
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:1425–1437
https://doi.org/10.1007/s11265-023-01895-3

Stealthy Energy Consumption‑oriented Attacks on Training Stage
in Deep Learning

Wencheng Chen1 · Hongyu Li1

Received: 18 May 2023 / Revised: 29 August 2023 / Accepted: 21 September 2023 / Published online: 11 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Deep Learning as a Service (DLaaS) is rapidly developing recently to enable applications including self-driving, face recogni-
tion, and natural language processing for small enterprises. However, DLaaS can also introduce enormous computing power
consumption at the service ends. Existing works focus on the optimization of the training process such as using low-cost
chips or optimizing the training settings for better energy efficiency. In this paper, we revisit this issue from an adversary
perspective which attempts to maliciously make victims waste more training efforts without being noticed. In particular,
we propose a novel attack targeting enlarging the training costs stealthily via poisoning the training data. By adopting the
Projected Gradient Descent (PGD) method to generate poisoned samples, we show that attackers can significantly increase
the training costs by as much as 88% in both the white-box scenario and the black-box scenario with a very tiny influence
on the model’s accuracy.

Keywords Deep learning · Energy attack · Energy consumption · Carbon footprint

1 Introduction

Recently, applications enabled by deep Learning (DL) is
widely used in various applications, such as face recogni-
tion [1], knowledge graphs [2], recommendation systems [3],
and self-driving cars [4]. Various DNN architectures [5–9]
have been proposed to improve the performance of DNN
models. However, when these DNN models become more
capable, their model architectures also become more com-
plex with significantly more parameters. Thus, it is more and
more difficult for a local computer or server to train these
high-performance but sophisticated models [10]. A more
promising approach recently is to rely on Deep Learning
as a Service (DLaaS) provided by existing cloud comput-
ing vendors to train or deploy these DNN models such as
Amazon Sagemaker [11], Google Cloud ML Engine [12],
and Microsoft Azure ML Studio [13].

While DL users or small enterprises can enjoy the con-
venience of using the DLaaS service to train large-scale
models, the amount of the carbon footprint during the model
training phase is also rapidly increasing. For instance, as
pointed out in [14], training DL models can introduce sig-
nificant carbon emissions which is even comparable with
civil aviation. Particularly, the carbon emissions of training
a state-of-the-art Transformer model [15] with neural archi-
tecture search (NAS) equal the carbon emissions of five cars
in their lifetimes [16]. Recent works [16] have pointed out
the environmental influence of training large-scale models
if all the research only focuses on some metrics and does not
consider their training efficiency.

Existing approaches [17] focus on optimizing the train-
ing process to save energy costs and decrease carbon emis-
sions under benign circumstances. Some other approaches
are proposed to design more efficient chips such as Tensor
Processing Units (TPUs) [18]. All these approaches assume
that the training process is trustworthy. However, the train-
ing process via DLaaS can be vulnerable if we re-visit this
process from an adversarial perspective. For instance, recent
research has proven that the models have a risk of being
attacked during the training or the inference phase [19, 20].
By poisoning the training dataset, the adversary can launch a
backdoor attack [21–23]. In the inference phase, adversarial

 * Wencheng Chen
 wenchengchen@bupt.edu.cn

 Hongyu Li
 l543306408@bupt.edu.cn

1 School of Information and Communication Engineering,
Beijing University of Posts and Telecommunications,
Beijing 100876, China

http://orcid.org/0009-0008-7976-5431
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01895-3&domain=pdf

1426 Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

examples (AEs) can deceive the model [24–26]. Considering
the extensive and unreliable sources of the training dataset,
we believe that it is possible to poison the training dataset
while targeting energy costs. The adversary can poison the
training dataset to launch an energy attack that aims to mali-
ciously increase energy consumption in the training phase.
Note that many small enterprises use DLaaS but this kind of
energy attack may significantly increase the training cost to
disturb their model training. On the other hand, such kind of
malicious energy consumption will lead to an unnecessary
carbon footprint increase. Moreover, such kind of energy
attack can be very stealthy if the adversary performs such
attacks but does not decrease the final trained model’s accu-
racy. Thus, it is necessary to explore and understand the pos-
sibility of raising energy consumption by malicious attacks
from an adversary’s viewpoint.

In this paper, we review the security of DNN models’
training from a novel but adversarial aspect targeting energy
consumption. We show that there are security issues with
energy consumption in the training phase. We propose a
practical methodology to launch the energy-oriented attack
and we can increase the training time to maliciously increase
energy consumption. If the adversary can get the training
dataset and replace part of the benign samples with poisoned
samples before the training process, it will cost the victim
more money and time to train a model. The algorithm to gen-
erate poisoned samples is based on the Projected Gradient
Descent (PGD) algorithm [27]. Meanwhile, these poisoned
samples are close to the replaced benign samples. It is hard
for the victims to notice the attack. The experimentation is
conducted on the CIFAR-10 dataset [28], and we experiment
with different architectures of the attacked model, including
ResNet-50, ResNet-18 [29], and VGG [30]. The victim has
various methods to end the training. Therefore, we select two
commonly used methods to evaluate our attack methodology
respectively in two cases. The experiment results indicate
this kind of attack exists in both the white-box scenario and
the black-box scenario. Moreover, the accuracy decrease
meant of the attacked model will not exceed 1%.

This paper has the following contributions: (1) We pro-
pose an attack methodology to generate the poisoned sam-
ples and launch a successful energy attack; (2) We show
that it is feasible to increase the training time by poison-
ing the training dataset using crafted poisoned samples.

Meanwhile, the accuracy decrease meant the attacked model
will not exceed 1%, and the poisoned samples are close to
the replaced benign samples. This study warns that the train-
ing dataset is susceptible to energy attacks by an adversary.

The remainder of the paper is structured as follows.
Section 2 lists the background of our research. Section 3
presents an overview of our attack methodology. We show
the specific attack results of two cases respectively in Sec-
tion 5 and Section 6. Section 7 discuss future directions.
Section 8 concludes our work.

2 Research Background

2.1 Deep Learning as a Service

With the increasing demand for using large-scale DNN
models, cloud computing vendors provide the DLaaS, e.g.,
Amazon Sagemaker, Cloud ML Engine, and Microsoft
Azure ML Studio. DLaaS can be used to train or deploy a
model in the server as shown in Fig. 1. It is more convenient
to use DLaaS than training and deploying models in local
machines because DLaaS can shorten the training time and
improve the inference speed.

