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Abstract
Deep Learning as a Service (DLaaS) is rapidly developing recently to enable applications including self-driving, face recogni-
tion, and natural language processing for small enterprises. However, DLaaS can also introduce enormous computing power 
consumption at the service ends. Existing works focus on the optimization of the training process such as using low-cost 
chips or optimizing the training settings for better energy efficiency. In this paper, we revisit this issue from an adversary 
perspective which attempts to maliciously make victims waste more training efforts without being noticed. In particular, 
we propose a novel attack targeting enlarging the training costs stealthily via poisoning the training data. By adopting the 
Projected Gradient Descent (PGD) method to generate poisoned samples, we show that attackers can significantly increase 
the training costs by as much as 88% in both the white-box scenario and the black-box scenario with a very tiny influence 
on the model’s accuracy.
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1 Introduction

Recently, applications enabled by deep Learning (DL) is 
widely used in various applications, such as face recogni-
tion [1], knowledge graphs [2], recommendation systems [3], 
and self-driving cars [4]. Various DNN architectures [5–9] 
have been proposed to improve the performance of DNN 
models. However, when these DNN models become more 
capable, their model architectures also become more com-
plex with significantly more parameters. Thus, it is more and 
more difficult for a local computer or server to train these 
high-performance but sophisticated models [10]. A more 
promising approach recently is to rely on Deep Learning 
as a Service (DLaaS) provided by existing cloud comput-
ing vendors to train or deploy these DNN models such as 
Amazon Sagemaker [11], Google Cloud ML Engine [12], 
and Microsoft Azure ML Studio [13].

While DL users or small enterprises can enjoy the con-
venience of using the DLaaS service to train large-scale 
models, the amount of the carbon footprint during the model 
training phase is also rapidly increasing. For instance, as 
pointed out in [14], training DL models can introduce sig-
nificant carbon emissions which is even comparable with 
civil aviation. Particularly, the carbon emissions of training 
a state-of-the-art Transformer model [15] with neural archi-
tecture search (NAS) equal the carbon emissions of five cars 
in their lifetimes [16]. Recent works [16] have pointed out 
the environmental influence of training large-scale models 
if all the research only focuses on some metrics and does not 
consider their training efficiency.

Existing approaches [17] focus on optimizing the train-
ing process to save energy costs and decrease carbon emis-
sions under benign circumstances. Some other approaches 
are proposed to design more efficient chips such as Tensor 
Processing Units (TPUs) [18]. All these approaches assume 
that the training process is trustworthy. However, the train-
ing process via DLaaS can be vulnerable if we re-visit this 
process from an adversarial perspective. For instance, recent 
research has proven that the models have a risk of being 
attacked during the training or the inference phase [19, 20]. 
By poisoning the training dataset, the adversary can launch a 
backdoor attack [21–23]. In the inference phase, adversarial 
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examples (AEs) can deceive the model [24–26]. Considering 
the extensive and unreliable sources of the training dataset, 
we believe that it is possible to poison the training dataset 
while targeting energy costs. The adversary can poison the 
training dataset to launch an energy attack that aims to mali-
ciously increase energy consumption in the training phase. 
Note that many small enterprises use DLaaS but this kind of 
energy attack may significantly increase the training cost to 
disturb their model training. On the other hand, such kind of 
malicious energy consumption will lead to an unnecessary 
carbon footprint increase. Moreover, such kind of energy 
attack can be very stealthy if the adversary performs such 
attacks but does not decrease the final trained model’s accu-
racy. Thus, it is necessary to explore and understand the pos-
sibility of raising energy consumption by malicious attacks 
from an adversary’s viewpoint.

In this paper, we review the security of DNN models’ 
training from a novel but adversarial aspect targeting energy 
consumption. We show that there are security issues with 
energy consumption in the training phase. We propose a 
practical methodology to launch the energy-oriented attack 
and we can increase the training time to maliciously increase 
energy consumption. If the adversary can get the training 
dataset and replace part of the benign samples with poisoned 
samples before the training process, it will cost the victim 
more money and time to train a model. The algorithm to gen-
erate poisoned samples is based on the Projected Gradient 
Descent (PGD) algorithm [27]. Meanwhile, these poisoned 
samples are close to the replaced benign samples. It is hard 
for the victims to notice the attack. The experimentation is 
conducted on the CIFAR-10 dataset [28], and we experiment 
with different architectures of the attacked model, including 
ResNet-50, ResNet-18 [29], and VGG [30]. The victim has 
various methods to end the training. Therefore, we select two 
commonly used methods to evaluate our attack methodology 
respectively in two cases. The experiment results indicate 
this kind of attack exists in both the white-box scenario and 
the black-box scenario. Moreover, the accuracy decrease 
meant of the attacked model will not exceed 1%.

This paper has the following contributions: (1) We pro-
pose an attack methodology to generate the poisoned sam-
ples and launch a successful energy attack; (2) We show 
that it is feasible to increase the training time by poison-
ing the training dataset using crafted poisoned samples. 

Meanwhile, the accuracy decrease meant the attacked model 
will not exceed 1%, and the poisoned samples are close to 
the replaced benign samples. This study warns that the train-
ing dataset is susceptible to energy attacks by an adversary.

