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Abstract. Flood events of the Pachang River, one of the major rivers in Taiwan, are modeled by
extreme value distributions. Flood events are characterized by its peak, volume, duration and the time
of peak. Flood volume and peak are fitted to a generalized extreme value distribution. Flood duration
and the time of flood peak are incorporated into the model to detect possible trends. The results show
that flood volume exhibits an upward trend with respect to flood duration, but flood peak exhibits a
downward trend with respect to flood duration. There appears to be no significant trends with respect
to time. Among other results, we provide estimates of return period for flood peak and flood volume,
which could be used as measures of flood protection. This paper provides the first application of
extreme value distributions to flood data from Taiwan.

Key words: generalized extreme value distribution, Gumbel distribution, partial duration series

1. Introduction

Severe damage caused by extreme hydrologic events, such as floods and droughts,
had been recorded throughout the human civilization. In order to mitigate the neg-
ative impacts of extreme hydrologic events, the characteristics of such events (for
example, rainfall intensity, flood peak, etc.) were used as a design criterion of hy-
draulic structures. However, available data of extreme events were insufficient to
precisely assess the risk of extreme events. Therefore, probabilistic assessment was
developed and extreme value theory is one of the common methods to investigate
the extreme phenomenon of interest (see, for example, Stedinger et al., 1993).

Extreme value theory deals with the stochastic behavior of the extreme values
of a process. For a single process the behavior of the maxima can be described by
the three extreme value distributions – Gumbel, Frechet and negative Weibull – as
suggested by Fisher and Tippett (1928). Kotz and Nadarajah (2000) indicated that
the extreme value distributions can be traced back to the work done by Bernoulli
in 1709. Their first application to flood flow was probably made by Fuller in 1914.
In the 1940s, Gumbel applied extreme value distributions to analyze flood flow
data. In subsequent work he continued his discussion on estimation and forecasting
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of floods. Thereafter, several researchers have provided useful applications of ex-
treme value distributions to flood data from the different regions of the world: see
Pitlick (1994) and Provaznik and Hotchkiss (1998) for applications in the U.S.A.;
El-Jabi et al. (1998) and Yue et al. (1999) for applications in Canada; Haktanir and
Horlacher (1993) for applications in Germany; Enjo et al. (2001) for applications in
Spain; Cannarozzo et al. (1995) and De Michele and Rosso (2001) for applications
in Italy; Madesen et al. (1997) for applications in New Zealand; Vogel et al. (1993)
for applications in Australia; Sankarasubramanian and Srinivasan (1999) for ap-
plications in India; Karim and Chowdhury (1995) for applications in Bangladesh;
Phien and Laungwattanapong (1991) for applications in Thailand; Hoybye and Iritz
(1997) for applications in mainland China; Sene et al. (2001) for applications in
Lebanon; and, Mkhandi et al. (2000) for applications in southern Africa. For a
review of applications of extreme value distributions to climate data see Farago and
Katz (1990).

Flooding in Taiwan is a common phenomenon and often it causes considerable
damage. For example, on August of 1997 heavy floods and destructive landslides
in northern Taiwan caused millions of dollars in damage and economic losses, and
killed over 40 people. Agriculture has been the hardest hit sector. In spite of this,
there has been no work concerning extreme values of flood data from Taiwan. As
a matter of fact, there has been little concerned with extreme values of any kind
of climate data from Taiwan – the only piece of work that we are aware of is
Yim et al. (1999) where extreme value distributions are applied to study the wind
climate at Taichung harbour. Our paper provides the first application of extreme
value distributions to flood data from Taiwan. Among other things, we provide
estimates of return period for flood peak and flood volume, which could be used as
measures of flood protection.

We use streamflow data of the Pachang River located in southern Taiwan. The
Pachang river is one of the major rivers in Taiwan. It is 81 km long and has a
drainage area of 475 square km. It passes through Chiayi and Tainan counties of
Taiwan. In year 2000 the Pachang River drew a great deal of international attention
after 4 workers were swept to their deaths by its raging flood waters. During a flood
event in 2001 waters from the river reached up to one-storey high.