There are different forms of DLaaS according to flexibil-
ity and convenience. Which form to choose depends on the
users’ requirements. First, the DLaaS can be provided in a
server, which has good flexibility but little convenience [31].
If the users are experts in DL, they only need a bare server
equipped with powerful processors and GPGPUs (General
Purpose computing on Graphics Processing Units) to accom-
plish their work. With this server, experienced users can take
control of the training phase and deploying phase in detail.
But they have to write their codes from scratch. Second, the
DLaaS can be provided in a series of prepared utilities to
keep the balance between flexibility and convenience. If the
users are ordinary developers, they may want to ease their
development processing by using utilities already written by
professional developers. In this condition, the users do not
need to write all the code. They can use some interfaces in
the platform to solve their problems. Third, the DLaaS can
be provided in the auto-learning form, which is conveni-
ent for the users but has poor flexibility. If the users have
no experience in DL, they can only upload the dataset and

Figure 1 The processing of a
DLaaS service.

1427Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

choose the task without further operation. The DLaaS will
automatically train the model and deploy it on the server.

2.2 Energy Efficiency

Even for a big cloud computing vendor, i.e., Google, it takes
a high cost to improve the performance of the large-scale
models in some tasks. For example, Google AI Brain pro-
poses a Transformer model to translate between English and
German which takes 150,000 dollars and 32,000 TPU hours
but only to improve the 0.1 scores inaccuracy [14]. We
cannot ignore the energy consumption during this phase.
Therefore, it is necessary to investigate how to improve
energy efficiency.

We can use two approaches to save energy: the software
approach and the hardware approach. The first approach is
to improve the training and inference algorithms, e.g., prun-
ing [32], distilling [33], and quantization [34]. Pruning is to
discard part of neural networks, which has less impact on the
final output, to decrease the computing. This can be used in
the inference phase to reduce energy consumption and keep
accuracy in the meantime. Distilling is to use a small-scale
model to fit a large-scale model. The small-scale model has
fewer parameters but has similar accuracy to the large-scale
model. Quantization is to change the data type of parameters
from high precision to low precision or mixed precision. We
can neither choose to lower the parameter precision before
the training nor save the model with a low precision after
the training. The second approach is to use Application Spe-
cific Integrated Circuit (ASIC) chips rather than GPGPUs
to train and deploy the DNN models [35]. We use general-
purpose chips, i.e., GPGPUs, to train and deploy our model
in most cases, while ASIC chips are more efficient than
GPGPUs [18]. These ASIC chips are good at accelerating
DNN models, which can offer higher computing speed can
cost less energy. Nowadays, there are many ASIC chips to
accomplish training and inference tasks, including Google’s
TPU [18], Huawei’s Davinci NPU [36], and Cambricon’s
DianNao NPU [37].

2.3 Energy Attacks

Present researches on the energy consumption of DNN
models are mainly from the perspective of energy sav-
ing [38–40]. Because there exist security problems in the
DNN models, e.g., backdoor attacks, and AEs, we consider
this energy problem from the adversary’s perspective. As
an adversary, we aim at increasing the energy consumption
in the DLaaS without influencing the accuracy of DNN
models. The attack process in the DLaaS scenario shows
in Fig. 2. Users train their models by applying training ser-
vices provided by cloud computing vendors. During the
training phase, the adversary may attack the training dataset
to increase the training time. Furthermore, it will take the
user more money to accomplish the training tasks. This kind
of attack usually is difficult to find. The users don’t have
enough knowledge about the training phase. The cloud com-
puting vendors [41] cannot inspect the training dataset due
to security or privacy regulations. Therefore, the adversary
can attack both the users and the cloud computing vendors
without being found.

Although there are already several methods to launch
energy attacks in the training and inference phases, all these
methods have disadvantages. In the training phase, we can
attack the training process to make it take more time to train
a DNN model. The first attack method is to modify the ini-
tialization matrixes in the DNN [42]. This paper designs
different initialization matrixes for Convolutional Neural
Networks (CNN) [43] and fully connected networks to stop
the DNN from training. But, this method is easy to find
due to the dramatic fall in model accuracy. Meanwhile,
it lacks feasibility in the real world because it is hard to
change initialization matrixes. The second attack method
is to change the order of the samples in the training data-
set [44]. This paper proves that if we change the order of
samples to some special orders, it will disturb the training
phase. However, in most situations, there is a shuffle in the
training dataset during the training phase. In the inference
phase, we can generate poisoned samples to increase the
inference time. The attack method is to modify a sample to

Figure 2 The processing of an
adversary maliciously attacking
a DLaaS service.

1428 Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

have output in uniform distribution for each exit in the multi-
exit model [27]. The original purpose of a multi-exit model
is to save energy when inference a sample. If a sample’s
output distribution meets the threshold in some exit of the
multi-exit model, it can early exit. But, the adversary can
attack the output distribution to uniform distribution to stop
the sample from early exiting. However, this method can
only attack the multi-exit architecture model and cannot be
used for attacking different models.

Despite these methods can successfully launch the energy
attack, they all have their disadvantages. We need an attack
method that can adapt the different architectures of DNN
models and have the feasibility to launch in the real world.
Meanwhile, it is necessary to keep the attack hard to find.

3 Design and Experimentation

In this section, we first define the threat model from an
adversary’s viewpoint. Then we present our intuition and
the proposed attack methodology. Finally, our experimenta-
tion of the attack is presented.

3.1 Threat Model

Before diving into our specific attack methodology, we first
define the threat model, including adversarial goals, adver-
sarial capability, and adversary knowledge. Being aware of
the threat model helps us clearly understand the situation
from an adversary’s viewpoint. We define the threat model
in three parts as described below.

Adversarial Goals The adversary attempts to increase the
victim’s cost in the training time by poisoning the benign
training dataset. The poison method is to replace part of
the benign samples in the benign training dataset with the
poisoned samples. To keep hidden from the victim’s notice,
poisoned samples generated by the adversary should be as
close as the replaced benign ones. The similarity between
replaced benign samples and poisoned samples can be meas-
ured using l2 norm metrics. Moreover, the accuracy of the
poisoned model can not drop too much than innocent models
to guarantee the attack’s stealthiness.

Adversarial Capability The adversary can not attack the whole
training system. During the attack process, the adversary can
only get the benign training dataset and poison it with crafted
poisoned samples. All other training steps are safe.