The remainder of the paper is structured as follows. 
Section 2 lists the background of our research. Section 3 
presents an overview of our attack methodology. We show 
the specific attack results of two cases respectively in Sec-
tion 5 and Section 6. Section 7 discuss future directions. 
Section 8 concludes our work.

2  Research Background

2.1  Deep Learning as a Service

With the increasing demand for using large-scale DNN 
models, cloud computing vendors provide the DLaaS, e.g., 
Amazon Sagemaker, Cloud ML Engine, and Microsoft 
Azure ML Studio. DLaaS can be used to train or deploy a 
model in the server as shown in Fig. 1. It is more convenient 
to use DLaaS than training and deploying models in local 
machines because DLaaS can shorten the training time and 
improve the inference speed.

There are different forms of DLaaS according to flexibil-
ity and convenience. Which form to choose depends on the 
users’ requirements. First, the DLaaS can be provided in a 
server, which has good flexibility but little convenience [31]. 
If the users are experts in DL, they only need a bare server 
equipped with powerful processors and GPGPUs (General 
Purpose computing on Graphics Processing Units) to accom-
plish their work. With this server, experienced users can take 
control of the training phase and deploying phase in detail. 
But they have to write their codes from scratch. Second, the 
DLaaS can be provided in a series of prepared utilities to 
keep the balance between flexibility and convenience. If the 
users are ordinary developers, they may want to ease their 
development processing by using utilities already written by 
professional developers. In this condition, the users do not 
need to write all the code. They can use some interfaces in 
the platform to solve their problems. Third, the DLaaS can 
be provided in the auto-learning form, which is conveni-
ent for the users but has poor flexibility. If the users have 
no experience in DL, they can only upload the dataset and 

Figure 1  The processing of a 
DLaaS service.
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choose the task without further operation. The DLaaS will 
automatically train the model and deploy it on the server.

2.2  Energy Efficiency

Even for a big cloud computing vendor, i.e., Google, it takes 
a high cost to improve the performance of the large-scale 
models in some tasks. For example, Google AI Brain pro-
poses a Transformer model to translate between English and 
German which takes 150,000 dollars and 32,000 TPU hours 
but only to improve the 0.1 scores inaccuracy [14]. We 
cannot ignore the energy consumption during this phase. 
Therefore, it is necessary to investigate how to improve 
energy efficiency.

We can use two approaches to save energy: the software 
approach and the hardware approach. The first approach is 
to improve the training and inference algorithms, e.g., prun-
ing [32], distilling [33], and quantization [34]. Pruning is to 
discard part of neural networks, which has less impact on the 
final output, to decrease the computing. This can be used in 
the inference phase to reduce energy consumption and keep 
accuracy in the meantime. Distilling is to use a small-scale 
model to fit a large-scale model. The small-scale model has 
fewer parameters but has similar accuracy to the large-scale 
model. Quantization is to change the data type of parameters 
from high precision to low precision or mixed precision. We 
can neither choose to lower the parameter precision before 
the training nor save the model with a low precision after 
the training. The second approach is to use Application Spe-
cific Integrated Circuit (ASIC) chips rather than GPGPUs 
to train and deploy the DNN models [35]. We use general-
purpose chips, i.e., GPGPUs, to train and deploy our model 
in most cases, while ASIC chips are more efficient than 
GPGPUs [18]. These ASIC chips are good at accelerating 
DNN models, which can offer higher computing speed can 
cost less energy. Nowadays, there are many ASIC chips to 
accomplish training and inference tasks, including Google’s 
TPU [18], Huawei’s Davinci NPU [36], and Cambricon’s 
DianNao NPU [37].

2.3  Energy Attacks

Present researches on the energy consumption of DNN 
models are mainly from the perspective of energy sav-
ing [38–40]. Because there exist security problems in the 
DNN models, e.g., backdoor attacks, and AEs, we consider 
this energy problem from the adversary’s perspective. As 
an adversary, we aim at increasing the energy consumption 
in the DLaaS without influencing the accuracy of DNN 
models. The attack process in the DLaaS scenario shows 
in Fig. 2. Users train their models by applying training ser-
vices provided by cloud computing vendors. During the 
training phase, the adversary may attack the training dataset 
to increase the training time. Furthermore, it will take the 
user more money to accomplish the training tasks. This kind 
of attack usually is difficult to find. The users don’t have 
enough knowledge about the training phase. The cloud com-
puting vendors [41] cannot inspect the training dataset due 
to security or privacy regulations. Therefore, the adversary 
can attack both the users and the cloud computing vendors 
without being found.

Although there are already several methods to launch 
energy attacks in the training and inference phases, all these 
methods have disadvantages. In the training phase, we can 
attack the training process to make it take more time to train 
a DNN model. The first attack method is to modify the ini-
tialization matrixes in the DNN [42]. This paper designs 
different initialization matrixes for Convolutional Neural 
Networks (CNN) [43] and fully connected networks to stop 
the DNN from training. But, this method is easy to find 
due to the dramatic fall in model accuracy. Meanwhile, 
it lacks feasibility in the real world because it is hard to 
change initialization matrixes. The second attack method 
is to change the order of the samples in the training data-
set [44]. This paper proves that if we change the order of 
samples to some special orders, it will disturb the training 
phase. However, in most situations, there is a shuffle in the 
training dataset during the training phase. In the inference 
phase, we can generate poisoned samples to increase the 
inference time. The attack method is to modify a sample to 

Figure 2  The processing of an 
adversary maliciously attacking 
a DLaaS service.
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have output in uniform distribution for each exit in the multi-
exit model [27]. The original purpose of a multi-exit model 
is to save energy when inference a sample. If a sample’s 
output distribution meets the threshold in some exit of the 
multi-exit model, it can early exit. But, the adversary can 
attack the output distribution to uniform distribution to stop 
the sample from early exiting. However, this method can 
only attack the multi-exit architecture model and cannot be 
used for attacking different models.

