
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:1181–1201
https://doi.org/10.1007/s11265-023-01885-5

The Good, the Bad and the Ugly: Practices and Perspectives
on Hardware Acceleration for Embedded Image Processing

Joshua Fryer1 · Paulo Garcia2 

Received: 28 November 2022 / Revised: 14 July 2023 / Accepted: 18 July 2023 / Published online: 29 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Modern embedded image processing deployment systems are heterogeneous combinations of general-purpose and specialized
processors, custom ASIC accelerators and bespoke hardware accelerators. This paper offers a primer on hardware acceleration
of image processing, focusing on embedded, real-time applications. We then survey the landscape of High Level Synthesis
technologies that are amenable to the domain, as well as new-generation Hardware Description Languages, and present our
ongoing work on IMP-lang, a language for early stage design of heterogeneous image processing systems. We show that
hardware acceleration is not just a process of converting a piece of computation into an equivalent hardware system: that naive
approach offers, in most cases, little benefit. Instead, acceleration must take into account how data is streamed throughout
the system, and optimize that streaming accordingly. We show that the choice of tooling plays an important role in the results
of acceleration. Different tools, in function of the underlying language paradigm, produce wildly different results across
performance, size, and power consumption metrics. Finally, we show that bringing heterogeneous considerations to the
language level offers significant advantages to early design estimation, allowing designers to partition their algorithms more
efficiently, iterating towards a convergent design that can then be implemented across heterogeneous elements accordingly.

Keywords  Image processing · Embedded · FPGAs · Hardware acceleration · Language · Paradigm · Co-design

1  Introduction

Image processing was once delegated to offline activities [1]:
image restoration, improvement, augmentation [2]; diagnos-
tics or information retrieval from visuals [3]; manipulation
for creative purposes [4]; etc. In the last two decades, as com-
puting power grew (whilst form factors and costs decreased
[5]), image processing was brought to the forefront of real-
time processing [6]. More generally, computer vision (where
"vision" may include input from cameras, radars, LiDars, etc.
[7]) now powers myriad application; from safety and security
(tracking, behavior analysis [8]) to autonomous robots (scene
perception [9]), and many others in between [10].

Of course, this increase in computing power creates a
positive feedback loop: designers create more and more
complex image processing algorithms (handcrafted [11],
or, more recently, implemented through statistical training
methods through Machine Learning [12]) which in turn fuel
the need for faster, cheaper, more energy-efficient, deploy-
ment platforms. The time when this could be achieved by
general-purpose processors alone is long gone. Heterogene-
ity is the name of the game.

Modern image processing deployment systems are het-
erogeneous combinations of general-purpose and specialized
processors (e.g., DSPs [13]), custom ASIC accelerators (e.g.,
GPUs [14]) and bespoke hardware accelerators (deployed,
e.g., on FPGAs [15]). This complexity is required to support
the desired levels of performance, power consumption [16],
determinism [17], and form-factor: i.e., through a design
process that must partition an algorithmic description appro-
priately [18], choose the best architectural artifact for execut-
ing each partition, implementing the desired computation
using hardware/software methodologies [19] and toolchains
[20], and integrating and interoperating all the moving parts
into a coherent system.

 *	 Paulo Garcia
	 Paulo.G@chula.ac.th

	 Joshua Fryer
	 josh.s.fryer@gmail.com

1	 Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada

2	 International School of Engineering, Chulalongkorn
University, Bangkok, Thailand

http://orcid.org/0000-0002-1041-5205
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01885-5&domain=pdf

1182	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

Unsurprisingly, this is not easy. As the level of complex-
ity grows, so does the need for automated tools and methods
that facilitate design. In this article, we concern ourselves
with a small aspect of this ecosystem: hardware accelera-
tion for embedded image processing [21], i.e., the process
of creating bespoke accelerators on FPGA logic. We begin
by offering a primer on hardware acceleration, showing how
FPGA acceleration should (and should not) be used, in the
context of embedded (real-time) image processing. We then
offer a review of the extant tools (specifically: High Level
Synthesis (HLS) from different source languages [22]) for
this purpose, with quantitative examples that demonstrate
how different tools provide wildly different results, that the
keen designer must be aware of. We conclude by describing
our ongoing work on an open-source design language pur-
posely built for the early design space exploration of hetero-
geneous embedded image processing systems.

