@ Journal of VLSI Signal Processing 42, 321-339, 2006
Z— (© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.
DOI: 10.1007/s11266-006-4191-3

A Survey on Lifting-based Discrete Wavelet Transform Architectures

TINKU ACHARYA AND CHAITALI CHAKRABARTI
Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-5706

Received July 29, 2004, Revised June 14, 2005, Accepted August 4, 2005

Published online: 13 February 2006

Abstract. In this paper, we review recent developments in VLSI architectures and algorithms for efficient imple-
mentation of lifting based Discrete Wavelet Transform (DWT). The basic principle behind the lifting based scheme
is to decompose the finite impulse response (FIR) filters in wavelet transform into a finite sequence of simple
filtering steps. Lifting based DWT implementations have many advantages, and have recently been proposed for the
JPEG2000 standard for image compression. Consequently, this has become an area of active research and several
architectures have been proposed in recent years. In this paper, we provide a survey of these architectures for both
1-dimensional and 2-dimensional DWT. The architectures are representative of many design styles and range from
highly parallel architectures to DSP-based architectures to folded architectures. We provide a systematic derivation

of these architectures along with an analysis of their hardware and timing complexities.

Keywords:

1. Introduction

The Discrete Wavelet Transform (DWT) has become
a very versatile signal processing tool over the last
decade. In fact, it has been effectively used in signal
and image processing applications ever since Mallat
[1] proposed the multiresolution representation of sig-
nals based on wavelet decomposition. The advantage
of DWT over other traditional transformations is that it
performs multiresolution analysis of signals with local-
ization both in time and frequency. The DWT is being
increasingly used for image compression today since it
supports features like progressive image transmission
(by quality, by resolution), ease of compressed image
manipulation, region of interest coding, etc. In fact,
it is the basis of the new JPEG2000 image compres-
sion standard which has been shown to have superior
performance compared to the current JPEG standard
[2].

DWT has traditionally been implemented by con-
volution or FIR filter bank structures. Such imple-
mentations require both a large number of arithmetic
computations and a large storage—features that are

architecture, Discrete Wavelet Transform, lifting, VLSI

not desirable for either high speed or low power
image/video processing applications. Recently, a new
mathematical formulation for wavelet transformation
has been proposed by Swelden [3] based on spatial con-
struction of the wavelets and a very versatile scheme
for its factorization has been suggested in [4]. This new
approach is called the lifting-based wavelet transform
or simply lifting. The main feature of the lifting-based
DWT scheme is to break up the high-pass and low-pass
wavelet filters into a sequence of upper and lower tri-
angular matrices, and convert the filter implementation
into banded matrix multiplications [4]. This scheme
often requires far fewer computations compared to the
convolution based DWT [3, 4] and offers many other
advantages, as described later in Section 2.

The popularity of lifting-based DWT has trig-
gered the development of several architectures in re-
cent years. These architectures range from highly
parallel architectures to programmable DSP-based
architectures to folded architectures. In this paper we
present a survey of these architectures. We provide a
systematic derivation of these architectures and com-
ment on their hardware and timing requirements.

322 Acharya and Chakrabarti

The rest of the paper is organized as follows. In
Section 2, we briefly explain the mathematical for-
mulation and principles behind the lifting scheme. In
Section 3, we present a number of one-dimensional
lifting-based DWT architectures suitable for VLSI im-
plementation. Specifically, we describe direct mapping
of the data dependency diagram of the lifting scheme in
a pipelined architecture, its variants for improved per-
formance, programmable architectures and implemen-
tation of lifting in DSP and recursive architectures. We
also present a comparison of the hardware and timing
complexities of all the architectures. In Section 4, we
present the memory configuration for 2-dimensional
DWT architectures, followed by descriptions of a few
representative architectures and a comparison of their
hardware and timing complexities. We conclude this
paper in Section 5.

2. DWT and Lifting Implementation

In traditional convolution (filtering) based approach
for computation of the forward DWT, the input signal
(x) is filtered separately by a low-pass filter (%) and a
high-pass filter (g). The two output streams are then
sub-sampled by simply dropping the alternate output
samples in each stream to produce the low-pass (y.)
and high-pass (yy) subband outputs as shown in Fig. 1.
The two filters (7, &) form the analysis filter bank. The
original signal can be reconstructed by a synthesis filter
bank (4, g) starting from y; and yy as shown in Fig. 1.
Given a discrete signal x(n), the output signals yy ()
and yy(n) in Fig. 1 can be computed as follows:

T.—1

vy =Y h(i)x@n —i),
i=0

Ty—1

v =Y &)x2n —i) ¢))

i=0

where 7; and 7 are the lengths of the low-pass (/) and
high-pass (g) filters respectively. During the inverse
transform computation, both y; and yy are first up-

T
(9w ~(49)
(0w ~(D)—

Figure I. Signal analysis and reconstruction in 1D DWT.

_ a’,
_ @ 22 *® " @ I’L
Cal
Ld} (12 yH"® L] Ty @ z
L] YH @ g}
Figure?2. Signal analysis and reconstruction in two-level 1D DWT.

sampled by inserting zeros in between two samples and
then filtered by low-pass (%) and high-pass (g) filters
respectively. Then they are added together to obtain the
reconstructed signal (x') as shown in Fig. 1.

For multiresolution wavelet decomposition, the low-
pass subband (y;) is further decomposed in a similar
fashion in order to get the second-level of decompo-
sition, and the process repeated. The inverse process
follows similar multi-level synthesis filtering in order
to reconstruct the signal. A two level DWT decomposi-
tion and its reconstruction have been shown in Fig. 2, as
an example. Since two dimensional wavelet filters are
separable functions, 2D DWT can be obtianed by first
applying the 1D DWT row-wise (to produce L and H
subbands in each row) and then column-wise as shown
in Fig. 3(a). In the first level of decomposition, four
subbands LL1, LH1, HL1 and HH1 are obtained. Re-
peating the same in the LL1 subband, it produces LL2,
LH2, HL2 and HH2 and so on, as shown in Fig. 3(c).

For the filter bank in Fig. 1, the conditions for perfect
reconstruction of a signal [4] are given by

h(Dh(z™h) + g@)Ez") =2,

_ o (@)
h(2)h(=z7") + g(2)§(=z") =0

where h(z) is the Z-transform of the FIR filter 4. & can
be expressed as a Laurent polynomial of degree p as

p
h(z) = Z hiz™!
i=0

which can also be expressed using a polyphase repre-
sentation as

h(z) = he(z%) + 27 ho(z?) A3

where h, contains the even coefficients and /4, contains
the odd coefficients of the FIR filter 4. Similarly,

8(2) = g.(z) + 271 g, (2%,
h(z2) = he(z*) + 27 ho(2?),)
8(2) = §.(2) +27'8,(z%)

Survey on Lifting-based Discrete Wavelet Transform Architectures

323

row-wise

DWT L
—

LL1 HL1
column-wise
H DWT
———
LH1 HHI1

(a) First level of decomposition

LL2(HL2

HL1

LH2|HH2|

LH1 HH1

(b) Second level of decomposition
Figure 3. Three levels of decomposition in 2D DWT.

Based on the above formulation, we can define the
polyphase matrices as

B _ Ee(z) Eo(z)

d (Z)‘[gvf(z) gm] s
[he(@ g6)

F (Z)‘[ham go<z>}

Often P(z) is called the dual of P(z) and for perfect
reconstruction, they are related as P(z)P(z~)) =1,
where [is the 2 x 2 identity matrix. Now the wavelet
transform in terms of the polyphase matrix can be ex-

pressed as
@ | _ 5 Xe(z)
[m(z)] =re [z—‘xa@)]’
Xe(2) _ ye(2)
[zlxo(n] = F@) [m(z)}

for the forward DWT and inverse DWT respectively.
If the determinant of P(z) is unity, it can be shown by
applying Cramer’s rule [4] that

h(z)=—z""g(=z7", &) =z"h(-z7"

and hence

h(z)=—z"8(=z"", gl =z""h(=z"".