Traditionally, the three extreme value distributions are applied to annual max-
imum floods. The major drawback with this is that annual maximum series uses
only the largest event in each year, regardless of whether the second largest event
in a year exceeds the largest event of the other year. Partial duration series makes
more use of the data available and yield more accurate estimates of extreme events.

This study investigates the extreme value distributions of partial duration floods
exceeding a given threshold. Two important flood characteristics, flood peak and
flood volume, are modeled separately by the generalized extreme value (GEV) dis-
tribution. The GEV distribution has all the flexibility of the three extreme value
distributions – Gumbel, Frechet and negative Weibull. It was developed by Jenk-
inson (1955); see also Hosking et al. (1985) and Galambos (1987). Its cumulative
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distribution function is:
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where µ, σ , and ξ are referred to the location, scale, and shape parameters, respec-
tively; and 1 + ξ (x − µ)/σ should be greater than 0 in (1). The particular case of
(1) for ξ = 0,
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)}
(2)

is the Gumbel distribution, while the cases ξ > 0 and ξ < 0 are known as the Frechet
and the negative Weibull distributions, respectively. For flood flows, usually ξ > 0,
although sometimes the Gumbel distribution is adequate.

Goel et al. (1998) and Yue et al. (1999) suggested that flood flows are not only
determined by their peak and volume, but also by other characteristics such as flood
duration and the time of flood peak. So it is natural to ask how the extreme values
of flood volume and flood peak vary with respect to the duration and time. Because
of factors such as global climate change and river basin change it is possible that
the extreme values of flood volume and flood peak could exhibit an upward or a
downward trend. An important part of our paper is to determine this variation and
for this reason we shall consider a number of variants of (1) or (2) with the location
parameter µ expressed as functions of flood duration and the time of flood peak.

2. The Data

The daily streamflow data from the Pachang River located in southern Taiwan is
used. Thirty-nine yearly daily streamflow records, from 1961 to 1999, are employed
to investigate the extreme floods. Flood events are defined as daily streamflow
exceeding a given threshold, which is selected as 100 cms in this study, see Figure 1.
The following four properties are used to characterize flood events. Flood peak is
defined as the maximum daily flow during the flood period, flood volume is defined
as the cumulative flow volume during the flood period, flood duration is defined as
the time period when the flow exceeds the threshold, and the time of peak is defined
as the number of days counting 1/1/1961 to the day of flood peak. Fifty flood events
were abstracted from the daily streamflow data of the Pachang River.

For the fifty events abstracted, flood duration ranged from 2 days to 11 days
while the time of flood peak ranged from 8/8/1961 (220 days from 1/1/1961) to
8/12/1999 (14103 days from 1/1/1961). Figure 2 shows the variation of both the
flood volume and flood peak with respect to flood duration. Figure 3 shows the
corresponding variation with respect to the time of peak.
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Figure 1. Characteristics of a flood event.

Figure 2. Flood volume and flood peak with respect to flood duration.

3. Model Fitting

The basic model fitted was (1) with µ, σ , and ξ constant (to be referred to as
Model 1), using method of maximum likelihood to accomplish the fitting (Prescott
and Walden, 1980). As mentioned in Section 1, sometimes the Gumbel distribution
gives as good a fit as (1) for flood flow data, so we also fitted (2) with µ and σ

constant (to be referred to as Model 2).
Model 2 is a submodel of model 1, so a standard way of determining the best fit

model is the likelihood ratio test (Wald, 1943). If L1 is the maximum likelihood for
the three parameter model 1 and L2 is the maximum likelihood for the two parameter
model 2, then under the simpler model the test statistic λ = −2 log (L2/L1) would
be assumed to be distributed as a chi-square variable with 1 degree of freedom
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Figure 3. Flood volume and flood peak with respect to the time of flood peak.