Specifically, this article offers the following contributions:

•	 We provide a primer on hardware acceleration of image
processing, useful for practitioners entering the field
(Sect. 2).

•	 We review the state of High Level Synthesis technology,
focusing on the different paradigms utilized across lan-
guages, and how these affect generated designs (Sect. 3).

•	 We introduce IMP-lang, a language for heterogeneous
design space exploration, amenable to the deployment of
modern embedded image processing systems (Sect. 4),
and show how it can be used for early design evaluation
(Sect. 5).

Section 6 concludes this article, offering perspectives on
ongoing efforts in this field.

2 � Background: FPGAs and Acceleration
Strategies

Hardware acceleration is the process of decreasing the
total execution time (performance-oriented acceleration)
or decreasing the total power consumption (power-oriented
acceleration) of a given application (i.e., a software task) by
moving parts of that task to dedicated hardware.

In this manuscript, we’ll strive to describe how hardware
acceleration works, in function of architecture and specific
task behavior, as well as identify common misconceptions
about hardware acceleration to prevent designers from fall-
ing into these pitfalls. The examples in this manuscript
assume the original task to be accelerated is running on
a single-core system for simplicity, but the lessons apply
equally to multi-core systems.

We are assuming that acceleration is performed on Field
Programmable Gate Arrays (FPGA): for those inexperienced

with them, there are three properties that must be understood
to fully comprehend the rest of this manuscript: I/O inter-
faces, clock frequencies, and internal memory.

2.1 � I/O Interfaces

A processor typically has a single I/O interface: memory
ports. Memory ports are a collection of I/O pins that imple-
ment an address-based read/write interface. Typically,
this interface is connected to a bus, where memory and
other peripheral devices are attached to. Depending on the
address, the bus system will propagate requests to the corre-
sponding device; either main memory, or a peripheral device
such as a network card. All devices that can initiate memory
accesses compete for bus use, and adding a new device that
can transfer data to the processor must be done by append-
ing it to the bus.

FPGAs, on the other hand, possess far more available I/O
pins, and, because of their configurable nature, there is no
hard-coded behavior for each pin. Thus, it is possible to con-
nect several devices directly to an FPGA (without an inter-
mediate bus), and internal logic (operating in truly parallel
fashion) can transfer data to/from several of those devices
at the same time. It is, of course, still possible to connect an
FPGA to a bus.

2.2 � Clock Frequencies

The highest achievable clock frequency in any digital cir-
cuit is a function of the propagation delays (read: number
of logic gates in series) in that circuit. Because FPGAs are
comprised of programmable logic, there is always an over-
head in the number of gates in series, for a given circuit,
compared to the same circuit implemented in Application
Specific Integrated Circuit (ASIC). This means that, for an
FPGA and an ASIC fabricated using the same technology
implementing the same circuit, the FPGA always yields a
lower clock frequency. Any digital circuit can be imple-
mented on FPGA, including a complete processor: but, it
will always have worse performance than the same processor
implemented on ASIC.

2.3 � Internal Memory

FPGAs consist of configurable logic, capable of implement-
ing any computation, and distributed memory blocks. These
distributed memory blocks are typically small (a few kilo-
bytes), and their interconnection is controlled by configur-
able logic. Thus, it is possible to implement large, mono-
lithic memory structures, similar to external main memories.
But, more importantly, it is possible to implement custom
memory architectures, with computations in-between stor-
age. This feature is one of the most powerful capabilities

1183Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

of FPGAs: we’ll see how this can be used in practice in the
examples below.

2.4 � Performance Bounds

In this section we’ll consider completely converting a soft-
ware task into an equivalent hardware one; i.e., such that an
FPGA completely replaces a processor in a system. In the next
section, we’ll consider accelerating parts of a software task.

Consider the system depicted in Fig. 1: a single-core pro-
cessor, connected to a memory via a bus, executing a task T.
This system will be the baseline case for all examples in this
manuscript. It is an example of a Von Neumann architecture:
memory holds both the code for task T (the instructions that
implement its computation) and its data. Virtually all mod-
ern processors can be depicted as per Fig. 1; however, most
processors include (at least one, potentially several) cache
memorie(s) to accelerate execution. We’ll ignore caches for
the time being.