Adversary’s Knowledge How much information the adver-
sary knows depends on the attack scenario. There are two
types of attack scenarios: the white-box scenario and the
black-box scenario. In the former type, the adversary knows

the architecture of the model that the victim plans to train.
While in the latter type, the adversary cannot get the model
architecture. We assume that the other information, such as
training algorithms, hyper-parameters, and model param-
eters, are unknown to the adversary.

3.2 Attack Methodology

Our intuition is to increase the difficulty for a model to
learn the necessary features for classification but not affect
the model’s final accuracy. Specifically, our assumption is
that a sample’s probability distribution in the model infer-
ence phase may connect to the sample’s feature. When the
model gives a high-confidence value in the sample’s label
class, it means this sample’s feature is clear enough for the
model to give an easy prediction. On the contrary, a uniform
probability distribution in the prediction results represents
that the sample’s feature is challenging to learn. The real
datasets are always formed by those high-confidence sam-
ples and low-confidence samples while the former ones can
help the model training to rapidly locate important features
to classify.

Therefore, our attack methodology is to generate poi-
soned samples whose probability distributions are close to
a uniform distribution to increase the difficulty of a model to
learn. With more such difficult samples mixed in the training
dataset, more training efforts (e.g. epochs) will be needed for
a model to achieve a target accuracy score.

The process of building a poisoned dataset can be illus-
trated as follows. We need to build a poisoned dataset that
can maliciously increase the training efforts but will not
affect the model accuracy on classifying the clean samples.
This can not only lead to malicious attack results but also
guarantee the stealthiness of our attack. Thus, the core idea
of our attack is to modify part of the training dataset to make
it malicious. In order to build such a poisoned dataset, our
approach is to first use a part of this dataset to train a proxy
model. This proxy model can then be used to tell the con-
fidence score of the rest dataset by inference. Then, the
attack methodology consists of two parts: generating poi-
soned samples and poisoning the benign training dataset.
The algorithm of generating poisoned samples based on the
PGD algorithm [45] is inspired by [27]. We modify it as
described in Eq. 1.

Here, x is the attacked benign sample. p is the per-
turbation. x + p is the poisoned sample. t is the current
iteration times.

∏
 is the projection operation. � is the

maximum perturbation range. � is the step size. F is the
model. L is a loss function between the output probabil-
ity distribution and the targeted distribution, and ỹ is

(1)pt+1 =
∏

��p��∞<𝜀
(pt + 𝛼sgn(∇pL(F(x + p),�y)))

1429Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

the targeted distribution. In each iteration, we attempt to
push F(x + p) towards distribution ỹ . The

∏
 insures that

the l∞ norm of p can not exceed � . Note the initial PGD
is used to generate adversarial examples which the target
label is usually chosen by the attackers. Using initial
version PGD can only guarantee a high confidence to
predict the sample as the target label but will not affect
the confidence distribution of the other labels. However,
our goal is different since we do not seek to modify the
predicted label to cause any misclassification. On the
contrary, we want to generate a poisoned sample that
can be correctly classified by the model with more simi-
larity to other labels. According to the goal above, we
modify the target of the PGD function to generate our
poisoned samples. We list this poison process in the fol-
lowing algorithm.

An attack result is shown in Fig. 3. The image of the
truck in the first row is a replaced benign sample. Its
probability distribution is concentrated. The truck image
in the second row is a crafted poisoned sample. It has a
uniform distribution. Our algorithm of generating poi-
soned samples can successfully attack the probability
distribution to targeted distribution and make poisoned
samples close to the replaced benign samples. The l2 dis-
tance between x and x + p in this example is 2.0.

4 Experiment Configuration

Our server is equipped with an Intel i7-9700K CPU, two
NVIDIA RTX 2080Ti GPUs, and a memory of 32GB,
with Ubuntu 18.04, CUDA 10.0, and cuDNN 7.6.0. The
framework of our code is PyTorch 1.10.

4.1 Attack Details

In our experiments, we mix the benign training dataset
with the poisoned samples. We assume that the victims will
use this training dataset from a third-party source and then
train their own models. Figure 4 shows the overview of our
method, which consists of three phases. We detail the three
phases as follows.

In phase 1: the attack phase, the adversary gets the benign
training dataset, where is used to train a surrogate model
and generate poisoned samples targeting more energy con-
sumption. In the white-box scenario, the architecture of the
victim’s model is accessible to the adversary. The adver-
sary can train a model, which has the same architecture as
the victim’s model. Then the adversary attacks it with our
attack methodology above. In the black-box scenario, it is
impossible to know what the victim’s model architecture is
for the adversary.

The only solution is to train a different model and count
on its transferable ability. According to whether the attacked
model has seen the attacked benign samples in the training
dataset, there are two methods to attack. The first method
only takes part of benign samples to train the attacked
model, and we use the rest of them to generate poisoned
samples. In the second method, the model has seen the
whole benign training dataset during the training, and we
attack this model with the whole benign training dataset
to generate poisoned samples. We only choose correctly
classified samples to attack in either method. The detailed
algorithm for generating poisoned samples is described in
Eq. 1. We experiment with these two methods to explore
the influence that the attacked benign samples are in the
training dataset of the attacked model. Each method experi-
ments in the white-box scenario and the black-box scenario.

Algorithm 1 Crafting poisoned samples

1430 Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

Since not all the attacks are successful, we select part of the
attack results, which have correct classification results and
the close probability distributions in the inference phase to
the targeted distribution, as our poisoned samples.

In phase 2: the poison phase, poisoned samples replace
part of benign samples in the benign training dataset in a
replacement ratio. The replacement ratio means the number
of replaced samples in the poisoned training dataset to the
number in the poisoned training dataset. The exact value of
the replacement ratio relies on the adversary, and we experi-
ment with different replacement ratios to investigate their
difference. During the replacement, we replace a benign
sample with the poisoned sample generated by itself. The
adversary successfully attacks the benign training dataset
into a poisoned training dataset.

In phase 3: the training phase, the victim uses the poi-
soned dataset, consisting of poisoned samples and benign
samples, to train a model. Considering poisoned samples
are close to the replaced benign samples, the victim can not
tell the difference between them. Because these poisoned
samples are hard to learn, it will take the victim more time
and money to train a model. Meanwhile, the accuracy of the

model will not decrease significantly. It is hard for the victim
to notice the existence of the adversary. Generally, there are
many means for the victim to decide when to end training
the model. The adversary can not disturb the victim’s deci-
sion. Thus, we choose two commonly used means: an early
stopping algorithm and stopping when some metrics meet
a threshold, to examine the attack results. In the early stop-
ping algorithm, if some metrics do not improve or have little
change over a given number of epochs, the training will be
stopped. The minimum change to qualify as an improvement
is � , b is the baseline value for the monitored quantity, and
the given number of epochs is patience. The second stopping
algorithm is to stop the training when some metrics meet a
threshold, and t is the threshold to end the model training.
The specific experiment results are presented in the follow-
ing two cases.