(since the number of parameters differ by 1). In hypothesis testing problems this
would be asymptotically true as the number of data tends to infinity. Thus, at
the 5% significance level, the simpler two parameter model would be preferred if
−2 log (L2/L1) < χ2

1,0.95 = 3.841. In practice, because of the lack of complete in-
dependence of the partial duration floods, this would probably have to be interpreted
conservatively.

Figures 2 and 3 suggest that flood volume and flood peak could possibly exhibit
significant trends with respect to flood duration and time. To investigate this, we
tried a number of variations of (2). These included a three parameter model with µ

allowed to vary linearly with flood duration (D):

Model 3 : µ = a + bD, σ constant;

a three parameter model with µ allowed to vary linearly with the time of peak (T ):

Model 4 : µ = c + dT, σ constant;

and a four parameter model with µ allowed to vary linearly with both flood duration
(D) and the time of peak (T ):

Model 5 : µ = e + f D + gT, σ constant.

We also fitted variants of (2) with σ allowed to vary with flood duration and the
time of peak, but these models did not appear to improve significantly on the ones
we have mentioned above. The standard likelihood ratio test was used to determine
whether the trends described by the models 3–5 are significant or not.
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The goodness of fit these models was examined by QQ plots, where the observed
quantile is plotted against the quantile predicted by the fitted model. For example,
to check the goodness of fit of model 1 for flood volume data, we would plot the
sorted values (in the ascending order) of the observed flood volume data versus

µ − σ

ξ

[
1 −

{
− log

(
i

51

)}−ξ
]
, i = 1, . . . , 50,

which are the quantiles expected under model 1. Similarly to check the goodness
of fit of model 2 for flood volume data, we would plot the sorted values of the
observed flood volume data versus

µ − σ log

{
− log

(
i

51

)}
, i = 1, . . . , 50.

For models 3–5 we take a slightly different approach since µ = µ(D, T ) is varying:
transform the observed data X to the new variable Z defined by

Z = µ0 + σ0
X − µ(D, T )

σ
,

for some constants µ0 and σ0 (for convenience chosen to be the fitted values from
the two parameter model 2). Then, according to any of the models 3, 4 or 5, for all
D and T , Z will follow the distribution (2) with parameters µ0 and σ0. QQ plots
were derived for the transformed variable Z .

4. Results and Discussion

4.1. FLOOD VOLUME DATA

When fitted using the method of maximum likelihood, model 1 gave the esti-
mates µ = 1217.9, σ = 473.8 and ξ = 0.126 with the negative logarithm
of the maximum likelihood − log L1 = 390.7. On the other hand, model 2
gave the estimates µ = 1251.6 and σ = 503.9 with − log L2 = 391.0. Since
−2 log (L2/L1) = 2(391.0 − 390.7) < 3.841 it follows by the standard likelihood
ratio test that model 2 should be preferred to model 1 (in other words, the Gum-
bel distribution provides as good a fit as the more general GEV distribution). This
finding is supported by Figure 4, where we have plotted the QQ plots for models 1
and 2 – there is little to choose between the two as the plots look very similar.

Model 3 yielded the estimates a = 517.2, b = 180.3 and σ = 391.9 with
− log L3 = 378.9. Comparing with model 2, we see −2 log (L2/L3) = 24.073 >

3.841, so flood volume exhibits a highly significant upward trend with respect
to flood duration. We can say that extreme values of flood volume increase by
180.3 cms per unit change in flood duration.
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Figure 4. QQ plots for flood volume data, models 1 and 2.

Model 4 yielded the estimates c = 1299.2, d = −0.007 and σ = 502.6 with
− log L4 = 390.9. Comparing with model 2, we see −2 log (L2/L4) = 0.128 <

3.841, so there is no evidence of significant trend with respect to time.
Model 5 yielded the estimates e = 630.0, f = 193.1, g = −0.025 and σ =

502.6 with − log L5 = 377.8. Comparing with model 3, we see −2 log (L3/L5) =
2.254 < 3.841, so model 5 does not improve significantly on model 3.