The notion of performance of task T is context-dependent:
in some situations, latency (average or maximum time
between an input arrival and output processing) is an adequate
measure of performance; in others, throughput (number of
inputs processed per time unit) is a better one. For simplicity,
we’ll assume task T must read D data (in bytes), process them,
and write D data back to memory, and that the total latency
(total execution time) is a valid measure of its performance.

Reading/writing data (including instructions) from/to
memory requires a certain amount of time, determined by
the specific implementation of the memory system and the
specific access patterns. Processing that data (executing
instructions), similarly takes a certain amount of time, deter-
mined by the specific implementation of the processor, and
by the computation that must be performed. Determining the
total execution time is not a trivial thing, as there are several
sources of parallelism that make these inner latencies over-
lap (e.g., pipelined processors might be reading instructions

from memory at the same time as they are processing previ-
ously read instructions; cache memories further complicate
this timing analysis).

Task T is said to be compute-bound if making the memory
system arbitrarily fast would have little to no influence on
the execution time; the total latency is primarily a function
of computation time (data processing). T is memory-bound
if making the processor arbitrarily fast would have little to
no influence on the execution time: the total latency is pri-
marily a function of memory access times. Most real-world
workloads are likely neither memory- nor compute-bound,
meaning that making either the processor or the memory
system faster would accelerate their execution; however,
most workloads are probably far closer to being memory-
than compute-bound (thus the heavy use of cache memories
in real processors).

The performance bounds of a task have implications on
its hardware acceleration: let’s examine the two cases.

2.4.1 � Accelerating Compute‑Bound Tasks

If task T is compute-bound, we can replace its software
implementation by an equivalent hardware pipeline: the
computed algorithm, rather than being implemented as a set
of instructions, becomes a circuit with equivalent behavior,
as depicted in Fig. 1. The relevant question, of course, is "Is
this implementation faster than the original one?". Unsur-
prisingly, the answer is: it depends.

If the implementation technology for the old processor
and the new circuit is the same (e.g., both implemented in
FPGA logic) the answer is probably yes. The circuit does
not need to fetch and decode instructions: what would have
taken several clock cycles in the software implementa-
tion becomes a single clock cycle in the hardware version.
Despite processing the same amount of data, in exactly
the same way, the logic that computes those data is much
faster (requires fewer clock cycles), and the clock frequen-
cies between the software and hardware versions are likely
approximately the same.

If the implementation technology is different, things are
less clear. For example, let’s say we’re converting a soft-
ware implementation running on a processor clocked at
2GHz, and our resulting FPGA implementation is clocked at
500MHz (FPGA implementations always boast lower clock
frequencies than the same circuit implemented on custom
silicon). In this example, clock frequency goes down by a
factor of 4. The hardware implementation will be faster if,
and only if, the number of required clock cycles to compute
the algorithm goes down by a factor greater than 4. This is
algorithm-dependent: in fact, it’s also instruction set depend-
ent and micro-architecture-dependent. In summary, it is not
trivial to determine whether a task will be accelerated when
we move across implementation technologies.

Figure 1   Processor-memory and FPGA-memory interconnect through
shared bus. This architecture applies the prototypical processor-
memory connection to FPGA design, failing to take advantage of
bespoke memory systems.

1184	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

Data parallelism  Of course, there is no reason to implement
an "equivalent hardware pipeline": it is a much better idea
to implement an optimized hardware pipeline. One of the
obvious optimizations is parallelism.

Consider the following code:

If task T computes the code depicted in Listing 1, it is com-
pletely useless, in a single-core software implementation, to paral-
lelize the computation (i.e., through multi-threading); performance
would actually decrease, as there would be no acceleration what-
soever (threads execute in temporal parallelism) and we would
induce overhead in thread creation, etc. (in a multi-threaded/core
processor scenario, any possible improvement would depend on
the size of data, cache behavior, etc.: multi-threading is useful for
hiding I/O latencies, not for data parallelism).

However, as we move the task to hardware, and still assum-
ing it is and would remain compute-bound, then we could
truly parallelize data processing: we could create a circuit
consisting of N identical computational pipelines (circuits
execute in spatial parallelism), accelerating computation by a
factor of N (as long as the system remained compute-bound).