4.2 Experiment Setup

Dataset We adopt two popular vision datasets in our exper-
iments, CIFAR-10 and SVHN. For CIFAR-10, it has 60,000
images of 32 × 32 size. These images have ten classes in

Figure 3 An example of the
attack result.

1431Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

total. We divide it into the training dataset and test dataset
with a 5:1 ratio. The other dataset called SVHN, which is
collected for the task of identifying digits, is composed of
73,257 samples for training and 26,032 samples for valida-
tion. All samples of SVHN are 32 × 32 RGB images of
printed digits (from 0 to 9) cropped from real-world pic-
tures. The adversary takes advantage of benign samples to
craft the poisoned samples and then replaces them with
their corresponding malicious versions under different
poison rates. The victim is assumed to accept the released
poisoned dataset and train their models with it. The test
dataset is used to measure the model’s accuracy. There are
two methods to generate poisoned samples as described in
Section 3. In the first method, we use 80% images of the
training split (e.g., 40,000 samples in CIFAR-10) to build
up a surrogate model and generate poisoned samples by
attacking the surrogate model with the rest 20% images.
The second method uses all images of the training set to
train a model, and we attack this model with the same set
of images to get the poisoned samples.

Hyper‑Parameter Configuration Our parameters of the PGD
attack algorithm are set as follows: � is 0.2; � is 0.001, and
the maximum iteration time is 200. Because the poisoned
samples will fail to be correctly classified if the ỹ are too
close to a uniform distribution. In the first method, ỹ is a
probability distribution where the correct class corresponds
to 0.15, and the others are 1−0.15

9
 . In the second method, we

set the probability of the correct class as 0.2 and the other
classes’ probability 1−0.2

9
 . We select ResNet-50 as the sur-

rogate model and the target model of the white-box sce-
nario. For the black-box scenario, the poisoned samples are
generated by attacking ResNet-50. The attacking results are
evaluated on two other kinds of models. We employ SGD as
the training optimizer.

4.3 Visual Effects

We list the visual results of the two datasets as shown in
Fig. 5. Note that our poisoned samples are different com-
pared with the adversarial examples that aim to mislead the
model’s classification. These poisoned samples can still be
correctly classified by either human eyes or by the models
which makes them very stealthy.

5 Case Study 1: Training with Early Stopping

In this section, we give the first case study by considering
the victim applying the early stopping algorithm to end the
training phase at an early stage. We present attack results on
training efficiency by evaluating three models and different
data poison rates.

Figure 4 An overview of the experimentation. The experiment con-
sists of three phases. In the first phase, the adversary gets the benign
training dataset and generates poisoned samples on this dataset. Then
the adversary replaces part of the benign samples in the benign train-
ing dataset with poison. The replacement ratio is variable. Finally, the
victim uses this poisoned training dataset and chooses an algorithm
to end the training. If the attack is successful, it will take the victim
more time and money to train a model.

Figure 5 The examples of clean images and the corresponding poi-
soned images.

1432 Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

5.1 Evaluation on Training Efficiency

In the first attack method, we successfully generated 9,000
poisoned samples out of 10,000 benign images in CIFAR-10
and 13,932 poisoned samples out of 14,652 benign images in
SVHN. We use different poison rates: 2%, 10%, and 18%, to
replace benign samples in the benign training dataset with poi-
soned samples, where poison rate means the percentage of poi-
soned samples in the poisoned training dataset. In the white-box
scenario, ResNet-50 is trained with the poisoned dataset. In the
black-box scenario, we evaluate the effectiveness of the crafted
samples on two other kinds of model architecture, ResNet-18 or
VGG-13 for CIFAR-10 and ResNet-34 and VGG-16 for SVHN.
Table 1 displays the attack results in the white-box scenario
and the black-box scenario. We compare the training epochs
under different replacement ratios with the training epochs in
the innocent dataset. The final model accuracy is listed in the
accuracy column. In most cases, our attack methodology can
make it take more epochs to train a model.

In the second attack method, we managed to obtain 49,500
poisoned samples out of 50,000 benign samples in CIFAR-
10 and 66,735 poisoned samples out of 73,257 benign sam-
ples in SVHN. In order to compare with the first methodol-
ogy, we also choose three replacement ratios: 2%, 10%, and
18%, respectively. The poison ratio is limited by the samples
selected to train the proxy model. Note that we first train a

local proxy model with partial training dataset (clean dataset)
such that we can determine how to generate poisoned sam-
ples in the rest of the clean training dataset. Moreover, train-
ing this proxy model must use most of the training dataset to
guarantee the model is capable to help generate the poisoned
samples. In our setting, we use 80% clean training datasets to
train this proxy model such that the maximum poison ratio is
the 20% (i.e. the rest training dataset). Thus, we set 2%, 10%,
and 18% as three poison ratio settings. We give the attack

Table 1 The attack results of the 1st method using early stopping.
The hyper-parameters for CIFAR-10 are set as follows: ResNet-50,
� = 0.001 , b = 90 , patience = 60; ResNet-18, � = 0.01 , b = 90 ,
patience = 40; VGG-13, � = 0.001 , b = 90 , patience = 60. For
SVHN, we set � = 0.001 , b = 90 , patience = 40 for all models.

Dataset Architecture Poison rate Epoch
change
(%)

Accuracy (%)

CIFAR-10 ResNet-50 2% 7.04 94.92
10% 14.53 94.72
18% 28.19 94.45

ResNet-18 2% 5.19 94.48
10% −5.19 94.37
18% 9.91 94.05

VGG-13 2% 22.84 93.53
10% 33.18 93.32
18% 39.65 93.17

SVHN ResNet-50 2% 16.66 95.11
10% 9.52 95.12
18% 16.66 95.14

ResNet-34 2% 24.49 94.20
10% 5.44 94.33
18% 26.53 94.21

VGG-16 2% 40.61 94.37
10% 50.25 94.42
18% 28.43 94.30

Table 2 The attack results of the 2nd method using early stopping.
The hyper-parameters for CIFAR-10 are set as follows: ResNet-50,
� = 0.001 , b = 90 , patience = 60; ResNet-18, � = 0.01 , b = 90 ,
patience = 60; VGG-13, � = 0.001 , b = 90 , patience = 60. For
SVHN, we set � = 0.001 , b = 90 , patience = 40 for all models.