When the determinant of P(z) is unity, the synthe-
sis filter pair (A, g) and the analysis filter pair (%,),
are both complementary. When (h, g) = (h, g), the
wavelet transformation is called orthogonal, otherwise
it is biorthogonal.

HL2

LH2

HH2

LH1

HHI1

(c) Third level of decomposition

It has been shown in [3, 4] that if (7, 8) is a comple-
mentary filter pair, we can apply the Euclidean algo-
rithm to factorize P(z) into a finite sequence of alter-
nating upper and lower triangular matrices as follows:

s gl 271 o]l [k o
ro= {5 1k S [5 4@

where K is a constant and act as a scaling factor (so
is %), 5;(z) and 7;(z) (for 1 < i < m) are Laurent
polynomials of lower orders. Computation of the upper
triangular matrix is known as primal lifting and this
is referred to in the literature as lifting the low-pass
subband with the help of the high-pass subband [3, 4].
Similarly, computation of the lower triangular matrix
is called dual lifting, which is lifting the high-pass
subband with the help of the low-pass subband [3, 4].
Often these two basic lifting steps are called update
and predict as well. The dual polyphase factorization
which also consists of predict and update steps can be
represented in the following form:

_ 1 0l[1 —sEH[+ 0
P(Z)_{H[—ti(zl) 1}[0 1 }}[5 k:|

i=1
(7

Hence the lifting based forward wavelet transform
essentially is to first apply the lazy wavelet on the in-
put stream (split into even and odd samples), then alter-
nately execute primal and dual lifting steps, and finally
scale the two output streams by % and K respectively,
to produce low-pass and high-pass subbands, as shown

324 Acharya and Chakrabarti

(1) E »
3 L

I
——I split ?sl(z) lfl_(:z_,

(a) Forward transform

(b) Inverse transform

Figure 4. Lifting based forward and inverse DWT.

in Fig. 4(a). The inverse DWT can be derived by
traversing above steps in the reverse direction, first
scaling the low-pass and high-pass subband inputs by
K and % respectively, and then applying the dual and
primal lifting steps after reversing the signs of coef-
ficients in 7(z) and §(z) and finally the inverse lazy
transform by up-scaling the output before merging
them into a single reconstructed stream as shown in
Fig. 4(b).

Due to the linearity of the lifting scheme, if the input
data is in integer format, it is possible to maintain data
to be in integer format throughout the transform by
introducing a rounding function in the filtering opera-
tion. Due to this property, the transform is reversible
(i.e. lossless) and is called Integer Wavelet Transform
(IWT) [5]. It should be noted that filter coefficients
need not be integers for IWT. However, if a scaling step
is present in the factorization, IWT cannot be achieved.
It has been proposed in [5] to split the scaling step into
additional lifting steps to achieve IWT.

Example. Consider the (5, 3) filter that has been used
in JPEG2000 standard, with 7 = (=4, 1,3, 1 —1)
and § = (3,1, —1).

B 1 301 y 1 1

he(z%) = —gz_z + i gzz, ho(z%) = 1 + Z(Zz),
1 1

g ==327 =2, R(H=1

As a result, polyphase matrix of this filter bank is

5 he(z) ho(2)
P(z)=] . -

© [&(z) 2
[FEisk e
=L et T
Also based on conditions of perfect reconstructions
of the complementary filters as described in Eq. (2),
we can derive the corresponding synthesis filters as
follows:

1 1
h(z) = —z7'g(—z7 Y = 52*1 +14 =z,

2
g(2) =z"h(-z7")
1 5 1 3 11

= —=Z °

8 4 4 4 8

Thus h = (11 band g = (-4, 1.2~ 1)
Now based on the lifting scheme for factorization of
the polyphase matrix, the possible factorization of P(z)

that leads to a band matrix multiplication is

s [1 ta+2 1 0
P(Z)_[o Y][—%(1+zl) 1]

If the samples are numbered starting from 0, we can
consider the even terms of the output stream as the
samples of lowpass subband and the odd terms as the
samples of highpass subband. Accordingly, we can in-
terpret the above matrices in the time domain as y,;
= b(xz; + X2i12) + X2ir1 and yy; = a(y2ir1 + y2iy3) +
X»;, where 0 < i < N/2 for an input stream x and output
stream y both of length N, a = —% and b = }1. Note
that the odd samples are calculated from even samples
and even samples are calculated from the updated odd
samples.

The other wavelet filter bank that has been proposed
in JPEG2000 Part I standard is the (9,7) filter. The most
efficient factorization of the polyphase matrix for (9,7)
filter is as follows [4]:

s |1 a(l+z7h 1 0
P(Z)_[o 1 Hb(1+z) 1]

1 c(l+z7 1 0][K ©
“lo 1 di+z 1]|o L

where a = —1.586134342, b = —0.05298011854,
c = 0.8829110762, d = —0.4435068522, K =
1.149604398.

In terms of banded matrix operation, the forward
transform for (5,3) and (9,7) filters can be represented

Survey on Lifting-based Discrete Wavelet Transform Architectures 325

as Y(5’3) = XM1M2 and Y(9,7) = XM1M2M3M4 re-
spectively, while the corresponding inverse trans-
form are represented as X = Y(53M>M; and X =
Y(9’7)M4M3M2M1 5 where

1 a 0 .
01 0 0 .
0 a1l a 0 .
0O 01 0 0 .
M, = 0 a1l a O ,
0 01 0
0 a 1 0
. 0 01 O
| 0 0 a 1|
1 0 0 .]
01 b 0 .
001 0 0 .
O » 1 b 0 .
M, = 001 0 0 .
0O b 1 b O
001 00
. 0 b 1 O
| 0 0 0 1|
1 ¢ 0 .]
01 0 0 .
0O ¢c 1 ¢ 0 .
01 0 0 .
M5 = 0 ¢c 1 ¢ O . ,
00 1 0O
0 ¢c 1 ¢ O
. 0 0
| 0 0 ¢ 1]
1 0 0 .]
01 d4 0 .
001 0 0 .
0 d 1 d 0 .
My = 00 0 1 0 .
0 d 1 d 0
0 01 0O
. 04d 10
| 0 . 0 0 1]

In fact, most of the popular wavelet filters are de-
composed either into 2 or 4 matrices (primal and dual).
For example, the wavelet filters C(13, 7), S(13, 7), (2,
6), (2, 10) can be decomposed into 2 matrices and (6,
10) can be decomposed in 4 matrices as have been
described in detail in [12].

The lifting-based DWT has many advantages over
the convolution based approach. Some of them are as
follows.

e Lifting-based DWT typically requires less computa-
tion (up to 50%) compared to the convolution based
approach. However the savings depends upon the
length of the filters.

e During the lifting implementation, no extra memory
buffer is required because of the in-place computa-
tion feature of lifting. This is particularly suitable
for hardware implementation with limited on-chip
memory.

e The lifting based approach offers integer to integer
transformation suitable for lossless image compres-
sion.

e In lossless transformation mode, the boundary ex-
tension of the input data can be avoided because
the original input can be exactly reconstructed by
integer to integer lifting transformation.