Instruction parallelism  In single-core software imple-
mentations, the code depicted in Listing 1 would execute
under instruction-level parallelism in most modern proces-
sors (pipelined or superscalar). I.e., the instruction stream
responsible for said code, when executing on the processor’s
datapath, would temporally overlap, across pipeline stages or
superscalar execution units (in- or out-of-order, depending
on the architecture). This has been a standard performance
acceleration technique for decades, extremely effective when
there are few dependencies between instructions.

As we move the task to hardware, pipelining execution
remains a standard technique, allowing hardware to execute
several parts of the execution at the same time (most typi-
cally called temporal, rather than instruction-level, paral-
lelism, since the concept of instructions no longer applies).
Execution tends to be further optimized, since dynamic
dependencies that must be resolved by processor hazard
logic in processors, for software implementations, can be
resolved at design-time for hardware accelerators.

Task parallelism  This is the form of parallelism where the dif-
ferences between software and hardware implementations are

most clear. When comparing software solutions on single-core
processors, task parallelism is merely instruction-level parallel-
ism, at much coarser granularity. When transposed to hardware,
independent tasks can be performed each using dedicated, truly
independent hardware circuits. Thus, hardware acceleration is
truly the transformation of temporal into spatial parallelism.

More commonly, now that multi-core processors are ubiq-
uitous, software tasks are allocated to different cores. Thus,
task-level parallelism, in the context of hardware accelera-
tion, is nothing more than the union of the acceleration of
each independent task (subjected to the aforementioned par-
allelization strategies).

2.4.2 � Accelerating Memory‑Bound Tasks

It is worth re-iterating that most real-world workloads are
probably far closer to being memory- than compute-bound:
the memory system, not the computing system, is almost
always the performance bottleneck. In this scenario, all the
advantages of hardware acceleration presented so far are
negated: even spatial parallelism is useless, since the pipe-
lines are starved of data, and must wait for memory. Naively
converting a memory-bound task to hardware yields no per-
formance improvement whatsoever.

Consider, as an extreme case, random sampling of points
from an image, as would be performed on the Random Sam-
ple Consensus (RANSAC) algorithm [23]. Code might look
something like:

This is a clear memory-bound task. Little computation
is performed (assuming random index generation is neg-
ligible): the bulk of the time is spent in accessing external
memory for point sampling. Because of its random nature,
access is likely to exhibit poor cache behavior, since there
is little to no temporal or spatial locality, assuming image
size is significantly larger than cache line size. Thus, any
attempts at acceleration through hardware will result in no
performance improvement whatsoever, since the bottleneck
(memory access) remains unaltered.

The advantages of hardware acceleration come, not from
naive conversion from software to hardware, but from using

1185Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

this newly-available hardware to re-design how our system
is architected (i.e., refactoring). One of the most powerful
refactoring approaches comes from realizing that no data
are born in memory: data are born from system inputs.
If we have custom hardware available, we can propagate
and store those data in different ways than just a monolithic
memory, resulting in far more efficient implementations.

Consider the system depicted in Fig. 2: a camera is con-
nected to the system bus, providing real-time video stream-
ing. A configuration such as this typically employs Direct
Memory Access (DMA) to transfer image frames from the
camera directly to memory, without the need for processor
polling; camera writes data in row-wise order. Let’s assume
a simple region-wise image processing application, e.g.,
edge detection. Task T merely sees frames stored in memory
(as a 2-dimensional array) that can be read and processed,
generating output that is written back to a different memory
region. Software implementation looks like this:

This is an example of Sobel edge detection, applies a 3x3
sliding kernel to the input image. The specific computation

is not important for our purposes: what is important is to
observe data access patterns. For an input frame of width
W and height H, this task would generate an output frame
of width W − 2 and height H − 2 (frame edges are ignored).
The double for loops traverse the output frame row-wise. For
every j, i coordinate pair in the output frame, we must read
the 8 adjacent values from the input frame, from j − 1, i − 1
to j + 1, i + 1.

A naive conversion of this task to hardware, connected to
memory in the same way, would result in a virtually identi-
cal implementation: the system would have to perform 8
memory reads for each (W − 2) ∗ (H − 2) memory writes,
after the camera had already written W ∗ H data. In total
(ignoring instructions) the system would have to access
memory W ∗ H (camera) +9 ∗ ((W − 2) ∗ (H − 2)) (process-
ing) ≈ 10 ∗ W ∗ H times.