Despite these methods can successfully launch the energy 
attack, they all have their disadvantages. We need an attack 
method that can adapt the different architectures of DNN 
models and have the feasibility to launch in the real world. 
Meanwhile, it is necessary to keep the attack hard to find.

3  Design and Experimentation

In this section, we first define the threat model from an 
adversary’s viewpoint. Then we present our intuition and 
the proposed attack methodology. Finally, our experimenta-
tion of the attack is presented.

3.1  Threat Model

Before diving into our specific attack methodology, we first 
define the threat model, including adversarial goals, adver-
sarial capability, and adversary knowledge. Being aware of 
the threat model helps us clearly understand the situation 
from an adversary’s viewpoint. We define the threat model 
in three parts as described below.

Adversarial Goals The adversary attempts to increase the 
victim’s cost in the training time by poisoning the benign 
training dataset. The poison method is to replace part of 
the benign samples in the benign training dataset with the 
poisoned samples. To keep hidden from the victim’s notice, 
poisoned samples generated by the adversary should be as 
close as the replaced benign ones. The similarity between 
replaced benign samples and poisoned samples can be meas-
ured using l2 norm metrics. Moreover, the accuracy of the 
poisoned model can not drop too much than innocent models 
to guarantee the attack’s stealthiness.

Adversarial Capability The adversary can not attack the whole 
training system. During the attack process, the adversary can 
only get the benign training dataset and poison it with crafted 
poisoned samples. All other training steps are safe.

Adversary’s Knowledge How much information the adver-
sary knows depends on the attack scenario. There are two 
types of attack scenarios: the white-box scenario and the 
black-box scenario. In the former type, the adversary knows 

the architecture of the model that the victim plans to train. 
While in the latter type, the adversary cannot get the model 
architecture. We assume that the other information, such as 
training algorithms, hyper-parameters, and model param-
eters, are unknown to the adversary.

3.2  Attack Methodology

Our intuition is to increase the difficulty for a model to 
learn the necessary features for classification but not affect 
the model’s final accuracy. Specifically, our assumption is 
that a sample’s probability distribution in the model infer-
ence phase may connect to the sample’s feature. When the 
model gives a high-confidence value in the sample’s label 
class, it means this sample’s feature is clear enough for the 
model to give an easy prediction. On the contrary, a uniform 
probability distribution in the prediction results represents 
that the sample’s feature is challenging to learn. The real 
datasets are always formed by those high-confidence sam-
ples and low-confidence samples while the former ones can 
help the model training to rapidly locate important features 
to classify.

Therefore, our attack methodology is to generate poi-
soned samples whose probability distributions are close to 
a uniform distribution to increase the difficulty of a model to 
learn. With more such difficult samples mixed in the training 
dataset, more training efforts (e.g. epochs) will be needed for 
a model to achieve a target accuracy score.

The process of building a poisoned dataset can be illus-
trated as follows. We need to build a poisoned dataset that 
can maliciously increase the training efforts but will not 
affect the model accuracy on classifying the clean samples. 
This can not only lead to malicious attack results but also 
guarantee the stealthiness of our attack. Thus, the core idea 
of our attack is to modify part of the training dataset to make 
it malicious. In order to build such a poisoned dataset, our 
approach is to first use a part of this dataset to train a proxy 
model. This proxy model can then be used to tell the con-
fidence score of the rest dataset by inference. Then, the 
attack methodology consists of two parts: generating poi-
soned samples and poisoning the benign training dataset. 
The algorithm of generating poisoned samples based on the 
PGD algorithm [45] is inspired by [27]. We modify it as 
described in Eq. 1.

Here, x is the attacked benign sample. p is the per-
turbation. x + p is the poisoned sample. t is the current 
iteration times. 

∏
 is the projection operation. � is the 

maximum perturbation range. � is the step size. F is the 
model. L is a loss function between the output probabil-
ity distribution and the targeted distribution, and ỹ  is 

(1)pt+1 =
∏

��p��∞<𝜀
(pt + 𝛼sgn(∇pL(F(x + p),�y)))
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the targeted distribution. In each iteration, we attempt to 
push F(x + p) towards distribution ỹ  . The 

∏
 insures that 

the l∞ norm of p can not exceed � . Note the initial PGD 
is used to generate adversarial examples which the target 
label is usually chosen by the attackers. Using initial 
version PGD can only guarantee a high confidence to 
predict the sample as the target label but will not affect 
the confidence distribution of the other labels. However, 
our goal is different since we do not seek to modify the 
predicted label to cause any misclassification. On the 
contrary, we want to generate a poisoned sample that 
can be correctly classified by the model with more simi-
larity to other labels. According to the goal above, we 
modify the target of the PGD function to generate our 
poisoned samples. We list this poison process in the fol-
lowing algorithm. 