3. Lifting Architectures for 1D DWT

The data dependencies in the lifting scheme can be
explained with the help of an example of DWT filtering
with four factors (or four lifting steps). The four lifting
steps correspond to four stages as shown in Fig. 5. The
intermediate results generated in the first two stages for
the first two lifting steps are subsequently processed to
produce the high-pass (HP) outputs in the third stage,
followed by the low-pass (LP) outputs in the fourth
stage. (9,7) filter is an example of a filter that requires
four lifting steps. For the DWT filters requiring only
two factors, such as the (5,3) filter, the intermediate
two stages can simply be bypassed.

3.1. Direct Mapped Architecture [6]

A direct mapping of the data dependency diagram into
a pipelined architecture was proposed by Liu et al. in
[6] and described in Fig. 6. The architecture is designed
with 8 adders (A1-AS8), 4 multipliers (M1-M4), 6
delay elements (D) and 8 pipeline registers (R). There

326 Acharya and Chakrabarti

input
First
stage

Second
stage

HP output -

LP output

Figure 5. Data dependency diagram for lifting of filters with four factors.

are two input lines to the architecture: one that inputs
even samples {xy;}), and the other one that inputs
odd samples {x;;41 }. There are four pipeline stages in
the architecture. In the first pipeline stage, adder Al
computes xp; + X2, and adder A2 computes a(xy; +
X2i—2) + X2i—1. The output of A2 corresponds to the in-
termediate results generated in the first stage of Fig. 5.
The output of adder A4 in the second pipeline stage
corresponds to the intermediate results generated in
the second stage of Fig. 5. Continuing in this fashion,
adder A6 in the third pipeline stage produces the
high-pass output samples, and adder A8 in the fourth
pipeline stage produces the low-pass output samples.
For lifting schemes that require only 2 lifting steps,
such as the (5,3) filter, the last two pipeline stages
need to be bypassed causing the hardware utilization
to be only 50% or less. Also, for a single read port
memory, the odd and even samples are read serially in
alternate clock cycles and buffered. This slows down
the overall pipelined architecture by 50% as well.

A similar pipelined architecture for the (9,7) wavelet
has been proposed by Jou et al. in [7].

3.2. Folded Architecture [8]

The pipelined architecture in Fig. 6 can be further im-
proved by carefully folding the last two pipeline stages
into the first two stages as shown in Fig. 7. The archi-
tecture proposed by Lian, et al. in [8)] consists of two
pipeline stages, with three pipeline registers, R1, R2
and R3. In the (9,7) type filtering operation, intermedi-
ate data (R3) generated after the first two lifting steps
(phase 1) are folded back to R1 (as shown in Fig. 7) for
computation of the last two lifting steps (phase 2). The
architecture can be reconfigured so that computation
of the two phases can be interleaved by selection of
appropriate data by the multiplexors. As a result, two
delay registers (D) are needed in each lifting step in or-
der to properly schedule the data in each phase. Based
on the phase of interleaved computation, the coefficient
for multiplier M1 is either a or ¢, and similarly the
coefficient for multiplier M2 is b or d. The hardware
utilization of this architecture is always 100%. Note
that for the (5,3) type filter operation, folding is not
required.

{w2i}]

To(i-1) + T2i

* ()

DN

Z2i-1
a(zo; + T2i-2) + L2i-1

Figure 6. The direct mapped architecture in [6].

Survey on Lifting-based Discrete Wavelet Transform Architectures 327

input

even

odd

:D_,P

Figure 7. The folded architecture in [8].

3.3. MAC Based Programmable Architecture [10]

A programmable architecture that implements the data
dependencies represented in Fig. 5 using four MACs
(Multiply and Accumulate) and nine registers has been
proposed by Chang et al. in [10]. The algorithm is ex-
ecuted in two phases as shown in Fig. 8. The data-flow
of the proposed architecture can be explained in terms
of the register allocation of the nodes. The computation
and allocation of the registers in phase 1 are done in
the following order

RO « X2i—1, R2 « X2is
R3 < RO+ a(R1 + R2);
R4 < R1 + b(R5 + R3);
R8 < R5+ c(R6 4+ R4);

Output; p < R6 + d(R7+ R8); Outputyp < R8

Similarly, the computation and register allocation in
phase 2 are done in the following order

RO < x2i41; R1 <= Xpi42;
R5 <~ RO+ a(R2+ R1);

Phase 1 Phase 2

input Rl RO™ R2

First
stage

Second
stage

HP output -4---4 k’}“-

LPoutput -

R6 < R2 4+ b(R3 + R5);
R7 < R34+ ¢(R4 + R6);
Output; p < R4+ d(R8 + R7);

Outputy p < R7

As a result, two samples are input per phase and
two samples (LP and HP) are output at the end of
every phase. For 2D DWT implementation, the output
samples are also stored into a temporary buffer for
filtering in the vertical dimension.

3.4. Flipping Architecture [11]

While conventional lifting-based architectures require
fewer arithmetic operations, they sometimes have long
critical paths. For instance, the critical path of the
lifting-based architecture for the (9,7) filter is 4T, +
8T, while that of the convolution implementation is
T,, + 4T,. One way of improving this is by pipelining
which results in a significant increase in the number
of registers. For instance, to pipeline the lifting-based

Phase 1 Phase 2
R0 R2 R0 RI

Figure 8. Data-flow and register allocation of the MAC based architecture in [10].

328 Acharya and Chakrabarti

1/K
high pass

1/dK i
K

high pass low pass

low pass

high pass low pass

high pass

low pass

Figure 9. A flipping architecture [11]. (a) Original architecture, (b)—(c) Scaling the coefficients to reduce the number of multiplications, (d)

Splitting the three-input addition nodes to two-input nodes.

(9,7) filter such that the critical path is T,, + 2T,, 6
additional registers are required.

Recently, Huang et al. [11] proposed a very effi-
cient way of solving the timing accumulation prob-
lem. The basic idea is to remove the multiplications
along the critical path by scaling the remaining paths
by the inverse of the multiplier coefficients. Fig. 9(a)—
(c) describes how scaling at each level can reduce the
multiplications in the critical path. Figure 9(d) further
splits the three input addition nodes into two 2-input
adders. The critical path is now T, + 57,. The mini-
mum critical path of T}, can be achieved by 5 pipelin-
ing stages using 11 pipelining registers (not shown in
the figure). Detailed hardware analysis of lossy (9,7),
integer (9,7) and (6,10) filters have been included in
[11]. Further more, since the flipping transformation
changes the round-off noise considerably, techniques

to address precision and noise problems have also been
addressed in [11].

3.5. Generalized Architecture [12]

The architecture proposed by Andra et al. [12] is an
example of a highly programmable architecture that
can support a large set of filters. These include filters
(5,3), (9,7), C(13,7), S(13,7), (2,6), (2,10), and (6,10).
Since the data dependencies in the filter computations
can be represented by at most four stages, the architec-
ture consists of four processors, where each processor
is assigned computations of one stage. Figure 10(a)
describes the assignment of computation to two pro-
cessors, P1 and P2, for the (5,3) filter which can be
represented by two stages.

Survey on Lifting-based Discrete Wavelet Transform Architectures 329

P1 !

f--\-w/ \:-l—/ \¢/_.x4/

P2 1y Y8
(a) Processor assignment for the (5,3) filter
Cycle Processor 1 (P1) Processor 2 (P2)
Adderl | Shifter| Adder2 || Adderl{Shifter] Adder2
1 —_ —_ — —_ —_ —
2 To+ X2 — - - - =
3 z2+x4| R1 |- - - -
4 z4+x6| R1 |Rs-z1=y1]| - - -
5 e +xg| Rl [Rs-z3=y3 - — .
6 Rl [Rs-ws=ys|| wy1,y3| - -
7 = |Rs@r=y7|| ws,ys| Rl | wo
8 ys,y7 | R1 Rs+zo
9 R1 Rs+x4
10 Rs+xzg

(b) Partial schedule for the (5,3) filter implementation

Figure 10.