Dataset Architecture Poison rate Epoch
change
(%)

Accuracy (%)

CIFAR-10 ResNet-50 2% 5.29 95.04
10% 30.40 94.40
18% 32.15 94.30

ResNet-18 2% 31.03 94.31
10% 16.81 94.28
18% 18.10 93.99

VGG-13 2% 31.47 93.42
10% 3.88 93.36
18% 35.34 93.37

SVHN ResNet-50 2% 26.19 94.99
10% 32.14 95.10
18% 34.52 95.01

ResNet-34 2% 24.49 94.34
10% 33.33 94.18
18% 15.65 93.89

VGG-16 2% 32.99 94.21
10% 39.09 94.01
18% 45.69 94.08

Table 3 The attack results on CIFAR-10 of the 2nd method using
early stopping: ResNet-50, � = 0.001 , b = 90 , patience = 60;
ResNet-18, � = 0.001 , b = 90 , patience = 40; VGG-13, � = 0.001 ,
b = 90 , patience = 60. The targeted probability of the label is 0.4.

Architecture Poison rate Epoch change
(%)

Accuracy (%)

ResNet-50 2% 22.47 95.07
10% 5.73 94.55
18% 22.47 94.36

ResNet-18 2% 14.98 94.29
10% −7.69 94.47
18% 11.76 94.09

VGG-13 2% 3.88 93.42
10% 41.38 93.52
18% 40.09 93.35

1433Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

results in the white-box scenario and the black-box scenario
in Tables 2, 3 and 4. The second method takes more epochs
than the first method.

5.2 Ablation Study

There is a decrease in the accuracy of the attacked model.
Taking the results on CIFAR-10 as an example, when attack-
ing with the second method in the white-box scenario, the
model accuracy drops off 0.7% than the unattacked model
with the replacement ratio of 18%. We attempt to study
whether we could increase the training time but not decrease
the model accuracy by using different ỹ . In this study, the
targeted probability of the correct class of each sample is set
to 0.4 or 0.6. We apply the second attack method to attack
the model. Tables 5 and 6 show the specific results. These
models attacked by the new method have higher accuracy,
while the cost epochs become less.

In our experimentation, the poison rate has a positive cor-
relation to the attack performance. In both the white-box sce-
nario and the black-box scenario, our attack methods are valid.
However, the attack results are influenced by the parameters of
the early-stopping algorithm. It is hard to find a group of fixed

parameters valid for all conditions. Meanwhile, there is a trade-
off between the cost epochs and the final model accuracy in most
cases. Which side to take depends on the situation that the adver-
sary wants to attack. If the attack needs to be invisible, it is better
to select a small poison rate value and a highly targeted probabil-
ity of the label, which leads to a higher accuracy but fewer cost
epochs. For the contrary situation, a big poison rate and a small
targeted probability are preferred. We notice some attack results
are not stable, and it may have a connection to the robustness of
the model. This phenomenon implies a small group of poisoned
samples can help the model learn a better result.

6 Case Study 2: Targeted Accuracy Training

In this section, we consider another commonly used
approach to end the training. It will stop training the model
after some metrics reach pre-defined thresholds. Note that
all empirical settings are the same as the ones in Section 4.2.

6.1 Evaluation on Training Efficiency

The poisoned samples generated by the two attack methods
are the same as the former ones in case 1. Because the vic-
tim’s stopping threshold is unknown, we set different values
of t to evaluate the performance of our attack methodology.
Tables 5 and 6 show the attack results on CIFAR-10 of the
first method and the second method respectively. The con-
sidered parameter t varies from 86 to 93. For SVHN, we
noticed that the model can easily obtain an acceptable accu-
racy (e.g., 90%) but has trouble reaching a higher accuracy
(e.g., 94%+), for which we mainly focus on the higher values
of t for SVHN in Tables 7 and 8. The replacement ratios in
our attack methods are 2%, 10%, and 18%. The values in the
tables are the change percentages of the cost epochs com-
pared with the innocent model training phase. To determine
the influence of the different poison rates in a visual manner,
we illustrate the cost epochs of training ResNet-18 with the
CIFAR-10 dataset under the first attack method in Fig. 6.

Table 4 The attack results on CIFAR-10 of the 2nd method using early
stopping: ResNet-50, � = 0.01 , b = 90 , patience = 60; ResNet-18,
� = 0.01 , b = 90 , patience = 40; VGG-13, � = 0.005 , b = 90 , patience
= 50. The targeted probability of the label is 0.6.

Architecture Poison rate Epoch change (%) Accuracy (%)

ResNet-50 2% 34.36 94.72
10% 37.00 94.87
18% 11.45 94.20

ResNet-18 2% 4.17 94.47
10% −12.74 94.18
18% 10.38 93.87

VGG-13 2% 4.95 93.56
10% 38.29 93.40
18% −10.36 93.15

Table 5 The results on CIFAR-10 of epoch cost with an accuracy threshold (ACC
t
) for different poison rates: the 1st method in case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 86 ACC

t
= 87 ACC

t
= 88 ACC

t
= 89 ACC

t
= 90 ACC

t
= 91 ACC

t
= 92 ACC

t
= 93

ResNet-50 (ACC=94.89%) 2% 8.33% −18.75% 12.50% 37.50% 19.23% 18.42% 21.43% −2.97%
10% 0.00% 0.00% 18.75% 43.75% 23.08% 13.16% 53.57% 6.93%
18% 0.00% 12.50% 18.75% 62.50% 46.15% 26.32% 16.07% 17.82%

ResNet-18 (ACC=94.74%) 2% 9.09% −18.75% −5.56% 21.05% 8.33% 7.50% 20.75% 2.04%
10% 9.09% −25.00% 5.56% 15.79% 16.67% −7.50% 30.19% 4.08%
18% 0.00% −6.25% −5.56% 36.84% 37.50% 0.00% 28.30% 17.35%

VGG-13 (ACC=93.87%) 2% −8.33% 7.69% −23.81% 0.00% 46.67% 41.07% 21.28% 1.55%
10% −25.00% 15.38% 4.76% 7.69% 26.67% 21.43% 24.47% 6.98%
18% 16.67% 7.69% −9.52% 11.54% 16.67% 23.21% 10.64% 31.78%

1434 Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

The more data are poisoned, the longer the training time. In
most cases, our attack is successful.