Custom memory‑processing systems  A more sophisticated
hardware acceleration would take advantage of two observa-
tions: (1) the input frame is discarded after edge detection
is computed. Thus, if we can process data in a streaming
manner (as it is read from the camera), there is no need to
write the input frame to memory. (2) the input frame data
access pattern is regular: thus, it must be possible to imple-
ment a data storage system that allows us to process it more
efficiently. This solution is depicted in Fig. 3.

Figure 3 depicts a shift-register row-buffer. Notice that
it uses the smallest amount of storage required to compute
the Sobel edge detection operation, taking advantage of dis-
tributed memory inside FPGAs to accelerate the computa-
tion, and discarding pixels as soon as they are no longer
required. In this configuration, camera still has to write to
FPGA memory (total of W ∗ H writes), but configurable
logic needs only write the resulting frame (W − 2) ∗ (H − 2)
to memory, for a total of ≈ 2 ∗ W ∗ H memory (main and
FPGA internal) accesses, resulting in a 5x improvement over
the original implementation.

3 � High Level Synthesis

High-Level Synthesis (HLS) promises to boost hardware
design productivity into software-like levels, ending the long
development and verification processes typically associated
with Register Transfer Level (RTL) design. The momentum
behind the HLS movement is primarily fueled by two aspects:
on one hand, the hardware community desires to increase pro-
ductivity and ensure design correctness in order to guarantee
the time-to-market of complex SoCs keeps up with Moore’s
law. On the other hand, the software community, lacking
RTL-savvy, increasingly adopts FPGAs in fields as diverse
as high performance computing or image processing, and

Figure 2   Camera connected to system bus. Bus data transfer quickly
becomes the performance bottleneck, as it does not take advantage of
any specificities.

1186	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

wishes to program them using established software languages/
frameworks. The appearance of platform FPGAs, which are
essentially SoCs combining general-purpose processor(s) and/
or other “hard” blocks with “soft” FPGA fabric, increased the
demand for powerful HLS even further, thanks to opportuni-
ties for hardware-software co-design.

Despite approximately three decades of HLS develop-
ment, we are still far from the levels of productivity achieved
in the software world. The HLS landscape, shaped by FPGA
vendors’ proprietary toolchains, third-party commercial
toolchains and academic/open-source projects, is made up
of more than forty different HLS frameworks, none of which
has gained widespread adoption: Verilog and VHDL are still
the de facto development languages for FPGAs. The goal of
this survey is to examine the reasons behind this and point
out future research directions for HLS.

HLS research has been previously summarized from dif-
ferent perspectives: [24–27] and [28] have described the his-
torical evolution of HLS tools, primarily focusing on indus-
try adoption. Zhang and Ng [29], Compton and Hauck [30]
and Cardoso et al. [31] focus on the dynamic-reconfiguration
support of HLS tools. We summarize the field from a differ-
ent perspective, filling a gap in the literature; namely HLS
languages’ abstractions, focusing on the clash of hardware
and software traditional views.

The diverse nature of HLS languages/toolchains (some
are novel full-fledged languages such as Bluespec, others
subsets of legacy languages such as C, and others are domain
specific embedded languages, such as C �ash) complicates
this analysis; we treat each as comparable languages per se
when appropriate, and we make very fine distinctions in
other cases. Different toolchains which use the same under-
lying language are also treated distinctly: throughout this
manuscript, we use the terms language and toolchain inter-
changeably when referring to HLS.

Hardware Description Languages (HDL), such as Verilog
and VHDL, lack many of the features typically associated
with high level languages. There is no complex type sys-
tem: every signal is a bit array (integer types are merely

placeholders for a specific bit width). There are very few
syntactic constructs: the various loop and type constructs
typically found in software make no sense. This is because
HDLs specify the behavior, not as a sequential computa-
tion (where parallelism must be explicitly managed through
threads/processes) but as a computation for every single
moment in time (behavior at each clock cycle) where par-
allelism is implicit. Loop unrolling is seen as a compiler
optimization in C, while in HDL, it is built into the language
semantics: a loop that cannot be fully unrolled at design time
will result in a synthesis error. This paradigm shift from
temporal flexibility to temporal strictness is one of the main
reasons software programmers struggle with HDLs, and one
HLS tools attempt to abstract.