The processor architecture consists of adders, mul-
tipliers and shifters that are interconnected in a manner
that would support the computational structure of the
specific filter. Figure 11 describes the processor archi-
tectures for the (5,3) filter and the (9,7) filter. While
the (5,3) filter architecture consists of two adders, and
a shifter, the (9,7) filter architecture consists of two
adders and a multiplier. Figure 10(b) describes part of
the schedule for the (5,3) filter. The schedules are gen-
erated by mapping the data dependency graph onto the

Y~

]
[}
[}
[}
| / \
1

=

'Shifter«)- Rs

Figure 11.
[12].

Processor architecture for the (5,3) and (9,7) filters in

Processor assignment and partial schedule for the (5, 3) filter implementation in the Generalized architecture in [12].

resource-constrained architecture. It is assumed that
the delays of each adder, shifter and the multiplier are
1, 1 and 4 time units respectively. For example, Adder1
of P1 adds the elements (xp, x7) in the 2nd cycle and
stores the sum in register R1. The shifter reads this
sum in the next cycle (3rd cycle), carries out the re-
quired number of shifts (one right shift as a = —0.5)
and stores the data in register Rs. The second adder
(Adder2) reads the value in Rs and subtracts the ele-
ment x; to generate y; in the next cycle. To process N
= 9 data, the P1 processor takes four cycles. Adder 1
in P2 processor starts computation in the sixth cycle.
The gaps in the schedules for P1 and P2 are required
to store the zeroth element of each row.

3.6. Recursive Architecture [14]
Most of the traditional DWT architectures compute

the ith level of decomposition upon completion of
the (i — 1)th level of decomposition. However in

330 Acharya and Chakrabarti

=N

=T
ERL"‘.

Figure 12. The recursive architecture in [14].

multiresolution DWT, the number of samples to be
processed in each level is always half of the size in the
previous level. Thus it is possible to process multiple
levels of decomposition simultaneously. This is the ba-
sic principle of a recursive architecture that was first
proposed for a convolution based DWT in [13] and
applied for lifting based DWT in [14, 15]. Here com-
putations in higher levels of decomposition is initiated
as soon as enough intermediate data in low-frequency
subband is available for computation. The proposed
architecture for a 3-level decomposition of an input
signal using Daubechies-4 DWT is shown in Fig. 12.

The basic circuit elements used in this architecture
are delay elements, multipliers and MAC units which
are in turn designed using a multiplier, an adder and
two shifters. The multiplexors M1 and M2 select the
even and odd samples of the input data as needed by
the lifting scheme. S1, S2 and S3 are the control sig-
nals for data flow of the architecture. The select signal
(S1) of the multiplexors is set to O for the first level of
computation and is set to 1 during the second or third
level computation. The switches S2 and S2 select the
input data for the second and third level of computa-
tion. The multiplexor M3 selects the delayed samples
for each level of decomposition based on the clocked
signals shown in Fig. 12.

A recursive architecture for 1D implementation of
the (5,3) filter has been proposed in [9]. The architec-
ture has hardware complexity identical to [15] but is
claimed to be more regular. The topology is similar to a
scan chain, and thus can be easily modified to support
testable scan-based designs.

3.7. Dual Scan Architecture in [15]

In [15], Liao et al. presented a 1D dual scan archi-
tecture (DSA) for DWT that achieves 100% datapath
hardware utilization (for special cases) by processing

two independent data streams together using shared
functional blocks in an interleaved fashion.

The architecture consists of a processing element
that implements the conventional lifting scheme, one
memory unit and input and output switches as shown
in Fig. 13. The input switches are connected to the in-
put signals of the processing element when it computes
the first stage of lifting and are connected to the mem-
ory unit when the processing element performs the
other stages of lifting (the stages are shown in the
data dependency diagram in Fig. 5). The switch SWO0
separates the low-frequency coefficients of the two in-
put signals. The switch SW1 is connected to the out-
put only after completion of the final stage of lifting.
During the DWT computation, the input samples are
shifted in and the low-frequency coefficients are stored
in the internal memory. After all the input samples in
one stage are processed, the stored coefficients are re-
trieved to start computation in the next stage. Since
DSA performs useful calculation in every clock cycle,
its hardware utilization for the processing element is
effectively 100%.

3.8. DSP Type Architecture [17]

A filter independent DSP type parallel architecture
has been proposed by Martina et al. in [17]. The

SWo _J
SW1 A Memory

o—
Inputl
—‘;;. Processing _l o—»L

Element
oo H

Input2

Figure 13 The dual scan architecture in [15].

Survey on Lifting-based Discrete Wavelet Transform Architectures 331

ainfl dinl]]
silk], t:lk] =

MAC1 MAC2

e/

MUX Qin []), din []]
Programmable
ROUND Delay
SUB
aout[], dout 4]

Figure 14. Parallel MAC architecture for lifting [17].

architecture consists of N, = max;{k;,, k; } number
of MAC (Multiply-Accumulate) units, where k;, and
k;, are length of the primal and dual lifting filters s;
and ¢; respectively, in step i of the lifting factorization.
The architecture is shown in Fig. 14. The architecture
essentially computes the following two streams in each
lifting step.

1
aoulj1 = ainlj] — \‘Xk: din[j — k1 - si[k] + EJ ,

1
dowlj] = din[j] — L;aout[j — k] - 1i[k] + EJ)

where aj, and dj, are two input sub-streams formed by
the even and odd samples of the original input signal
stream x. It is obvious that streams «;, and b;, are not
processed together in this architecture; while one is
processed the other has to be delayed enough to guar-
antee a consistent subtraction at the end of the lifting
step. The above architecture is designed to compute
n; simultaneous partial convolution products selected
by the MUX, where n, is the length of filter tap for
the lifting step being currently executed in the archi-
tecture. After n, clock cycles, the first filtered sample
is available for rounding operation at the output of
the first MAC, and subsequent samples are obtained
in consecutive clock cycles from the subsequent MAC
units (MAC3, . .., MAC,,). The ‘programmable delay’
is a buffer that guarantees the subtraction consistence
to execute corresponding doy[j] and doylj] samples
at the output. The ROUND unit in Figure 14 com-
putes the floor function shown in the lifting equations
and the SUB unit processes the corresponding subtrac-
tion operations. The architecture can be programmed to

support a wide range of filters including (9,7), (10,18),
(13,11), (6,10), (5,3) and (9,3).

3.9. Comparison of Performance of the 1D
Architectures

A summary of the hardware and timing requirements
of the different (9,7) filter implementations for data
size N is presented in Fig. 15. The hardware complex-
ity has been compared with respect to the data path.
The memory size and organization required to support
multiple levels of decomposition has not been listed in
most of the architectures, and hence not included here.
An estimate of the controller complexity has also been
included. The timing performance has been compared
with respect to two parameters: the number of clock
cycles to compute L levels of decomposition and the
clock period (i.e., the delay in the critical path). The
notation T, stands for the delay of a multiplier, T,
the delay of an adder, etc.

Interms of hardware complexity, the folded architec-
ture in [8] is the simplest and the DSP-based architec-
ture in [17] is the most complex. All other architectures
have comparable hardware complexity and primarily
differ in the number of registers and multiplexor cir-
cuitry. The control complexity of the architecture in
[6] is very simple. In contrast, the number of switches,
multiplexors and control signals used in the architec-
tures of [15, 17] is quite large. The control complexity
of the remaining architectures is moderate.

In terms of timing performance, the architectures in
[6, 8, 10—12] are all pipelined, with the architectures
in [11, 12] having the highest throughput (1/7,,). The
architecture in [14] has fewer cycles since it is RPA
based, but its clock period is higher. The architecture
in [11] has the lowest computation delay though it may
not be apparent from Fig. 15.