6.2 Ablation Study

We explore the performance of our attack method by set-
ting the targeted probability of the correct class to 0.4 or
0.6 in the second method. The attack results are presented
in Tables 9 and 10 respectively. Meanwhile, the targeted
probability influences the highest model accuracy. While
in most cases, the accuracy will reduce by less than 1%.
A higher probability helps the attack more covert. For
example, the highest model accuracy will not decrease
when the targeted probability is 0.6, the attacked model is
ResNet-50, and the poison rate is 10% in the second attack
method. In this situation, the cost epochs increase 10%
averagely in different t. If we further set the poison rate to
18%, we can improve the epochs increment percentage to
26% but limit the accuracy decrement to less than 0.3%.
While the targeted probability is 0.2, the poison rate is
18%, and the other conditions maintain the same, the train-
ing costs more 32% epochs than the innocent situation.

The attack result connects to poison rates. More data
are poisoned, and more epochs cost. In case 2, the attack
results are more stable. It does not rely on t. No matter what
t is, it usually takes more epochs to train a model. Thus, if
the victim set thresholds to end the training, they are more

vulnerable. However, when the poison rate is 2%, the attack
results are not always successful. We consider it as the
robustness of the model training.

7 Discussion and Future Work

There is very little related work on this topic. For instance,
the method in [44] can increase the training time by mali-
ciously reordering the samples in the training set. Such an
attack, although effective, is not practical since a shuffle
operation is set as default in most real-world cases.

In this paper, we have shown that by poisoning the data-
set without any requirements for the order of the training set
which is more practical to deploy. However, our work is still
empirical work that shows the possibility of such a kind of
attack. Our results of increasing the training time are highly
relying on empirical factors such as the poison rate or the
target accuracy which needs further improvement. Moreover,
there are more criteria to stop the training process in real-
world DNN training scenarios which may disable our attack.

Moreover, our attack is indeed orthogonal to these energy
optimization methods. With different training devices or
server configurations, our attack can significantly increase
the training epoch numbers for the target accuracy which
will lead to a malicious energy increase. In this paper, we try
to focus on the model layer attack. Focusing on the model

Table 6 The results on CIFAR-10 of epoch cost with an accuracy threshold (ACC
t
) for different poison rates: the 2nd method in case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 86 ACC

t
= 87 ACC

t
= 88 ACC

t
= 89 ACC

t
= 90 ACC

t
= 91 ACC

t
= 92 ACC

t
= 93

ResNet-50 (ACC=94.89%) 2% 0.00% −25.00% 25.00% 43.75% 11.54% 2.63% 8.93% 2.97%
10% 0.00% −12.50% 6.25% 62.50% 30.77% 28.95% 41.07% 4.95%
18% 25.00% −6.25% 37.50% 87.50% 69.23% 42.11% 48.21% 21.78%

ResNet-18 (ACC=94.74%) 2% 18.18% −6.25% −16.67% −5.26% 4.17% −10.00% 28.30% 14.29%
10% −27.27% 0.00% −11.11% 10.53% 4.17% 10.00% 11.32% 4.08%
18% 9.09% 0.00% −11.11% 26.32% 29.17% 27.50% 64.15% 17.35%

VGG-13 (ACC=93.87%) 2% 0.00% 7.69% −4.76% −7.69% 30.00% 16.07% 17.02% 8.53%
10% −8.33% 23.08% −19.05% 15.38% 16.67% 50.00% 13.83% 5.43%
18% 25.00% 15.38% 23.81% 23.08% 50.00% 55.36% 24.47% 20.16%

Table 7 The results on SVHN
of epoch cost corresponding to
different accuracy thresholds
(ACC

t
): the 1st method in case

2.

Architecture Poison rate ACC
t
= 91 ACC

t
= 92 ACC

t
= 93 ACC

t
= 94

ResNet-50 (ACC=95.16%) 2% 0.00% 0.00% 56.25% −3.70%
10% 7.69% 0.00% 25.00% 14.81%
18% 7.69% 28.57% 37.50% −3.70%

ResNet-18 ACC=94.36%) 2% −14.29% −5.88% −10.53% 213.04%
10% 0.00% 0.00% −10.53% 221.74%
18% −7.14% −5.88% −5.26% 856.52%

VGG-13 ACC=94.38%) 2% −7.69% −22.22% 5.00% 51.79%
10% −7.69% 5.55% 5.00% 50.00%
18% 7.69% −11.11% 0.00% 80.36%

1435Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

Table 8 The results on SVHN
of epoch cost corresponding to
different accuracy thresholds
(ACC

t
): the 2nd method in

case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 91 ACC

t
= 92 ACC

t
= 93 ACC

t
= 94

ResNet-50 (ACC=95.16%) 2% 15.38% 21.43% 62.50% 7.41%
10% 0.00% 7.14% 50.00% 18.52%
18% 0.00% −7.14% 37.50% −11.11%

ResNet-18 (ACC=94.36%) 2% 7.14% −11.76% −10.53% 126.09%
10% 14.28% −5.88% 0.00% 39.13%
18% 21.43% 0.00% −5.26% 973.91%

VGG-13 (ACC=94.38%) 2% −7.69% 0.00% 5.00% 117.86%
10% 15.38% 0.00% 5.00% 407.14%
18% −7.69% 5.55% 20.00% 301.79%

Table 9 The results on the CIFAR-10 dataset of epoch cost with an accuracy threshold (ACC
t
) for different poison rates: the 2nd method with

0.4 as the targeted probability of the label in case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 86 ACC

t
= 87 ACC

t
= 88 ACC

t
= 89 ACC

t
= 90 ACC

t
= 91 ACC

t
= 92 ACC

t
= 93

ResNet-50 (ACC=94.89%) 2% −8.33% −6.25% 12.50% 50.00% 19.23% 5.26% 1.79% −9.90%
10% 0.00% 18.75% 25.00% 25.00% 46.15% 15.79% 42.86% 13.86%
18% 8.33% 18.75% 18.75% 75.00% 30.77% 23.68% 30.36% 3.96%

ResNet-18 (ACC=94.74%) 2% 9.09% −18.75% −22.22% 21.05% 20.83% 20.00% 37.74% 10.20%
10% 0.00% −6.25% −16.67% 10.53% 33.33% −12.5% 32.08% 11.22%
18% 9.09% −6.25% −0.56% 21.05% 20.83% 32.50% 47.17% 19.39%