However, this temporal paradigm is one of the greatest
strengths of HDLs and one of the weaknesses of HLS (we
will elaborate on this in the following sections); HDLs can
cope with complex timing requirements, such as refresh
rates for DRAM memories, communication protocols, or
circuit initialization procedures. When HLS languages fail
to provide mechanisms to perform these procedures effi-
ciently and clean interfaces to HDL code, there is little moti-
vation for hardware engineers to adopt such a toolchain. This
advents from the fact that many HLS languages are datapath-
oriented, rather than control-oriented (HDLs are both).

Clock signals are arguably the most important signals
in an FPGA design, and thus, they are explicitly stated in
HDLs. Designers can distribute complex designs across
asynchronous clock domains, perform clock gating for
power reduction and keep an accurate record of elapsed
time (every hardware designer has had to implement a clock
cycles counter for some low-level communication protocol
at one time). Most HLS languages, however, do not have an
explicit clock signal. Either each language construct oper-
ates in one clock cycle or, as is the case in some dataflow
languages, there is no programmer-visible concept of time.
To the best of our knowledge, very few HLS toolchains are
yet capable of handling multiple clock domains automati-
cally, inserting appropriate synchronization logic (e.g., [32]).

Figure 3   Camera connected to
FPGA with custom memory sys-
tem (width of shift register is W).

1187Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

3.1 � Imperative Languages

C is the most familiar software language for hardware
designers. Hence, it is not surprising that many HLS tool-
chains use C, and other similar imperative languages and
Object-Oriented (OO) variants, as a foundation (although
many software programmers would disagree C should be
considered ”high level"). Table 1 depicts imperative-based
HLS toolchains. It is by no means complete, but suffices to
grasp the amount of effort invested in imperative languages
to FPGA design.

There are three main advantages to this flavor of HLS:
familiarity, control and co-design. The familiar syntax
allows programmers to express algorithms quickly, often
re-using code. Tried and tested software applications can
be migrated to hardware for acceleration. The sequential
semantics of C-like languages, rich in loop and conditional
constructs, lends itself well to the implementation of proto-
cols and control operations. Since software and hardware
are described in the same language, design space explo-
ration strategies can be employed to meet design perfor-
mance, power and area constraints, mapping an algorithm
to CPU(s)/FPGA hybrid systems. This paradigm is espe-
cially favorable when targeting platform FPGAs; hence the

extensive support offered by FPGA vendors (e.g., Xilinx
Vivado HLS and SDK).

This paradigm is not without several drawbacks. It is
notoriously difficult to explicitly express parallelism in
imperative languages; it must typically be expressed through
compiler directives (pragmas) for loop unrolling, which
rely on compiler optimizations. Granularity is an issue:
most HLS compilations operate at the function granularity,
which might force legacy software to be re-written in order
to encapsulate hardware-destined and software-destined
code separately. Timing is an issue, as it may be impossible
to predict how many clock cycles a particular language con-
struct will take to execute, depending on the HDL generation
strategy. As these languages were built for Von Neumann
machines (implying a large, shared memory space), many
language features are not directly amenable to hardware syn-
thesis (pointers and dynamic memory allocation are notori-
ous examples).

3.2 � Functional Languages

Advocates for functional programming have developed sev-
eral HLS functional flavors, either through new complete
languages or through small languages embedded in consoli-
dated ones such as Haskell. Table 2 depicts an overview of
functional languages targeting FPGAs.

In some ways, functional languages are a better fit for
HLS than imperative languages. The referential transparency
that makes functional languages inherently suitable for par-
allelism lends itself well to hardware synthesis. Functional
HDLs like C �aSH are able to model functions as structural
definitions of circuits and function applications as instances
of those circuits. The fundamental support for higher-order
functions means that designs are often automatically para-
metric. In many ways, functional languages constructs can
be mapped almost directly to RTL, allowing a designer
working in a functional HLS language to have a very good
idea of exactly what the hardware they are writing will look
like, in contrast to imperative languages where there can be
a much larger gap between the code and the hardware gener-
ated by synthesis tools.