Finally, all the architectures with the exception of
[14] compute all the outputs of one level before starting
computations of the next level. The architecture in [14]
is the only one that adopts an RPA based approach and
intersperses the computations of the higher levels with
those of the first level. So it is likely that the memory
requirements of [14] would be lower than the others.

4. Two Dimensional DWT Architecture

Generally, 2D wavelet filters are separable functions.
A straight-forward approach for 2D implementation

332 Acharya and Chakrabarti

Architecture Datapath

Number of cycles

Timing

Clock period Control

4 mult, 2 scaling mult,
8 adders 8 registers,

Direct mapped[6
pped(6] 6 delay units

4+2N(1-1/20)

T+ 2T, | Simple

4 mult, 2 scaling mult,

g 8dders 8 reglsters
elay units

Folded [8]

4+2N(1-1/20)

2T + 2T, | Moderate

4 multiply-accumulate,
2 scaling mult,

MAC [10
[10] 9 registers

4+2N(1-1/20)

T + 2T, | Moderate

4 mult, 2 scaling mult,
8 adders 10 registers,
6 shifters

Flipping [11]

54+42N(1-1/20) | T,

Moderate

WRICEeR S,

2 registers), 2 scaling
mult

Generalized [12]

12+2N(1-1/20) T,

Moderate

4 mult, 2 scaling mult,
4 adders 7 registers,

Recursive (14
(14 3 delay units, 6 mux

N+ L+2L

4T,, + 8T, | Complex

2 processors (each
w1th 4 mult, 2 scaling
mult, 4 adders, 7 reg,
3 deflay units)

DSA [15]

N+L

4T, + 8T, | Moderate

2 MACs(each with 2
mul, 2 adders, 12 r%
output buffer},
F units, 2, scalmg
t, prog. delay

DSP [17)

N(l - 1/2L), where
D| k = Tin + 215 + Try 2k

Complex
T sup + Tous fer

Figure 15.
decomposition.

is to first apply the 1D DWT row-wise (to produce
L and H subbands) and then column-wise to produce
four subbands LL, LH, HL and HH as shown in Fig. 3
in each level of decomposition. Obviously, the pro-
cessor utilization is a concern in direct implementa-
tion of this approach because it requires all the rows
be filtered before the columnwise filtering can begin
and thus it requires a size of memory buffer of the
order of the image size. The alternative approach is
to begin the column-processing as soon as sufficient
number of rows have been filtered. The column-wise
processing is now performed on these available lines to
produce wavelet coefficients row-wise. The overview
of the two-dimensional architecture for convolution
based DWT is shown in Fig. 16(a). The row module
reads the data from MEMI1, performs DWT along the
rows and writes the data into MEM2. The column mod-
ule reads the data from MEM?2, performs DWT along
the columns and writes ‘LL’ data to MEM1 and ‘LH’,
‘HL’, ‘HH’ data to external memory.

A similar approach can be implemented for the lift-
ing scheme as well. The basic idea of lifting based
approach for DWT implementation is to replace the
parallel low-pass and high-pass filtering of traditional

Hardware and timing comparison of the 1D DWT architectures for the (9, 7) filter computation on an input size N with L levels of

approach by a sequence of alternating smaller filters.
The computations in each filter can be partitioned into
prediction (dual lifting) and update (primal lifting)
stages as shown in Fig. 16(b). Here the row module
reads the data from MEMI1, performs the DWT along
the rows (‘H’ and ‘L’) and writes the data into MEM2.
The prediction filter of the column module reads the
data from MEM2, performs column-wise DWT along
alternate rows (‘HH’ and ‘LH’) and writes the data
into MEM2 in [12] (and into MEM1 in [21]); the up-
date filter of the column module reads the data from
MEM2 in [12] (and MEM1 in [21]), performs column-
wise DWT along the remaining rows, and writes the
‘LL’ data into MEM1 for higher octave computations
and ‘HL’ data to external memory. Note that this is a
generic architectural flow and is the backbone of the
existing 2D architectures.

An important consideration in the design of 2D ar-
chitectures is the memory configuration. A trade-off
exists between the size of the internal memory and the
frame memory access bandwidth. The size of the in-
ternal memory is again a function of the way the frame
memory is scanned. In Section 4.1, we describe the ex-
isting scanning techniques along the lines of [23, 22].

input from

external memory

MEM1
E‘I],t?llitH, HL Column module Row module
to external Lowpass filter Lowpass filter
memory Highpass filter Highpass filter

MEM2

(a) Convolution-based architecture
input from
external memory

MEM1
E‘Iit?l‘itl-l, . Column module Row module
to external Update filter Update filter
memory Predict filter Predict filter

MEM2

(b) Lifting-based architecture

Figure 16. Overview of convolution and lifting-based 2D DWT
architecture.

Then we describe three representative 2D DWT ar-
chitectures, namely, the dedicated architecture for the
(4,2) filter [21], the generalized architecture [12] and
the recursive architecture [15], and compare them with
respect to hardware and timing complexities.

4.1. Memory Scan Techniques

The memory scan techniques can be broadly classified
into line-based scan, block-based scan and stripe-based
scan. Though most of the existing architectures are
based on line scan, we describe all three techniques
to (possibly) facilitate development of new 2D DWT
architectures.

4.1.1. Line-based Scan. In line-based scan, the scan
order is raster scan. An internal line buffer of size LN
is required, where N is the number of pixels in a row

Survey on Lifting-based Discrete Wavelet Transform Architectures 333

Figure 17.

Line-based scan method.

and L is the number of rows that are required for that
particular filter. A line-based implementation of the tra-
ditional convolution based wavelet transform has been
discussed in great detail in [18]. For lifting based archi-
tectures, the value of L can be determined as in [22] by
considering the data dependency graph (see Fig. 17).
This is an extension of the 1D data dependency graph
(see Fig. 5) with a node now corresponding to a row
of pixels. Note that several rows of data corresponding
to R2-R4 and coefficients corresponding to R1 and R5
have to be stored. When a new row of data correspond-
ing to R6 is available, another column operation can be
initiated. After this column operation, data in R7-R9
are stored for the next column operation. According
to the implementation in [22], the line buffer needs to
store six rows of data. The implementation in [23] as
well as that in [20] requires only four rows of data to
be stored. A detailed analysis of the memory require-
ments for line scan implementations of both forward
and inverse transforms are presented in [19].

4.1.2. Block-based Scan. In block-based scan, the
frame memory is scanned block-by-block and the
DWT coefficients are also computed block-by-block.
Figure 18 shows two configurations of block based
methods where the blocks are scanned in the row di-
rection first. In the non-overlapped configuration, the

(a) Non-overlapped
Figure 18.

(b) Overlapped
Block-based scan method [23].

334 Acharya and Chakrabarti

(a) Non-overlapped

Figure 19. Stripe-based scan method [23].

blocks are not overlapped with each other and in the
overlapped configuration, the blocks are overlapped
by 2K pixels in the column direction. Here K = [(L —
1)/2], where L is the number of DWT filter taps. In both
cases, intermediate data have to be stored between two
adjacent blocks as shown in grey in Fig. 18. The size of
the internal buffer for one level for the non-overlapped
case is LN + LB,. The first term, LN, is due to the
column-wise intermediate data and the second term,
LB, is due to the intermediate data between adjacent
blocks in a row. The size of the internal buffer can be
reduced to only LB, if the column-wise intermediate
data is not stored and instead the data is read from the
frame memory as needed. The size of the internal buffer
for the overlapped case can also be reduced to LB, at
the expense of increasing the number of frame memory
reads to Nsz/(By—ZK) [23]. However, this scheme is
not directly applicable to multi-level architectures.