VGG-13 (ACC=93.87%) 2% −8.33% −15.38% −4.76% 15.38% 63.33% 51.79% 8.51% 2.33%
10% 8.33% 15.38% −14.29% 15.38% 30.00% 48.21% 9.57% 5.43%
18% 8.33% 61.54% 23.81% 0.00% 56.67% 33.93% 19.15% 12.40%

Table 10 The results on the CIFAR-10 dataset of epoch cost with an accuracy threshold (ACC
t
) for different poison rates: the 2nd method with

0.6 as the targeted probability of the label in case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 86 ACC

t
= 87 ACC

t
= 88 ACC

t
= 89 ACC

t
= 90 ACC

t
= 91 ACC

t
= 92 ACC

t
= 93

ResNet-50 (ACC=94.89%) 2% 0.00% −6.25% 18.75% 43.75% 26.92% 39.47% 32.14% 1.98%
10% −8.33% −18.75% 18.75% 50.00% 26.92% 18.42% 44.64% 0.99%
18% 8.33% 6.25% 18.75% 50.00% 38.46% 47.37% 57.14% 11.88%

ResNet-18 (ACC=94.74%) 2% 9.09% −25.00% −22.22% 21.05% 16.67% −2.50% 24.53% 6.12%
10% 9.09% −12.50% −5.56% 5.26% 16.67% 15.00% 47.17% 22.45%
18% 0.00% −31.25% −5.56% 21.05% 41.67% 67.50% 67.92% 22.45%

VGG-13 (ACC=93.87%) 2% 0.00% 15.38% −4.76% −15.38% 33.33% 25.00% 2.13% 2.33%
10% −8.33% 38.46% −4.76% −11.54% 43.33% 28.57% 11.70% 10.85%
18% 16.67% 7.69% 0.00% 7.69% 60.00% 32.14% 29.79% 14.73%

1436 Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

layer makes the attack results agnostic to the hardware or
server configurations since increasing certain training epoch
numbers can always increase the training efforts. We leave
more practical attacks as our first future work.

For the second future work, we will focus on how to
improve the attack results. We plan to generate poisoned
samples that cost more epochs and do not influence the
model’s accuracy in the meantime. It will be hard for the
victim to notice the attack. Meanwhile, we try to make our
attack method more stable with the early stopping algorithm.
Besides, it is valuable to experiment with other tasks to
explore whether the attack works in different fields. Moreo-
ver, further experiments are needed to figure out the reasons
for the energy attack. Such research will help us understand
the energy attack better. Finally, it is also necessary to inves-
tigate the solutions to defend against the attack.

8 Conclusion

In this paper, we propose a novel energy attack targeting
the increment of training time of a DNN model. The attack
methodology consists of generating poisoned samples and
poisoning the benign training dataset. In our experimenta-
tion, we evaluate our attack results with two algorithms to
end the training. The attack results prove that it is feasible to
increase the training time using our methodology. The future
investigation will focus on improving the attack performance
and the reason for the energy attack.

Funding No funding was received for conducting this study.

Data Availability Will be open-sourced.

Code Availability Will be open-sourced.

Declarations

Ethics Approval Not applicable.

Consent to Participate Yes.

Consent for Publication Yes.

Competing Interests The authors have no relevant financial or non-
financial interests to disclose.

References

 1. Wang, M., & Deng, W. (2020). Deep face recognition: a survey.
Neurocomputing.

 2. Shi, C., Ding, J., Cao, X., Hu, L., Wu, B., & Li, X. (2021). Entity
set expansion in knowledge graph: A heterogeneous information
network perspective. Frontiers of Computer Science, 15(1), 1–12.

 3. Fu, Z., Gao, H., Guo, W., Jha, S. K., Jia, J., Liu, X., Long, B., Shi,
J., Wang, S., & Zhou, M. (2020). Deep Learning for Search and
Recommender Systems in Practice. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 3515–3516.

 4. Qiu, H., Qiu, M., & Lu, R. (2019). Secure v2x communication
network based on intelligent pki and edge computing. IEEE Net-
work, 34(2), 172–178.

 5. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learn-
ing for image recognition. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770–778.

 6. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is
all you need. arXiv preprint arXiv: 1706. 03762.

 7. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv: 1810. 04805.

 8. Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang,
X., Yang, Z., Wang, K., Zhang, X., et al. (2021). Pangu-� : Large-
scale autoregressive pretrained chinese language models with
auto-parallel computation. arXiv preprint arXiv: 2104. 12369.

 9. Qiu, H., Zheng, Q., Memmi, G., Lu, J., Qiu, M., & Thuraising-
ham, B. (2020). Deep residual learning-based enhanced jpeg com-
pression in the internet of things. IEEE Transactions on Industrial
Informatics, 17(3), 2124–2133.

 10. Chen, J., & Ran, X. (2019). Deep learning with edge computing:
A review. Proceedings of the IEEE, 107(8), 1655–1674.

 11. Joshi, A. V. (2020). Amazon’s machine learning toolkit: Sage-
maker. In: Machine Learning and Artificial Intelligence, pp.
233–243. Springer.

 12. Ciaburro, G., Ayyadevara, V. K., & Perrier, A. (2018). Hands-
On Machine Learning on Google Cloud Platform: Implementing
Smart and Efficient Analytics Using Cloud ML Engine. Packt
Publishing Ltd.

 13. Barga, R., Fontama, V., & Tok, W. H. (2015). Introducing micro-
soft azure machine learning. In: Predictive Analytics with Micro-
soft Azure Machine Learning, pp. 21–43. Springer.

 14. Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., &
Pineau, J. (2020). Towards the systematic reporting of the energy

Figure 6 The attack result of the first method, targeting ResNet-18
trained on CIFAR-10. The label of the x-axis is goal accuracy. It rep-
resents the pre-defined threshold t. The value of each bar in the y-axis
gives the cost epochs.

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.12369

1437Journal of Signal Processing Systems (2023) 95:1425–1437

1 3

and carbon footprints of machine learning. Journal of Machine
Learning Research, 21(248), 1–43.

 15. So, D., Le, Q., & Liang, C. (2019). The evolved transformer. In: Inter-
national Conference on Machine Learning, pp. 5877–5886. PMLR.

 16. Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and
policy considerations for deep learning in NLP. arXiv preprint
arXiv: 1906. 02243.

 17. Wang, Y., Ding, C., Li, Z., Yuan, G., Liao, S., Ma, X., Yuan,
B., Qian, X., Tang, J., Qiu, Q., et al. (2018). Towards ultra-high
performance and energy efficiency of deep learning systems: an
algorithm-hardware co-optimization framework. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32.