An attack result is shown in Fig. 3. The image of the 
truck in the first row is a replaced benign sample. Its 
probability distribution is concentrated. The truck image 
in the second row is a crafted poisoned sample. It has a 
uniform distribution. Our algorithm of generating poi-
soned samples can successfully attack the probability 
distribution to targeted distribution and make poisoned 
samples close to the replaced benign samples. The l2 dis-
tance between x and x + p in this example is 2.0.

4  Experiment Configuration

Our server is equipped with an Intel i7-9700K CPU, two 
NVIDIA RTX 2080Ti GPUs, and a memory of 32GB, 
with Ubuntu 18.04, CUDA 10.0, and cuDNN 7.6.0. The 
framework of our code is PyTorch 1.10.

4.1  Attack Details

In our experiments, we mix the benign training dataset 
with the poisoned samples. We assume that the victims will 
use this training dataset from a third-party source and then 
train their own models. Figure 4 shows the overview of our 
method, which consists of three phases. We detail the three 
phases as follows.

In phase 1: the attack phase, the adversary gets the benign 
training dataset, where is used to train a surrogate model 
and generate poisoned samples targeting more energy con-
sumption. In the white-box scenario, the architecture of the 
victim’s model is accessible to the adversary. The adver-
sary can train a model, which has the same architecture as 
the victim’s model. Then the adversary attacks it with our 
attack methodology above. In the black-box scenario, it is 
impossible to know what the victim’s model architecture is 
for the adversary.

The only solution is to train a different model and count 
on its transferable ability. According to whether the attacked 
model has seen the attacked benign samples in the training 
dataset, there are two methods to attack. The first method 
only takes part of benign samples to train the attacked 
model, and we use the rest of them to generate poisoned 
samples. In the second method, the model has seen the 
whole benign training dataset during the training, and we 
attack this model with the whole benign training dataset 
to generate poisoned samples. We only choose correctly 
classified samples to attack in either method. The detailed 
algorithm for generating poisoned samples is described in 
Eq. 1. We experiment with these two methods to explore 
the influence that the attacked benign samples are in the 
training dataset of the attacked model. Each method experi-
ments in the white-box scenario and the black-box scenario. 

Algorithm 1  Crafting poisoned samples
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Since not all the attacks are successful, we select part of the 
attack results, which have correct classification results and 
the close probability distributions in the inference phase to 
the targeted distribution, as our poisoned samples.

In phase 2: the poison phase, poisoned samples replace 
part of benign samples in the benign training dataset in a 
replacement ratio. The replacement ratio means the number 
of replaced samples in the poisoned training dataset to the 
number in the poisoned training dataset. The exact value of 
the replacement ratio relies on the adversary, and we experi-
ment with different replacement ratios to investigate their 
difference. During the replacement, we replace a benign 
sample with the poisoned sample generated by itself. The 
adversary successfully attacks the benign training dataset 
into a poisoned training dataset.

In phase 3: the training phase, the victim uses the poi-
soned dataset, consisting of poisoned samples and benign 
samples, to train a model. Considering poisoned samples 
are close to the replaced benign samples, the victim can not 
tell the difference between them. Because these poisoned 
samples are hard to learn, it will take the victim more time 
and money to train a model. Meanwhile, the accuracy of the 

model will not decrease significantly. It is hard for the victim 
to notice the existence of the adversary. Generally, there are 
many means for the victim to decide when to end training 
the model. The adversary can not disturb the victim’s deci-
sion. Thus, we choose two commonly used means: an early 
stopping algorithm and stopping when some metrics meet 
a threshold, to examine the attack results. In the early stop-
ping algorithm, if some metrics do not improve or have little 
change over a given number of epochs, the training will be 
stopped. The minimum change to qualify as an improvement 
is � , b is the baseline value for the monitored quantity, and 
the given number of epochs is patience. The second stopping 
algorithm is to stop the training when some metrics meet a 
threshold, and t is the threshold to end the model training. 
The specific experiment results are presented in the follow-
ing two cases.

4.2  Experiment Setup

Dataset We adopt two popular vision datasets in our exper-
iments, CIFAR-10 and SVHN. For CIFAR-10, it has 60,000 
images of 32 × 32 size. These images have ten classes in 

Figure 3  An example of the 
attack result.
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total. We divide it into the training dataset and test dataset 
with a 5:1 ratio. The other dataset called SVHN, which is 
collected for the task of identifying digits, is composed of 
73,257 samples for training and 26,032 samples for valida-
tion. All samples of SVHN are 32 × 32 RGB images of 
printed digits (from 0 to 9) cropped from real-world pic-
tures. The adversary takes advantage of benign samples to 
craft the poisoned samples and then replaces them with 
their corresponding malicious versions under different 
poison rates. The victim is assumed to accept the released 
poisoned dataset and train their models with it. The test 
dataset is used to measure the model’s accuracy. There are 
two methods to generate poisoned samples as described in 
Section 3. In the first method, we use 80% images of the 
training split (e.g., 40,000 samples in CIFAR-10) to build 
up a surrogate model and generate poisoned samples by 
attacking the surrogate model with the rest 20% images. 
The second method uses all images of the training set to 
train a model, and we attack this model with the same set 
of images to get the poisoned samples.