There are also a number of disadvantages to using func-
tional languages for high level synthesis. Some constructs
used in functional programming are not easily synthesizable.
E.g., recursive functions can pose particular difficulties; if
function applications are realized by instantiating hardware
components, a recursive function would conceptually result
in an infinitely large hardware construct. It is possible to
identify certain special cases of recursion and generate
specific hardware for them, but it is difficult to find a gen-
eral solution to the problem. Similarly, it is generally not
possible to realize recursive data types in hardware. These
limitations can be an issue for programmers who are used

Table 1   Imperative/OO HLS.

Language Source

SystemC [33]
Handel-C [34]
OCAPI-XL [35]
Catapult-C [36]
Vivado HLS [37]
Impulse C [38]
C-to-Silicon [39]
Synphony C [40]
Cynthesizer [41]
LegUp [42]
ASC [43]
Altera C2H [44]
CHiMPS [45]
ROCCC​ [46]
GAUT​ [47]
Trident [48]
Altera SDK for OpenCL [49]
Xilinx SDAccel [50]
FCUDA [51]
LIME [52]
KIWI [53]
DWARV [54]
Bambu [55]
Hercules [56]

1188	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

to functional languages. As they may need to learn a very
different approach to many problems then they are used to
when writing software, this can negate some of the advan-
tages of high level synthesis.

3.3 � Domain Specific Languages

In an effort to avoid the challenges of synthesizing complete
complex languages, several Domain Specific Languages
(DSL) have emerged in recent years. DSLs are well known
in the software domain: they allow programmers to express
solutions at a higher abstraction level than typical general-
purpose languages, within the semantics of the particular
application domain.

In the context of HLS, DSLs have several other advan-
tages. The limited syntactical constructs are more easily
synthesizable; in other words, it is far simpler to ensure
complete language coverage. Knowledge of the application
domain allows the use of hardware templates optimized
for the domain: rather than generic hardware structures
designed for flexibility, the HLS tool is free to infer spe-
cialized architectures, optimized for power, performance
and area within the domain (e.g., in synchronous dataflow
DSL synthesis, the HLS compiler is aware of the timing
relationships between modules and can infer pipeline stages
separated by registers; in asynchronous dataflow, the HLS
compiler is forced to infer FIFOs between modules).

Darkroom [68] is language and compiler for image pro-
cessing. Its semantics allow it to synthesize line-buffered
pipelines, with all intermediate values in local line-buffer
storage. Images at each stage of computation are specified
as pure functions from 2D coordinates to the values at those
coordinates, declared using a lambda-like syntax. In the first
version, it only supports programs that are straight pipelines
with one input, one output, and a single consumer of each
intermediate value. HIPAcc [69] (Heterogeneous Image Pro-
cessing Acceleration) is another DSL for image processing.
It is a C++ embedded DSL [70], which uses the LLVM

back-end [71] for software code generation, and C code
annotated with pragmas for Vivado HLS.

RVC-CAL [72] is an asynchronous dataflow language
which possesses backends for FPGA, e.g., Xronos [73].
RVC-CAL is based on dataflow process networks with the
addition of firing rules. Xronos uses Orcc compiler [74]
as its front-end, which parses RVC-CAL actors and gener-
ates an intermediate representation suited to its OpenForge
back-end. Another streaming DSL is Optimus [75], based
on the StreamIt language [76]. A common feature of both
languages is that embedded memories are used to implement
local arrays and other data structures used by the filters.
Thus, for large stream graphs, embedded memories quickly
become the bottleneck resource.

Spiral [77] is a code generation system for Digital signal
Processing (DSP) transforms which has been extended to
generate DSP IP cores for FPGA [78]. RIPL [79] employs
image processing algorithmic skeletons as a general frame-
work for the application of user-defined functions, generat-
ing efficient streaming hardware pipelines.

3.4 � New Generation Hardware Description Languages

Three new generation HDLs are particularly relevant:
Bluespec [80], Chisel [81] and Cx [82].

Bluespec extends SystemVerilog to provide a higher level
of abstraction. Interfaces are a core construct of Bluespec.
Interfaces group signals according to methods, which define
the semantics of access to a signal and can be used to param-
eterize modules upon instantiation. Rather than ”always" or
”process" constructs familiar to Verilog/VHDL designers,
Bluespec defines behavior through rules (i.e., guarded actions)
which specify how data are moved from state to state.