The block-based technique proposed in [20] first per-
forms filtering operation on neighboring data blocks
independently and later combines the partial boundary
results together. Two boundary post-processing tech-
niques are proposed - overlap-state sequential which
reduces the buffer size for sequential processing and
split-and-merge which reduces the interprocessor de-
lay in parallel implementations.

4.1.3. Stripe-based Scan. The stripe-based scan is
equivalent to the line-based scan with B, = N. In other
words, the stripe is a very wide block with width N
and height S. As in the case of block-based scan, there
are two categories, namely, the non-overlapped stripe-
based scan also referred to as the optimal Z-scan in
[22] and shown in Fig. 19(a), and the overlapped stripe-
based scan shown in Fig. 19(b). The non-overlapped
stripe-based scan has an internal buffer of size LN +
LS and N? frame memory READ accesses. In contrast,

2K

(b) Overlapped

the overlapped stripe-based scan has a significantly
smaller internal buffer of size LS and N2S/(S — 2K)
frame memory READ accesses.

4.2. (4,2) Filter Architecture in [21]

A dedicated architecture for 2D DWT using the (4,2)
filter from the Deslauriers-Dubuc family has been pro-
posed by Ferretti and Rizzo in [21]. The architecture,
shown in Fig. 20. It consists of two parallel filters to

Column Module

Pred-col

__v ________ _*_- -

ext memory

Buffer D

!

|

[}

'{ Buffer C
: (LHH!’LLH!)
|

to ext memory ‘LI

Figure 20. Block diagram of the (4,2) filter architecture in [21].

Survey on Lifting-based Discrete Wavelet Transform Architectures 335

compute the predict and update values along the rows
(Pred-row, Upd-row), two parallel filters to compute
the predict and update values along the columns (Pred-
col, Upd-col), and four buffers A, B, C, D, to hold
the intermediate data to support the pipelined compu-
tations. The buffers are dual-ported and are organized
such that 4 words can be accessed simultaneously. Each
filter consists of multipliers (L, = 4 for predict filters
and L, = 2 for update filters), adders, shifters and in-
ternal buffers (proportional to /, and L) to streamline
the computations.

Pred-row computes on L, = 4 data, L, — 1 of which
are stored in its internal buffer. It computes the ‘H’
values. The Upd-row requires L, = 2 ‘H’ values to
compute a ‘L’ value. It obtains these by reading the
last value produced by Pred-row and storing the other
L, — 1 in internal registers. It picks up the primary
input value from the internal buffer in Pred-row.

Pred-col performs the same basic operations as
Pred-row, though working on columns. It reads L,
even position ‘H’ values along the columns. It pro-
duces a new row of wavelet coefficients for every two
rows produces by Pred-row. During the time Pred-row
produces ‘H’ values for odd-indexed rows, Pred-col
computes on the ‘L’ values generated by Upd-row.

The architecture utilization is only 50% if we only
consider the computations in the first level. The higher
level computations can thus be easily interspersed with
the first level computations using a RPA-based ap-
proach. In fact, once the unit delay for any level is
determined, the schedule can be easily obtained. Please
refer to [21] for details of the schedules, memory sizes,
number of read/write accesses, etc.

4.3. Generalized 2D DWT Architecture in [12]

The architecture proposed by Andra et al. [12] is more
generalized and can compute a large set of filters for
both the 2D forward and inverse transforms. It sup-
ports two classes of architectures based on whether
lifting is implemented by one or two lifting steps. The
M2 architecture corresponds to implementation using
one lifting step or two factorization matrices, and the
M4 architecture corresponds to implementation by two
lifting steps or four factorization matrices.

The dataflow of the M2 architecture that is used to
implement the wavelet filters (5,3), C(13,7), S(13,7),
(2,6), (2,10) is similar to that in Fig. 16(b). A block
diagram of the M2 architecture is shown in Fig. 21.

External Memory

LL subband
hee—

MEM2
I F=="
! Column Module i |LH HL,HH
b
: | cP1 I_,IREGz|._,[cpp | LSEPes
i

F e r et —————— ——

Figure 21. Block diagram of the generalized M2 architecture in
[12].

It consists of the row and column computation mod-
ules and two memory units, MEM1 and MEM2. The
row module consists of two processors RP1 and RP2
along with a register file REG1, and the column mod-
ule consists of two processors CP1 and CP2 along with
aregister file REG2. All the four processors RP1, RP2,
CP1, CP2 in the proposed architecture consists of 2
adders, 1 multiplier and 1 shifter as shown in Fig. 11.

Row processing
Zoo 201 Zo2 QJIs X4

e

-

CP1 CP2 CP1 CP2

1
1
]
1
1
1
1
1
]
1
2211
1
|
1
I
I
!

| |
241 1

Figure 22. Data access patterns for the row and column modules
for the (5,3) filter with N = 5 in the 2D DWT architecture in [12].

336 Acharya and Chakrabarti

R
E
E L
R R[>
R Data Row G
E Arrangement Processor Exchange
inget G Switch Og Hg [FIFO —|—> switch
12+1/4+...
rows
E Lo
FIFO € cotumn
1/2+1/4+... }|—>|Armrangement Prooc:snsl:r
rows O¢ Hcp—

Figure 23. Block diagram of the 2D recursive architecture in [15].

For the M2 architecture, RP1 and CP1 are predict filters
and RP2 and CP2 are update filters.

Figure 22 illustrates the data access pattern for the
(5,3) filter with N = 5. RP1 calculates the high-pass
(odd) elements along the rows, Yo, o3, - - . , while RP2
calculates the low-pass (even) elements along the rows,
Y00, Y02, Yo4, - - - » CP1 calculates the high-pass and low-
pass elements zy9, z11, . . . ; 230, 231, . . . along odd rows
and CP2 calculates high-pass and low-pass elements
2005 2015 - - - 3 220> 2215 - - - 3 240, Z41, - - - along the even
rows. Note that CP1 and CP2 start computations as
soon as the required elements are generated by RP1
and RP2.

The memory modules, MEM1 and MEM2, are both
dual port with one read and one write port, and support
two simultaneous accesses per cycle. MEM1 consists
of two banks and MEM?2 consists of four banks. The
multi-bank structure increases the memory bandwidth
and helps support highly pipelined operation. Details
of the memory organization and size, register file, and
schedule for the overall architecture with specific de-
tails for each constituent filter have been included in
[12].

The dataflow of the M4 architecture that is used to
implement the filters (9,7), (6,10) is quite different.
Since this is a generalized architecture with the hard-
ware in the row and column modules fixed, the compu-
tations span two passes. In the first pass, the row-wise
computations are performed using both the modules.
Module 1 reads the data from MEMI, executes the
first two matrix multiplications, and writes the result

into MEM2. Module 2 executes the next two matrix
multiplications and writes the result into MEM1. In
the second pass, the transform is computed along the
columns. Once again, Module 1 executes the first two
matrix multiplications and Module 2 executes the next
two matrix multiplications.

