute concentration is equal to zero on the
inland face. It is considered that zero concentration mass influx occurs through the
top phreatic surface, and the advective component of the solute mass influx is equal
to zero. Therefore, concentration gradient normal to the phreatic surface becomes
zero. The other three faces, front, back, and bottom of the aquifer are impermeable.
Hence the solute concentration gradient normal to these aquifer faces is set equal to
zero. Steady-state reference hydraulic head and concentration are assumed as the
initial condition for transient flow and transport.

Figure 2 shows the locations of the pumping wells. The water is assumed to
be pumped only from the vertically middle layer of the aquifer. The pumping rate
from the aquifer is considered as transient. A time step of 180 days is considered



OPTIMAL MANAGEMENT OF COASTAL AQUIFERS 307

in case of pumping. The pumping rate is considered constant for each time step
of 6 months for a particular well. To train the ANN model, pumping patterns are
generated randomly over a period of 3 years, using a uniform distribution. In the
illustrative example, the ANN is trained with patterns corresponding to an upper
limit of 18 000 m3/day and a lower limit of 0 m3/day. The concentration values
shown here are the normalized saltwater concentration with a range of (0, 1). The
value 1 corresponds to a concentration of 2500 mg/L.

6. Performance Evaluations

The performances of the developed ANN and the simulation – optimization model
are evaluated by applying the model to the illustrative study area, as shown in
Figure 2. The performances of the developed models are described under two
sub-headings, (a) performance evaluation of the ANN model and (b) performance
evaluation of the simulation – optimization model.

6.1. PERFORMANCE EVALUATION OF THE ANN MODEL

The primary objective of performance evaluation is to check whether the developed
ANN model can be used as an approximator for simulation of three-dimensional
density-dependent flow and transport processes in coastal aquifers. The perfor-
mance of the developed ANN model is evaluated on the basis of relative error
and co-efficient of correlation criteria. The relative error (RE) shows the relative
differences between actual and predicted salt concentration of the pumped water.
The actual salt concentrations are those generated by the numerical simulation
model. The predicted salt concentrations are those generated by the developed
ANN model. Lesser the value of the relative error, better would be the model
performance. Table II lists the relative errors between actual and predicted salt
concentrations of the pumped water at different pumping locations. The max-
imum and minimum relative errors are 6.06 and 0.08%, respectively, with an
average of 0.98%. These values are quite low and are in the acceptable range.
Figure 3 shows graphical representation of relative errors for different pumping
locations.

Coefficient of correlation (R) shows the strength of the relationship between ac-
tual and predicted salt concentration of pumped water. High value of the coefficient
of correlation (e.g. R > 95%) represents a strong relationship between actual and
predicted salt concentrations. Table II lists coefficient of correlation between actual
and predicted salt concentrations in the pumped water. The maximum and mini-
mum coefficients of correlation values found are 99.77 and 97.81%, respectively,
with an average of 99.41%. These values are encouraging.

The scatter plots of actual and predicted salt concentrations are shown in
Figures 4 and 5 for time steps 2 and 3. The x-axis of Figures 4 and 5 represents
actual salt concentration, and the y-axis represents predicted salt concentration.
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Table II. Average relative error between the actual and
predicted concentrations

Time step Pumping well Relative error (%) R (%)

1 1 0.49 99.69

2 0.54 99.57

3 0.29 99.66

4 0.51 99.37

5 0.50 99.35

6 0.08 99.57

7 0.08 99.77

8 0.08 99.56

2 1 1.28 99.46

2 1.07 99.67

3 0.86 99.46

4 1.01 99.47

5 0.95 99.41

6 0.25 99.56

7 0.19 99.69

8 0.18 99.59

3 1 3.32 98.91

2 6.06 97.81

3 1.55 99.08

4 1.58 99.41

5 1.58 99.37

6 0.38 99.47

7 0.36 99.39

8 0.29 99.54

Average 0.98 99.41

These plots show the degree of correlation between actual and predicted salt con-
centrations. It can be observed that the correlation between actual and predicted
salt concentration is high, and the scatter plots resemble a straight line with a slope
1:1. Figure 6 shows actual and predicted concentrations in the form of bar chart.