Hyper‑Parameter Configuration Our parameters of the PGD 
attack algorithm are set as follows: � is 0.2; � is 0.001, and 
the maximum iteration time is 200. Because the poisoned 
samples will fail to be correctly classified if the ỹ are too 
close to a uniform distribution. In the first method, ỹ is a 
probability distribution where the correct class corresponds 
to 0.15, and the others are 1−0.15

9
 . In the second method, we 

set the probability of the correct class as 0.2 and the other 
classes’ probability 1−0.2

9
 . We select ResNet-50 as the sur-

rogate model and the target model of the white-box sce-
nario. For the black-box scenario, the poisoned samples are 
generated by attacking ResNet-50. The attacking results are 
evaluated on two other kinds of models. We employ SGD as 
the training optimizer.

4.3  Visual Effects

We list the visual results of the two datasets as shown in 
Fig. 5. Note that our poisoned samples are different com-
pared with the adversarial examples that aim to mislead the 
model’s classification. These poisoned samples can still be 
correctly classified by either human eyes or by the models 
which makes them very stealthy.

5  Case Study 1: Training with Early Stopping

In this section, we give the first case study by considering 
the victim applying the early stopping algorithm to end the 
training phase at an early stage. We present attack results on 
training efficiency by evaluating three models and different 
data poison rates.

Figure 4  An overview of the experimentation. The experiment con-
sists of three phases. In the first phase, the adversary gets the benign 
training dataset and generates poisoned samples on this dataset. Then 
the adversary replaces part of the benign samples in the benign train-
ing dataset with poison. The replacement ratio is variable. Finally, the 
victim uses this poisoned training dataset and chooses an algorithm 
to end the training. If the attack is successful, it will take the victim 
more time and money to train a model.

Figure 5  The examples of clean images and the corresponding poi-
soned images.
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5.1  Evaluation on Training Efficiency

In the first attack method, we successfully generated 9,000 
poisoned samples out of 10,000 benign images in CIFAR-10 
and 13,932 poisoned samples out of 14,652 benign images in 
SVHN. We use different poison rates: 2%, 10%, and 18%, to 
replace benign samples in the benign training dataset with poi-
soned samples, where poison rate means the percentage of poi-
soned samples in the poisoned training dataset. In the white-box 
scenario, ResNet-50 is trained with the poisoned dataset. In the 
black-box scenario, we evaluate the effectiveness of the crafted 
samples on two other kinds of model architecture, ResNet-18 or 
VGG-13 for CIFAR-10 and ResNet-34 and VGG-16 for SVHN. 
Table 1 displays the attack results in the white-box scenario 
and the black-box scenario. We compare the training epochs 
under different replacement ratios with the training epochs in 
the innocent dataset. The final model accuracy is listed in the 
accuracy column. In most cases, our attack methodology can 
make it take more epochs to train a model.

In the second attack method, we managed to obtain 49,500 
poisoned samples out of 50,000 benign samples in CIFAR-
10 and 66,735 poisoned samples out of 73,257 benign sam-
ples in SVHN. In order to compare with the first methodol-
ogy, we also choose three replacement ratios: 2%, 10%, and 
18%, respectively. The poison ratio is limited by the samples 
selected to train the proxy model. Note that we first train a 

local proxy model with partial training dataset (clean dataset) 
such that we can determine how to generate poisoned sam-
ples in the rest of the clean training dataset. Moreover, train-
ing this proxy model must use most of the training dataset to 
guarantee the model is capable to help generate the poisoned 
samples. In our setting, we use 80% clean training datasets to 
train this proxy model such that the maximum poison ratio is 
the 20% (i.e. the rest training dataset). Thus, we set 2%, 10%, 
and 18% as three poison ratio settings. We give the attack 

Table 1  The attack results of the 1st method using early stopping. 
The hyper-parameters for CIFAR-10 are set as follows: ResNet-50, 
� = 0.001 , b = 90 , patience = 60; ResNet-18, � = 0.01 , b = 90 , 
patience = 40; VGG-13, � = 0.001 , b = 90 , patience = 60. For 
SVHN, we set � = 0.001 , b = 90 , patience = 40 for all models.

Dataset Architecture Poison rate Epoch 
change 
(%)

Accuracy (%)

CIFAR-10 ResNet-50 2% 7.04 94.92
10% 14.53 94.72
18% 28.19 94.45

ResNet-18 2% 5.19 94.48
10% −5.19 94.37
18% 9.91 94.05

VGG-13 2% 22.84 93.53
10% 33.18 93.32
18% 39.65 93.17

SVHN ResNet-50 2% 16.66 95.11
10% 9.52 95.12
18% 16.66 95.14

ResNet-34 2% 24.49 94.20
10% 5.44 94.33
18% 26.53 94.21

VGG-16 2% 40.61 94.37
10% 50.25 94.42
18% 28.43 94.30

Table 2  The attack results of the 2nd method using early stopping. 
The hyper-parameters for CIFAR-10 are set as follows: ResNet-50, 
� = 0.001 , b = 90 , patience = 60; ResNet-18, � = 0.01 , b = 90 , 
patience = 60; VGG-13, � = 0.001 , b = 90 , patience = 60. For 
SVHN, we set � = 0.001 , b = 90 , patience = 40 for all models.