4.4. 2D Recursive Architecture in [15]

The 2D recursive architecture proposed by Liao et al.
[15] is built on top of the 1D recursive architecture
proposed by the same authors in [14, 15] and pre-
sented in Section 3.6. As in the 1D case, the computa-
tion of all the lifting stages are interleaved to increase
the hardware utilization. A simplified block diagram
of this architecture is shown in Fig. 23. The column-
processor and the row-processor are similar to the 1D
recursive architecture processor. The image is input
to the row-processor in raster scan format. When the
row-processor processes the even rows, the high- and
low-frequency DWT coefficients of the odd rows are
shifted into their corresponding first-in first-out FIFO
registers. The use of two FIFOs to separately store
high frequency and low frequency components results
in lower controller complexity. When the row proces-
sor processes the odd lines, the low-frequency DWT
coefficients of the current line and lines previously
stored in the FIFOs are sent to the column processors.
The column-processor starts calculating the vertical
DWT in zigzag scan format after one row delay. The

Survey on Lifting-based Discrete Wavelet Transform Architectures 337

Hardware

Architecture Datapath

Int. memory

Timing

Number of cycles| Clock Period | Control

10 mult, 8 adders,

data reg, 8 control
reg, 6 mux

(4,2) filter [21] |5 inc, 4 shifters, 47 25N+7(L-2)

not provided | T, + 27, + T’s| Moderate

; 4 mult, 2 scaling
Genz:éa’;l)zed [12] mult, 8 adders, 4

shifters, 16 reg

N? 434

)

~4/3N? 4+ 2L T Moderate

8 mult, 4 scaling
mult, 8 adders, 14
reg, large no of
multiplexors

Recursive [15]

)

4N

~ N?+ N +2L 4T, + 8T, |Complex

9 mul, 2 adders,
F°1dgd7 RPA[16] multiplexors, 12N
©.7) registers

similar to [14] | 4T, + 47, | Complex

Figure 24. Hardware and timing comparison of the 2D DWT Architectures on an input of size N x N with L levels of decomposition.

computations are arranged in a way that the DWT co-
efficients of the first stage are interleaved with the other
stages. The arrangement is done with the help of the
data arrangement switches at the input to the row and
column processors, and the exchange switch.

A mix of the principles of recursive pyramid al-
gorithm (RPA) [13] and folded architecture has been
adopted by Jung et al. to design a 2D architecture
for lifting based DWT in [16]. The row-processor is
a 1D folded architecture and does row-wise compu-
tations in the usual fashion. The column processor
is responsible for filtering along the columns at the
first level and filtering along both the rows and the
columns at the higher levels. It does this by employ-
ing RPA scheduling and achieves very high utiliza-
tion. The utilization of the row processor is 100%,
and that of the column processor is 83% for 5-level
decomposition.

4.5. Other 2D DWT Architectures

Several of the 1D DWT architectures proposed in Sec-
tion 3 can be extended to compute 2D DWT using
the row-column method. If a frame memory based ap-
proach is used where the original samples are replaced
by the calculated coefficients, no additional memory
is required. However, an address generator is needed
to provide the proper access addresses in order to read
samples for the next level computation and then write
them back as in [8]. If a frame memory is not allowed,
then most architectures implement some form of the
line scan method. The architecture in [8] uses an in-

ternal buffer of size BN, where B is the height of the
code block in a JPEG2000 architecture. The line-based
implementation in [10] organizes the line buffer into
two parts: the signal memory which stores both the
low pass and the high pass outputs corresponding to
the row-wise computations and the temporary memory
which stores the temporary results for the column-wise
computations. Details of the size of the memory as well
as nature of memory accesses are described. A generic
line-based implementation of an RPA-based approach
has been presented in [24]. The important feature here
is the efficient use of 2-port RAMs to implement the
line buffers.

The 2D extension of the dual scan architecture
(DSA) (see Section 3.7 for the 1D DSA) is also a
line based implementation. Here two consecutive
rows are scanned simultaneously in line scan order
and the column processor computes on the row DWT
coefficients. The row-processor in 2D DSA is identical
to the 1D DSA presented in Section 3.7; registers are
used to hold the even and odd pixels of each row and to
interleave the input pairs of two consecutive rows. The
internals of the column processor is the same as the row
processor. However the 1 pixel registers in the row pro-
cessors are replaced by 1-row delay units. Compared
to conventional architectures, DSA needs roughly half
of the time to compute lifting based 2-D DWT.

4.6. Comparison of Performances

A summary of the hardware and timing requirements
of a few representative architectures is presented in

338 Acharya and Chakrabarti

Fig. 24. The hardware complexity has been described
in terms of datapath components and internal memory
size. We list only the internal memory size since all the
architectures require an external memory of size N?
for input data of size N x N. The timing performance
has been compared with respect to the number of clock
cycles to compute L levels of decomposition and the
clock period.

Of the four architectures, the architecture in [15] has
the smallest internal memory. This is because [15] is an
RPA based approach that intersperses the computations
at the higher levels with those of the lower levels. The
architecture in [12], on the other hand, computes all the
outputs of one level before starting the computations
at the next level and has an internal memory of size
O(N?). The datapath complexity of the architecture in
[12] is by far the lowest.

The control complexity of the architecture in [15] is
significantly higher than the others. This is because of
the large number of control signals and switches that
are used to organize the data before sending to the row
and column computation units.

In terms of the timing performance, the architecture
in [12] is pipelined and has the highest throughput
(1/T;;). The architecture in [15, 16] requires the fewest
number of cycles since they are RPA based, though the
clock periods are significantly higher.

The architecture in [21] is specific to the (4,2) filters
while the RPA concept that is applied to the architec-
tures in [15, 16] can be applied to a large set of filters
(not just (3,5), (9,7), Daub-4). The architecture in [12]
is essentially a programmable architecture which sup-
ports implementation of a large set of filters on the
same hardware platform.

5. Conclusions

In this paper, we presented a survey of the existing
lifting based implementations of 1-dimensional and 2-
dimensional Discrete Wavelet Transform. We briefly
described the principles behind the lifting scheme in
order to better understand the different implementation
styles and structures. We have presented several archi-
tectures of different flavors ranging from highly paral-
lel ones to highly folded ones to programmable ones.
We provided a systematic derivation of each architec-
ture and evaluated them with respect to their hardware
and timing requirements.

References

10.

11.

12.

13.

14.

15.

16.

. S. Mallat, “A Theory for Multiresolution Signal Decomposition:

The Wavelet Representation,” IEEE Trans. Pattern Analysis And
Machine Intelligence, vol. 11, no. 7, 1989, pp. 674—693.

. T. Acharya and P. S. Tsai, JPEG2000 Standard for Image Com-

pression: Concepts, Algorithms and VLSI Architectures. John
Wiley & Sons, Hoboken, New Jersey, 2004.

. W. Sweldens, “The Lifting Scheme: A Custom-Design Con-

struction of Biorthogonal Wavelets,” Applied and Computa-
tional Harmonic Analysis, vol. 3, no. 15, 1996, pp. 186-200.

. 1. Daubechies and W. Sweldens, “Factoring Wavelet Transforms

into Lifting Schemes,” The J. of Fourier Analysis and Applica-
tions, vol. 4, 1998, pp. 247-269.

. M.D. Adams and F. Kossentini, “Reversible Integer-to-Integer

Wavelet Transforms for Image Compression: Performance Eval-
uation and Analysis,” IEEE Trans. on Image Processing, vol. 9,
2000, pp. 1010-1024.

. C.C.Liu, Y.H. Shiau, and J.M. Jou, “Design and Implementation

of a Progressive Image Coding Chip Based on the Lifted Wavelet
Transform,” in Proc. of the 11th VLSI Design/CAD Symposium,
Taiwan, 2000.

. J.M. Jou, Y.H. Shiau, and C.C. Liu, “Efficient VLSI Architec-

tures for the Biorthogonal Wavelet Transform by Filter Bank and
Lifting Scheme,” in IEEE International Symposium on Circuits
and Systems, Sydney, Australia, 2001, pp. 529-533.

. C.J Lian, K.F. Chen, H.H. Chen, and L.G. Chen, “Lifting Based

Discrete Wavelet Transform Architecture for JPEG2000,” in
IEEE International Symposium on Circuits and Systems, Syd-
ney, Australia, 2001, pp. 445-448.