It can be concluded, from these results, that three-dimensional density-
dependent flow and transport equations can be approximated by an ANN model
with a fair degree of accuracy. The developed ANN model is simple in concept and
less computationally intensive, compared to a numerical simulation model. The
trained ANN model takes only 2 s CPU time to compute salt concentration of the
pumped water on a P-IV (1.7 MHz), 128 MB RAM PC. The trained ANN model
can be easily linked with an optimization algorithm to solve a saltwater intrusion
management model. The performance of the simulation – optimization approach
is also evaluated for this illustrative study area.
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Figure 3. Relative error between actual and predicted salt concentrations.

6.2. PERFORMANCE EVALUATION OF THE SIMULATION OPTIMIZATION

METHODOLOGY (ANN–GA)

The applicability of the simulation – optimization methodology is evaluated for
the illustrative study area. The aquifer is subjected to saltwater intrusion along
the coastal face of the aquifer. The hypothetical unconfined aquifer is homoge-
neous with respect to hydraulic conductivity, molecular diffusion, and longitudinal
and transverse dispersitivities. The flow and transport boundary conditions are as
discussed earlier, and are shown in Figure 2.
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Figure 4. Scatter plot between actual and predicted salt concentration for time step 2.

The primary objective of the management model is to maximize freshwater
withdrawal for beneficial use from the coastal aquifer, while maintaining salt con-
centration of the pumped water under specified permissible limits. The fresh water
extraction from the aquifer is done from prespecified pumping locations in the
aquifer. In this study, eight possible pumping locations are chosen. These pumping
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Figure 5. Scatter plot between actual and predicted salt concentration for time step 3.

locations are shown in the Figure 2 and are numbered 1 to 8. It is considered
that the length of the strainer in each well is 20 m, and these strainers are lo-
cated at the vertically middle layer of the aquifer. The upper limit of pumping
from a possible pumping location is taken as 18 000 m3/day, and the lower limit
is 0 m3/day. The ANN is also trained with patterns generated using these bounds.
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Figure 6. Actual and predicted salt concentrations.

The maximum permissible salt concentration of the pumped water is specified as
0.2373.

The formulated nonlinear saltwater intrusion management model is solved using
real coded GA. The real coded GA employs simulated binary crossover (SBX) and
parameter-based mutation operators (Deb, 2000) to produce child solutions from
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parent solutions. The distribution index, nc for crossover, and ηm for mutation
control the creation of child solutions near or far from the parent solutions. A low
value of distribution index would create child solutions far away from the parent
solutions. On the other hand, a high value would create child solutions near the
parent solutions. In this study, the distribution index for crossover is taken as 5, and
that for mutation is taken as 30. The probability of crossover (Pc) is taken as 0.85,
and the probability of mutation (Pm) is taken as 0.001. The GA code developed at
KANGal (Kanpur Genetic Algorithm Laboratory, IIT Kanpur) is used to solve the
formulated single objective optimization model.

The trained ANN model is used as the approximate simulator for linking with
the GA-based optimization model. The linked simulation – optimization model is
solved to obtain the optimal rate of withdrawal for beneficial use from the study
area. The optimal withdrawal of water for beneficial use from the costal aquifer
is 99 077 m3/day. These results are obtained after 10 000 iterations of the real
coded GA. It is also verified that the obtained solutions do not improve after 10 000
iterations of the real coded GA. It takes about 20 min to complete 10 000 iterations
of the real coded GA on a Sun E10000 UltrasparcII workstation. A population size
of 800 is used in this study.

The formulated management model is also solved using the embedded opti-
mization technique. In this case, the optimal withdrawal is 99 089 m3/day. Table III
presents optimal solutions found by the ANN–GA model and the solutions obtained
using the embedding technique. The optimal amount of total withdrawal obtained
as solution from both the models is all most same. However, the optimal pumping
rates at different pumping locations obtained as solutions of the ANN–GA model,
and as solution of the embedded optimization model are not identical. Considering
the objective function and constraints of the saltwater intrusion management prob-
lem, the resulting optimization models are non-convex nonlinear in nature (Willis
and Finney, 1988). Therefore, it is possible that there are several alternative optimal
solutions of the optimization model. It is also possible that the solutions obtained are
local optimal solutions. Because, the optimal objective function values representing
the total withdrawals from the aquifer are essentially the same, it can be argued that
these solutions obtained using two approaches may represent global optimal, but
alternate optimal solutions. This if true, would also mean that the optimal pumping
rates are not unique. The isochlors and isoheads for the optimal solution using
the embedding technique are shown in Figures 7–9 for three different time steps.
These isochlors and isoheads are for the middle horizontal layer of the aquifer. It
may be observed that the isoheahs do show symmetry. This may be due to the linear
variation of hydraulic head along the inland face of the aquifer, combined with the
spatial non-uniformity in the pumping rates.