Dataset Architecture Poison rate Epoch 
change 
(%)

Accuracy (%)

CIFAR-10 ResNet-50 2% 5.29 95.04
10% 30.40 94.40
18% 32.15 94.30

ResNet-18 2% 31.03 94.31
10% 16.81 94.28
18% 18.10 93.99

VGG-13 2% 31.47 93.42
10% 3.88 93.36
18% 35.34 93.37

SVHN ResNet-50 2% 26.19 94.99
10% 32.14 95.10
18% 34.52 95.01

ResNet-34 2% 24.49 94.34
10% 33.33 94.18
18% 15.65 93.89

VGG-16 2% 32.99 94.21
10% 39.09 94.01
18% 45.69 94.08

Table 3  The attack results on CIFAR-10 of the 2nd method using 
early stopping: ResNet-50, � = 0.001 , b = 90 , patience = 60; 
ResNet-18, � = 0.001 , b = 90 , patience = 40; VGG-13, � = 0.001 , 
b = 90 , patience = 60. The targeted probability of the label is 0.4.

Architecture Poison rate Epoch change 
(%)

Accuracy (%)

ResNet-50 2% 22.47 95.07
10% 5.73 94.55
18% 22.47 94.36

ResNet-18 2% 14.98 94.29
10% −7.69 94.47
18% 11.76 94.09

VGG-13 2% 3.88 93.42
10% 41.38 93.52
18% 40.09 93.35
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results in the white-box scenario and the black-box scenario 
in Tables 2, 3 and 4. The second method takes more epochs 
than the first method.

5.2  Ablation Study

There is a decrease in the accuracy of the attacked model. 
Taking the results on CIFAR-10 as an example, when attack-
ing with the second method in the white-box scenario, the 
model accuracy drops off 0.7% than the unattacked model 
with the replacement ratio of 18%. We attempt to study 
whether we could increase the training time but not decrease 
the model accuracy by using different ỹ . In this study, the 
targeted probability of the correct class of each sample is set 
to 0.4 or 0.6. We apply the second attack method to attack 
the model. Tables 5 and 6 show the specific results. These 
models attacked by the new method have higher accuracy, 
while the cost epochs become less.

In our experimentation, the poison rate has a positive cor-
relation to the attack performance. In both the white-box sce-
nario and the black-box scenario, our attack methods are valid. 
However, the attack results are influenced by the parameters of 
the early-stopping algorithm. It is hard to find a group of fixed 

parameters valid for all conditions. Meanwhile, there is a trade-
off between the cost epochs and the final model accuracy in most 
cases. Which side to take depends on the situation that the adver-
sary wants to attack. If the attack needs to be invisible, it is better 
to select a small poison rate value and a highly targeted probabil-
ity of the label, which leads to a higher accuracy but fewer cost 
epochs. For the contrary situation, a big poison rate and a small 
targeted probability are preferred. We notice some attack results 
are not stable, and it may have a connection to the robustness of 
the model. This phenomenon implies a small group of poisoned 
samples can help the model learn a better result.

6  Case Study 2: Targeted Accuracy Training

In this section, we consider another commonly used 
approach to end the training. It will stop training the model 
after some metrics reach pre-defined thresholds. Note that 
all empirical settings are the same as the ones in Section 4.2.

6.1  Evaluation on Training Efficiency

The poisoned samples generated by the two attack methods 
are the same as the former ones in case 1. Because the vic-
tim’s stopping threshold is unknown, we set different values 
of t to evaluate the performance of our attack methodology. 
Tables 5 and 6 show the attack results on CIFAR-10 of the 
first method and the second method respectively. The con-
sidered parameter t varies from 86 to 93. For SVHN, we 
noticed that the model can easily obtain an acceptable accu-
racy (e.g., 90%) but has trouble reaching a higher accuracy 
(e.g., 94%+), for which we mainly focus on the higher values 
of t for SVHN in Tables 7 and 8. The replacement ratios in 
our attack methods are 2%, 10%, and 18%. The values in the 
tables are the change percentages of the cost epochs com-
pared with the innocent model training phase. To determine 
the influence of the different poison rates in a visual manner, 
we illustrate the cost epochs of training ResNet-18 with the 
CIFAR-10 dataset under the first attack method in Fig. 6. 

Table 4  The attack results on CIFAR-10 of the 2nd method using early 
stopping: ResNet-50, � = 0.01 , b = 90 , patience = 60; ResNet-18, 
� = 0.01 , b = 90 , patience = 40; VGG-13, � = 0.005 , b = 90 , patience 
= 50. The targeted probability of the label is 0.6.

Architecture Poison rate Epoch change (%) Accuracy (%)

ResNet-50 2% 34.36 94.72
10% 37.00 94.87
18% 11.45 94.20

ResNet-18 2% 4.17 94.47
10% −12.74 94.18
18% 10.38 93.87

VGG-13 2% 4.95 93.56
10% 38.29 93.40
18% −10.36 93.15

Table 5  The results on CIFAR-10 of epoch cost with an accuracy threshold ( ACC
t
 ) for different poison rates: the 1st method in case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 86 ACC

t
= 87 ACC

t
= 88 ACC

t
= 89 ACC

t
= 90 ACC

t
= 91 ACC

t
= 92 ACC

t
= 93

ResNet-50 (ACC=94.89%) 2% 8.33% −18.75% 12.50% 37.50% 19.23% 18.42% 21.43% −2.97%
10% 0.00% 0.00% 18.75% 43.75% 23.08% 13.16% 53.57% 6.93%
18% 0.00% 12.50% 18.75% 62.50% 46.15% 26.32% 16.07% 17.82%