Hence we conclude that model 3 is the most reasonable one for flood volume
data. Figure 5 shows the QQ plot for model 3. The fit is quite acceptable and

Figure 5. QQ plot for flood volume data, model 3.
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Figure 6. Return period for flood volume, model 3.

comparison with Figure 4 suggests that this fit is considerably better than the fit of
the Gumbel or the GEV distribution with constant parameters. It is generally the
case that there are few significant departures on the QQ plots.

If a random variable X is selected by the partial duration series method, then
the return period of X exceeding a given value x is:

T = E(L)

1 − F(x)
, (3)

where E(L) is the mean inter-arrival time between events and F(x) is the cumulative
distribution function of X . So, under the best fitting model 3, the return period of
flood volume exceeding a given value x is:

T = E(L)

1 − exp
{− exp

(− x−517.2−180.3d
391.9

)} .

The E(L) is estimated from the observed data to be 283.2 days or 0.6526 years.
Figure 6 shows how the return period varies with respect to the level of flood volume
for a range of flood durations.

4.2. FLOOD PEAK DATA

Model 1 gave the estimates µ = 472.1, σ = 251.2 and ξ = 0.066 with the
negative logarithm of the maximum likelihood − log L1 = 357.3. On the other
hand, model 2 gave the estimatesµ = 481.1 andσ = 257.9 with− log L2 = 357.5.
Since −2 log (L2/L1) = 2(357.5 − 357.3) < 3.841 it follows again that model 2
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Figure 7. QQ plots for flood peak data, models 1 and 2.

should be preferred to model 1 (in other words, the Gumbel distribution provides
as good a fit as the more general GEV distribution). This finding is supported by
Figure 7, where we have plotted the QQ plots for models 1 and 2. There is little to
choose between the two plots.

Model 3 yielded the estimates a = 668.5, b = −40.7 and σ = 242.3 with
− log L3 = 354.8. Comparing with model 2, we see −2 log (L2/L3) = 5.381 >

3.841, so flood peak exhibits a significant downward trend with respect to flood
duration. We can say that extreme values of flood peak decrease by 40.7 cms per
unit change in flood duration.

Model 4 yielded the estimates c = 580.5, d = −0.014 and σ = 254.2 with
− log L4 = 356.3. Comparing with model 2, we see −2 log (L2/L4) = 2.282 <

3.841, so again there is no evidence of significant trend with respect to time.
Model 5 yielded the estimates e = 707.1, f = −36.6, g = −0.008 and σ =

241.6 with − log L5 = 354.4. Comparing with model 3, we see −2 log (L3/L5) =
0.780 < 3.841, so model 5 again does not improve significantly on model 3.

Hence we conclude as before that model 3 is the most reasonable model for flood
peak data. Figure 8 shows the QQ plot for model 3. The fit looks quite acceptable
and comparison with Figure 7 suggests that model 3 provides at least as good a fit
as the Gumbel or the GEV distribution with constant parameters.

Using Equation (3), the return period of flood peak exceeding a given value x
is:

T = E(L)

1 − exp
{−exp

(− x − 668.5 + 40.7d
242.3

)} ,
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Figure 8. QQ plot for flood peak data, model 3.

Figure 9. Return period for flood peak, model 3.

for the best fitting model 3. Figure 9 shows how the return period varies with respect
to the level of flood peak for a range of flood durations.

5. Conclusions

This study provides the first application of extreme value distributions to flood data
from Taiwan. The partial duration flood events of the Pachang River in southern
Taiwan are used in the analysis. The following conclusions are drawn:
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1. The Gumbel distribution (particular case of the GEV distribution when the shape
parameter equals to zero) provides a reasonable model for both flood volume
and flood peak.

2. Flood volume has a highly significant upward trend with respect to flood duration
corresponding to an increase of 180.3 cms per unit change in flood duration.

3. Flood peak has a significant downward trend with respect to flood duration
corresponding to a decrease of 40.7 cms per unit change in flood duration.

4. Both flood volume and flood peak exhibit no significant trends with respect to
time.
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