The objective function in the illustrative problem maximizes total pumping from
wells 1 to 8. In this particular study area, well numbers 6, 7, and 8 are located near
the ocean face. The effect of pumping on saltwater intrusion at ocean face should be
lesser, as the distance of pumping wells increases from the ocean face. However, the
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Table III. Spatial and temporal distribution of optimal pumping values

Optimal pumping rates (m3/day)

Time step Pumping well ANN–GA model Embedded technique

1 1 50 0

2 40 0

3 3 0

4 176 0

5 2 0

6 8338 10 764

7 7803 15 192

8 7273 13 984

2 1 3259 0

2 231 0

3 48 0

4 121 0

5 8 0

6 8575 8046

7 16 845 1499

8 7174 11 278

3 1 525 2822

2 221 6372

3 19 463

4 36 0

5 69 0

6 11 128 12 108

7 16 520 13 836

8 10 613 2721

Total 99 077 99 089

optimal solution specifies almost 90 to 95% of the total pumping from these wells,
6 to 8, while satisfying the upper limit on the saline concentration of the pumped
water. Because of this, the effect of pumping in the isoheads is more prominent
compared to the effect on isochlors. As the hydraulic gradient is more affected in
the internal portion of the aquifer due to these patterns of pumping, the affect on
isochlors is less prominent. This may results in an optimal solution where isochlors
remain rather steady. This phenomenon can be observed in Figures 7–9. It can be
also stated that these observations are only valid for the illustrative problem chosen.

The management model using embedded technique has 1915 variables along
with 1890 nonlinear constraints, and 24 linear constraints. This model is solved us-
ing MINOS (Murtagh and Saunders, 1993). On the other hand, the ANN–GA model
has only 24 variables along with 24 constraints. The solution of the management
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Figure 7. Optimization results: Isochlors and Isoheads at vertically middle layer of the aquifer
at time step 1.
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Figure 8. Optimization results: Isochlors and Isoheads at vertically middle layer of the aquifer
at time step 2.
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Figure 9. Optimization results: Isochlors and Isoheads at vertically middle layer of the aquifer
at time step 3.
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model using the embedding technique takes 86 hr of CPU time on Sun E10000 Ul-
trasparcII workstation, compared to 20 min of CPU time for the ANN–GA model
on the same machine. Therefore, the ANN–GA model requires much less CPU
time. However, the amount of information available from the solution results of the
embedded model is much more than that from ANN–GA model. For example, the
isochlors and the isoheads are obtained from the embedded model solution results
only.

7. Conclusion

A linked simulation – optimization methodology is developed for optimal man-
agement of saltwater intrusion in coastal aquifers. The three-dimensional transient
density-dependent flow and transport processes in coastal aquifer are approximated
using a trained ANN model. The trained ANN model is linked with a GA-based
optimization model. The ANN model calculates salt concentration of the pumped
water at different time steps. The trained ANN model is linked externally with
the optimization model. The objective of the management model is to maximize
the withdrawal of water for beneficial use from a coastal aquifer, while maintain-
ing salt concentration of the pumped water under specified permissible limits. The
formulated optimization model is solved using real coded GA. The performance
of the developed methodology is evaluated for an illustrative study area. The re-
sults obtained by the proposed simulation – optimization model are compared with
the solution results obtained using an embedded optimization model. The optimal
total pumping rates obtained from both the models are almost equal, though the
individual optimal pumping rates at different pumping locations are not the same.
These results may represent alternate optimal solutions. The proposed ANN–GA
model is simple in concept and takes considerably less CPU time compared to
the embedded-optimization approach. The performance evaluation of the devel-
oped ANN–GA model shows its potential applicability to solve saltwater intrusion
management problems in coastal aquifers.

No doubt there are some limitations in the developed methodology. The per-
formance of the ANN–GA-based management model would largely depend on the
accuracy and adequacy of the ANN model used as an approximate simulator of the
flow and transport processes. The number of training patterns required may increase
substantially, if heterogeneity of the aquifer parameters is to be incorporated. Also,
rigorous performance evaluation would be necessary before the potential applica-
bility of the proposed methodology is fully established.
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