ResNet-18 (ACC=94.74%) 2% 9.09% −18.75% −5.56% 21.05% 8.33% 7.50% 20.75% 2.04%
10% 9.09% −25.00% 5.56% 15.79% 16.67% −7.50% 30.19% 4.08%
18% 0.00% −6.25% −5.56% 36.84% 37.50% 0.00% 28.30% 17.35%

VGG-13 (ACC=93.87%) 2% −8.33% 7.69% −23.81% 0.00% 46.67% 41.07% 21.28% 1.55%
10% −25.00% 15.38% 4.76% 7.69% 26.67% 21.43% 24.47% 6.98%
18% 16.67% 7.69% −9.52% 11.54% 16.67% 23.21% 10.64% 31.78%
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The more data are poisoned, the longer the training time. In 
most cases, our attack is successful.

6.2  Ablation Study

We explore the performance of our attack method by set-
ting the targeted probability of the correct class to 0.4 or 
0.6 in the second method. The attack results are presented 
in Tables 9 and 10 respectively. Meanwhile, the targeted 
probability influences the highest model accuracy. While 
in most cases, the accuracy will reduce by less than 1%. 
A higher probability helps the attack more covert. For 
example, the highest model accuracy will not decrease 
when the targeted probability is 0.6, the attacked model is 
ResNet-50, and the poison rate is 10% in the second attack 
method. In this situation, the cost epochs increase 10% 
averagely in different t. If we further set the poison rate to 
18%, we can improve the epochs increment percentage to 
26% but limit the accuracy decrement to less than 0.3%. 
While the targeted probability is 0.2, the poison rate is 
18%, and the other conditions maintain the same, the train-
ing costs more 32% epochs than the innocent situation.

The attack result connects to poison rates. More data 
are poisoned, and more epochs cost. In case 2, the attack 
results are more stable. It does not rely on t. No matter what 
t is, it usually takes more epochs to train a model. Thus, if 
the victim set thresholds to end the training, they are more 

vulnerable. However, when the poison rate is 2%, the attack 
results are not always successful. We consider it as the 
robustness of the model training.

7  Discussion and Future Work

There is very little related work on this topic. For instance, 
the method in [44] can increase the training time by mali-
ciously reordering the samples in the training set. Such an 
attack, although effective, is not practical since a shuffle 
operation is set as default in most real-world cases.

In this paper, we have shown that by poisoning the data-
set without any requirements for the order of the training set 
which is more practical to deploy. However, our work is still 
empirical work that shows the possibility of such a kind of 
attack. Our results of increasing the training time are highly 
relying on empirical factors such as the poison rate or the 
target accuracy which needs further improvement. Moreover, 
there are more criteria to stop the training process in real-
world DNN training scenarios which may disable our attack.

Moreover, our attack is indeed orthogonal to these energy 
optimization methods. With different training devices or 
server configurations, our attack can significantly increase 
the training epoch numbers for the target accuracy which 
will lead to a malicious energy increase. In this paper, we try 
to focus on the model layer attack. Focusing on the model 

Table 6  The results on CIFAR-10 of epoch cost with an accuracy threshold ( ACC
t
 ) for different poison rates: the 2nd method in case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 86 ACC

t
= 87 ACC

t
= 88 ACC

t
= 89 ACC

t
= 90 ACC

t
= 91 ACC

t
= 92 ACC

t
= 93

ResNet-50 (ACC=94.89%) 2% 0.00% −25.00% 25.00% 43.75% 11.54% 2.63% 8.93% 2.97%
10% 0.00% −12.50% 6.25% 62.50% 30.77% 28.95% 41.07% 4.95%
18% 25.00% −6.25% 37.50% 87.50% 69.23% 42.11% 48.21% 21.78%

ResNet-18 (ACC=94.74%) 2% 18.18% −6.25% −16.67% −5.26% 4.17% −10.00% 28.30% 14.29%
10% −27.27% 0.00% −11.11% 10.53% 4.17% 10.00% 11.32% 4.08%
18% 9.09% 0.00% −11.11% 26.32% 29.17% 27.50% 64.15% 17.35%

VGG-13 (ACC=93.87%) 2% 0.00% 7.69% −4.76% −7.69% 30.00% 16.07% 17.02% 8.53%
10% −8.33% 23.08% −19.05% 15.38% 16.67% 50.00% 13.83% 5.43%
18% 25.00% 15.38% 23.81% 23.08% 50.00% 55.36% 24.47% 20.16%

Table 7  The results on SVHN 
of epoch cost corresponding to 
different accuracy thresholds 
( ACC

t
 ): the 1st method in case 

2.