. P-Y. Chen, “VLSI Implementation for One-Dimensional Multi-

level Lifting-Based Wavelet Transform,” IEEE Transactions on
Computers, vol. 53, no. 4, 2004.

W.H. Chang, Y.S. Lee, W.S. Peng, and C.Y. Lee, “A Line-Based,
Memory Efficient and Programmable Architecture for 2D DWT
Using Lifting Scheme,” in IEEE International Symposium on
Circuits and Systems, Sydney, Australia, 2001, pp. 330-333.
C.T. Huang, P.C. Tseng, and L.G. Chen, “Flipping Structure: An
Efficient VLSI Architecture for Lifting-Based Discrete Wavelet
Transform,” in IEEE Transactions on Signal Processing, 2004,
pp. 1080-1089.

K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI Architec-
ture for Lifting-Based Forward and Inverse Wavelet Transform,”
IEEE Trans. of Signal Processing, vol. 50, no. 4, 2002, pp. 966—
977.

M. Vishwanath, “The Recursive Pyramid Algorithm for the Dis-
crete Wavelet Transform,” in /EEE Transactions on Signal Pro-
cessing, vol. 42, 1994, pp. 673-676.

H. Liao, M.K. Mandal, and B.F. Cockburn, ‘“Novel
Architectures for Lifting-Based Discrete Wavelet Trans-
form,” in Electronics Letters, vol. 38, no. 18, 2002,
pp. 1010-1012.

H. Liao, M.K. Mandal, and B.F. Cockburn, “Efficient Architec-
tures for 1-D and 2-D Lifting-Based Wavelet Transform,” IEEE
Transactions on Signal Processing, vol. 52, no. 5, 2004, pp.
1315-1326.

G.C. Jung, D.Y. Jin, and S.M. Park, “An Efficient Line Based
VLSI Architecture for 2-D Lifting DWT,” in The 47th IEEE In-
ternational Midwest Symposium on Circuits and Systems, 2004.

Survey on Lifting-based Discrete Wavelet Transform Architectures 339

17. M. Martina, G. Masera, G. Piccinini, and M. Zamboni, “Novel
JPEG 2000 Compliant DWT and IWT VLSI Implementations,”
Journal of VLSI Signal Processing, vol. 34, 2003, pp. 137-
153.

18. C. Chrysafis and A. Ortega, “Line-Based, Reduced Memory,
Wavelet Image Compression,” IEEE Trans. on Image Process-
ing, vol. 9, no. 3, 2000, pp. 378-389.

19. J. Reichel, M. Nadenau, and M. Kunt, “Row-Based Wavelet
Decomposition Using the Lifting Scheme,” Proceedings of the
Workshop on Wavelet Transforms and Filter Banks, Branden-
burg an der Havel, Germany, March 5-7, 1999.

20. W. Jiang and A. Ortega, “Lifting Factorization-Based Discrete
Wavelet Transform Architecture Design,” IEEE Trans, on Cir-
cuits and Systems for Video Technology, vol. 11,2001, pp. 651—
657.

21. M. Ferretti and D. Rizzo, “A Parallel Architecture for the 2-
D Discrete Wavelet Transform with Integer Lifting Scheme,”
Journal of VLSI Signal Processing, vol. 28, 2001, pp. 165—
185.

22. M.Y. Chiu, K.-B. Lee, and C.-W. Jen, “Optimal Data Transfer
and Buffering Schemes for JPEG 20000 Encoder,” in Proceed-
ings of the IEEE Workshop on Design and Implementation of
Signal Processing Systems, 2003, pp. 177-182.

23. C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Memory Anal-
ysis and Architecture for Two-Dimensional Discrete Wavelet
Transform,” in Proceedings of the IEEE Int. Conf. on
Acoustics, Speech and Signal Processing, 2004, pp. V13—
Vie.

24. P-C. Tseng, C.-T. Huang, and L.-G. Chen, “Generic RAM-
Based Architecture for Two-Dimensional Discrete Wavelet
Transform with Line-Based Method,” in Proceedings of the
Asia-Pacific Conference on Circuits and Systems, 2002, pp. 363—
366.

Tinku Acharya received his B.Sc. (Honors) in Physics, B.Tech. and
M.Tech. in Computer Science from University of Calcutta, India, and
the Ph.D. in Computer Science from University of Central Florida,
USA, in 1984, 1987, 1989, and 1994, respectively. He is currently the
Chief Technology Officer of Avisere Inc., Tucson, Arizona, USA.
Dr. Acharya is also an Adjunct Professor in the Department of Elec-
trical Engineering, Arizona State University, Tempe, USA.

Before joining Avisere, Dr. Acharya served in Intel Corporation
(1996-2002), where he led several R&D teams toward develop-
ment of algorithms and architectures in image and video processing,
multimedia computing, PC-based digital camera, reprographics ar-
chitecture for color photo-copiers, 3G cellular telephony, analysis
of next-generation microprocessor architecture, etc. Before Intel,

Dr. Acharya was a consulting engineer at AT&T Bell Laboratories
(1995-1996), a research faculty at the Institute of Systems Research,
Institute of Advanced Computer Studies, University of Maryland at
College Park (1994-1995), and held visiting faculty positions at
Indian Institute of Technology, Kharagpur. He served as Systems
Analyst in National Informatics Center, Planning Commission, Gov-
ernment of India (1988—-1990). He collaborated in research and de-
velopment with Xerox Palo Alto Research Center (PARC), Eastman
Kodak Corporation, and many other institutions worldwide.

Dr. Acharya is inventor of 88 US patents and 14 European patents.
He authored over 80 technical papers and four books—Image Pro-
cessing: Principles and Applications (Wiley, New Jersey, 2005),
JPEG2000 Standard for Image Compression: Concepts, Algorithms,
and VLSI Architectures (Wiley, 2004), Information Technology:
Principles and Applications (Prentice-Hall India, 2004), and Data
Mining: Multimedia, Soft Computing and Bioinformatics (Wiley,
2003).

Dr. Acharya is a Fellow of the National Academy of Engineers
(India), Life Fellow of the Institution of Electronics and Telecom-
munication Engineers (FIETE), and Senior Member of IEEE. His
current research interests are in computer vision, image processing,
multimedia data mining, bioinformatics, and VLSI architectures and
algorithms.
tinku_acharya@ieee.org

Chaitali Chakrabarti received the B.Tech. degree in electronics
and electrical communication engineering from the Indian Institute
of Technology, Kharagpur, India in 1984, and the M.S. and Ph.D
degrees in electrical engineering from the University of Maryland
at College Park, USA, in 1986 and 1990 respectively. Since August
1990, she has been with the Department of Electrical Engineering,
Arizona State University, Tempe, where she is now a Professor.
Her research interests are in the areas of low power embedded sys-
tems design including memory optimization, high level synthesis
and compilation, and VLSI architectures and algorithms for signal
processing, image processing and communications.

Dr. Chakrabarti is a member of the Center for Low Power Elec-
tronics, the Consortium for Embedded Systems and Connection One.
She received the Research Initiation Award from the National Sci-
ence Foundation in 1993, a Best Teacher Award from the College of
Engineering and Applied Sciences, ASU, in 1994, and the Outstand-
ing Educator Award from the IEEE Phoenix section in 2001. She
has served on the program committees of ICASSP, ISCAS, SIPS,
ISLPED and DAC. She is currently an Associate Editor of the IEEE
Transactions on Signal Processing and the Journal of VLSI Signal
Processing Systems. She is also the TC Chair of the sub-committee
on Design and Implementation of Signal Processing Systems, IEEE
Signal Processing Society.
chaitali@asu.edu