 18. Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.
(2017). In-datacenter performance analysis of a tensor processing
unit. In: Proceedings of the 44th Annual International Symposium
on Computer Architecture, pp. 1–12.

 19. Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G., & Qiu, M.
(2020). Adversarial attacks against network intrusion detection
in IoT systems. IEEE Internet of Things Journal.

 20. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neu-
ral networks. arXiv preprint arXiv: 1312. 6199.

 21. Li, Y., Wu, B., Jiang, Y., Li, Z., & Xia, S.-T. (2020). Backdoor
learning: A survey. arXiv preprint arXiv: 2007. 08745.

 22. Zhai, T., Li, Y., Zhang, Z., Wu, B., Jiang, Y., & Xia, S.-T. (2021).
Backdoor attack against speaker verification. In: ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2560–2564. IEEE.

 23. Qiu, H., Zeng, Y., Guo, S., Zhang, T., Qiu, M., & Thuraisingham,
B. (2021). Deepsweep: An evaluation framework for mitigating
dnn backdoor attacks using data augmentation. In: Proceedings
of the 2021 ACM Asia Conference on Computer and Communica-
tions Security, pp. 363–377.

 24. Carlini, N., & Wagner, D. (2017). Towards evaluating the robust-
ness of neural networks. In: 2017 IEEE Symposium on Security
and Privacy (sp), pp. 39–57. IEEE.

 25. Athalye, A., Carlini, N., & Wagner, D. (2018). Obfuscated gra-
dients give a false sense of security: Circumventing defenses to
adversarial examples. In: International Conference on Machine
Learning, pp. 274–283. PMLR.

 26. Qiu, H., Zeng, Y., Zheng, Q., Guo, S., Zhang, T., & Li, H. (2021).
An efficient preprocessing-based approach to mitigate advanced
adversarial attacks. IEEE Transactions on Computers.

 27. Hong, S., Kaya, Y., Modoranu, I.-V., & Dumitraş, T. (2020). A
Panda? No, It’s a Sloth: Slowdown Attacks on Adaptive Multi-
Exit Neural Network Inference. arXiv preprint arXiv: 2010. 02432.

 28. Çalik, R. C., & Demirci, M. F. (2018). Cifar-10 image classifica-
tion with convolutional neural networks for embedded systems.
In: 2018 IEEE/ACS 15th International Conference on Computer
Systems and Applications (AICCSA), pp. 1–2. IEEE.

 29. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017).
Inception-v4, inception-resnet and the impact of residual connec-
tions on learning. In: Thirty-first AAAI Conference on Artificial
Intelligence.

 30. Zhang, Q., Bai, C., Liu, Z., Yang, L. T., Yu, H., Zhao, J., & Yuan,
H. (2020). A gpu-based residual network for medical image clas-
sification in smart medicine. Information Sciences, 536, 91–100.

 31. Hassan, M. M., Gumaei, A., Alsanad, A., Alrubaian, M., & Fortino,
G. (2020). A hybrid deep learning model for efficient intrusion detec-
tion in big data environment. Information Sciences, 513, 386–396.

 32. He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). Filter prun-
ing via geometric median for deep convolutional neural networks
acceleration. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4340–4349.

 33. Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowl-
edge in a neural network. arXiv preprint arXiv: 1503. 02531.

 34. Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv: 1510. 00149.

 35. Wang, C., Gong, L., Yu, Q., Li, X., Xie, Y., & Zhou, X. (2016).
DLAU: A scalable deep learning accelerator unit on FPGA. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 36(3), 513–517.

 36. Liao, H., Tu, J., Xia, J., & Zhou, X. (2019). Davinci: A scalable
architecture for neural network computing. In: 2019 IEEE Hot
Chips 31 Symposium (HCS), pp. 1–44. IEEE Computer Society.

 37. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam,
O. (2014). Diannao: A small-footprint high-throughput accelera-
tor for ubiquitous machine-learning. ACM SIGARCH Computer
Architecture News, 42(1), 269–284.

 38. Acun, B., Murphy, M., Wang, X., Nie, J., Wu, C.-J., & Hazelwood,
K. (2021). Understanding training efficiency of deep learning recom-
mendation models at scale. In: 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 802–814. IEEE.

 39. Zhang, L., & Suganthan, P. N. (2016). A survey of randomized
algorithms for training neural networks. Information Sciences,
364, 146–155.

 40. Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016).
Deep learning for stock prediction using numerical and textual
information. In: 2016 IEEE/ACIS 15th International Conference
on Computer and Information Science (ICIS), pp. 1–6. IEEE.

 41. Qiu, H., Noura, H., Qiu, M., Ming, Z., & Memmi, G. (2019). A
user-centric data protection method for cloud storage based on
invertible DWT. IEEE Transactions on Cloud Computing.

 42. Grosse, K., Trost, T. A., Mosbach, M., Backes, M., & Klakow,
D. (2019). On the security relevance of weights in deep learning.
arXiv preprint arXiv: 1902. 03020.

 43. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu,
T., Wang, X., Wang, G., Cai, J., et al. (2018). Recent advances in
convolutional neural networks. Pattern Recognition, 77, 354–377.

 44. Shumailov, I., Shumaylov, Z., Kazhdan, D., Zhao, Y., Papernot,
N., Erdogdu, M. A., & Anderson, R. (2021). Manipulating SGD
with data ordering attacks. arXiv preprint arXiv: 2104. 09667.

 45. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A.
(2017). Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv: 1706. 06083.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/2007.08745
http://arxiv.org/abs/2010.02432
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1902.03020
http://arxiv.org/abs/2104.09667
http://arxiv.org/abs/1706.06083

	Stealthy Energy Consumption-oriented Attacks on Training Stage in Deep Learning
	Abstract
	1 Introduction
	2 Research Background
	2.1 Deep Learning as a Service
	2.2 Energy Efficiency
	2.3 Energy Attacks

	3 Design and Experimentation
	3.1 Threat Model
	3.2 Attack Methodology

	4 Experiment Configuration
	4.1 Attack Details
	4.2 Experiment Setup
	4.3 Visual Effects

	5 Case Study 1: Training with Early Stopping
	5.1 Evaluation on Training Efficiency
	5.2 Ablation Study

	6 Case Study 2: Targeted Accuracy Training
	6.1 Evaluation on Training Efficiency
	6.2 Ablation Study

	7 Discussion and Future Work
	8 Conclusion
	References