Architecture Poison rate ACC
t
= 91 ACC

t
= 92 ACC

t
= 93 ACC

t
= 94

ResNet-50 (ACC=95.16%) 2% 0.00% 0.00% 56.25% −3.70%
10% 7.69% 0.00% 25.00% 14.81%
18% 7.69% 28.57% 37.50% −3.70%

ResNet-18 ACC=94.36%) 2% −14.29% −5.88% −10.53% 213.04%
10% 0.00% 0.00% −10.53% 221.74%
18% −7.14% −5.88% −5.26% 856.52%

VGG-13 ACC=94.38%) 2% −7.69% −22.22% 5.00% 51.79%
10% −7.69% 5.55% 5.00% 50.00%
18% 7.69% −11.11% 0.00% 80.36%
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Table 8  The results on SVHN 
of epoch cost corresponding to 
different accuracy thresholds 
( ACC

t
 ): the 2nd method in 

case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 91 ACC

t
= 92 ACC

t
= 93 ACC

t
= 94

ResNet-50 (ACC=95.16%) 2% 15.38% 21.43% 62.50% 7.41%
10% 0.00% 7.14% 50.00% 18.52%
18% 0.00% −7.14% 37.50% −11.11%

ResNet-18 (ACC=94.36%) 2% 7.14% −11.76% −10.53% 126.09%
10% 14.28% −5.88% 0.00% 39.13%
18% 21.43% 0.00% −5.26% 973.91%

VGG-13 (ACC=94.38%) 2% −7.69% 0.00% 5.00% 117.86%
10% 15.38% 0.00% 5.00% 407.14%
18% −7.69% 5.55% 20.00% 301.79%

Table 9  The results on the CIFAR-10 dataset of epoch cost with an accuracy threshold ( ACC
t
 ) for different poison rates: the 2nd method with 

0.4 as the targeted probability of the label in case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 86 ACC

t
= 87 ACC

t
= 88 ACC

t
= 89 ACC

t
= 90 ACC

t
= 91 ACC

t
= 92 ACC

t
= 93

ResNet-50 (ACC=94.89%) 2% −8.33% −6.25% 12.50% 50.00% 19.23% 5.26% 1.79% −9.90%
10% 0.00% 18.75% 25.00% 25.00% 46.15% 15.79% 42.86% 13.86%
18% 8.33% 18.75% 18.75% 75.00% 30.77% 23.68% 30.36% 3.96%

ResNet-18 (ACC=94.74%) 2% 9.09% −18.75% −22.22% 21.05% 20.83% 20.00% 37.74% 10.20%
10% 0.00% −6.25% −16.67% 10.53% 33.33% −12.5% 32.08% 11.22%
18% 9.09% −6.25% −0.56% 21.05% 20.83% 32.50% 47.17% 19.39%

VGG-13 (ACC=93.87%) 2% −8.33% −15.38% −4.76% 15.38% 63.33% 51.79% 8.51% 2.33%
10% 8.33% 15.38% −14.29% 15.38% 30.00% 48.21% 9.57% 5.43%
18% 8.33% 61.54% 23.81% 0.00% 56.67% 33.93% 19.15% 12.40%

Table 10  The results on the CIFAR-10 dataset of epoch cost with an accuracy threshold ( ACC
t
 ) for different poison rates: the 2nd method with 

0.6 as the targeted probability of the label in case 2.

The best results are in bold

Architecture Poison rate ACC
t
= 86 ACC

t
= 87 ACC

t
= 88 ACC

t
= 89 ACC

t
= 90 ACC

t
= 91 ACC

t
= 92 ACC

t
= 93

ResNet-50 (ACC=94.89%) 2% 0.00% −6.25% 18.75% 43.75% 26.92% 39.47% 32.14% 1.98%
10% −8.33% −18.75% 18.75% 50.00% 26.92% 18.42% 44.64% 0.99%
18% 8.33% 6.25% 18.75% 50.00% 38.46% 47.37% 57.14% 11.88%

ResNet-18 (ACC=94.74%) 2% 9.09% −25.00% −22.22% 21.05% 16.67% −2.50% 24.53% 6.12%
10% 9.09% −12.50% −5.56% 5.26% 16.67% 15.00% 47.17% 22.45%
18% 0.00% −31.25% −5.56% 21.05% 41.67% 67.50% 67.92% 22.45%

VGG-13 (ACC=93.87%) 2% 0.00% 15.38% −4.76% −15.38% 33.33% 25.00% 2.13% 2.33%
10% −8.33% 38.46% −4.76% −11.54% 43.33% 28.57% 11.70% 10.85%
18% 16.67% 7.69% 0.00% 7.69% 60.00% 32.14% 29.79% 14.73%
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layer makes the attack results agnostic to the hardware or 
server configurations since increasing certain training epoch 
numbers can always increase the training efforts. We leave 
more practical attacks as our first future work.

For the second future work, we will focus on how to 
improve the attack results. We plan to generate poisoned 
samples that cost more epochs and do not influence the 
model’s accuracy in the meantime. It will be hard for the 
victim to notice the attack. Meanwhile, we try to make our 
attack method more stable with the early stopping algorithm. 
Besides, it is valuable to experiment with other tasks to 
explore whether the attack works in different fields. Moreo-
ver, further experiments are needed to figure out the reasons 
for the energy attack. Such research will help us understand 
the energy attack better. Finally, it is also necessary to inves-
tigate the solutions to defend against the attack.

8  Conclusion

In this paper, we propose a novel energy attack targeting 
the increment of training time of a DNN model. The attack 
methodology consists of generating poisoned samples and 
poisoning the benign training dataset. In our experimenta-
tion, we evaluate our attack results with two algorithms to 
end the training. The attack results prove that it is feasible to 
increase the training time using our methodology. The future 
investigation will focus on improving the attack performance 
and the reason for the energy attack.
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