Chisel is an HDL embedded in the Scala language
which supports multiple design paradigms, including
object orientation, functional programming, parameterized
types, and type inference. Two notable features are the
capability to specify composite types (i.e., C-like structs)
and automatic inference of bit-widths, unlike strict bit-
width definitions in legacy HDLs. OO-like inheritance
allows modules to be re-used in the definition of higher-
order modules without the messy sub-module instantiation
(and corresponding ”rats nest" wiring). Computations can
be expressed in functional-friendly constructs such as map
and fold and the expressive generator systems simplifies
the re-use of parameterizable modules.

Cx offers a highly structured syntax with strong bit-
accurate static typing. A Cx design is described as a set of
sequential tasks connected together and executed concur-
rently, where dependency injection and inheritance can be
applied to tasks. The Cx compiler generates human reada-
ble Verilog/VHDL code or C code for verification. Cx sys-
tems are described as Kahn Process Networks [83] where

Table 2   Functional HLS. Language

C�aSH [57]
HML [58]
ForSyDe [59]
Lava [60]
PARO [61]
Esterel [62]
MMAlpha [63]
Verity [64]
ReWire [65]
SAFL [66]
Hume [67]

1189Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

connections are inferred by discrete non-interruptible exe-
cution rules. Unlike legacy HDLs, clocks are not explicitly
declared within code, but language semantics strictly spec-
ify the timing behavior of language constructs, providing
cycle aware design much like VHDL and Verilog.

Bluespec, Chisel and Cx are greatly superior to legacy
HDLs. Software concepts such as inheritance and type com-
position have found the way to HDLs, reducing the seman-
tic gap between concept and implementation. Rather than
leveraging existing software languages for FPGA synthesis
(with the associated semantic problems), new generations
HDL incorporated high-level language concepts in lan-
guages fine-tuned for hardware design. However, these new
generation HDLs are still far from producing the type of
disruptive innovations expected from HLs, primarily due
to three reasons:

•	 They follow the same design principle as decades-
old legacy HDLs: FPGAs as a self contained entity.
This contrasts the approach offered by FPGA ven-
dors, who provide software suites that allow design at
board, rather than chip, level. These suites are made
up of several stacks which, through a complex design
process involving constraint files, IP libraries, propri-
etary buses, etc, generate FPGA designs incorporating
peripheral devices access and software interaction. It
would be expected of new generation HDLs to incorpo-
rate more complex constructs, modeling off-chip inter-
faces within the semantics.

•	 They do not incorporate the Von Neumann notion of
memory. A substantial portion of state of the art FPGA
systems incorporate external memory to accommodate
data requirements. On new generation HDLs, this must
be handled as in legacy HDLs: the programmer is respon-
sible for interfacing with memory and managing data
transmission to and from, burdening them with imple-
mentation details independent of the top level computa-
tion. It would be expected of new generation HDLs to
model memory transparently (e.g., by specifying mem-
ory-allocated data as a built-in type) and generate hard-
ware to transfer to and from memory seamlessly, through
an on-chip hierarchy (physical constraints such as which
FPGA pins are connected to memory can be resolved at
linking stage, prior to synthesis).

•	 There are no semantic considerations for software inter-
face. With the rise of the platform FPGA, it would be
expected that new generation HDLs would borrow
concepts from research in hardware-software interface
research (e.g., PushPush [84]) in order to provide seman-
tic mechanisms for incorporating typed functions for bi-
directional interaction with software objects.

3.5 � HLS Evaluation

To compare the implications of different HLS paradigms,
we implement two computations that are ubiquitous in the
image processing domain: Finite-Impulse Response (FIR)
filter and Eigenvalue/vector decomposition.

Since the HLS-acceleration of complete algorithms is
significantly influenced by algorithm particulars (includ-
ing, e.g., input size), we instead focus on evaluating partial
computations that are applicable to several classes of repre-
sentative solutions. E.g., FIR filters are applied within large
groups of smoothing and sharpening applications, whilst
Eigenvalue computation plays prominent roles in algorithms
such as Principal Component Analysis and Optical Flow.
Thus, their analysis provides valuable insights to designers
interested in accelerating their own algorithms.

An FIR filter in discrete-time domain is defined in Eq. 1,
where y[n] is the output, x[n] is the input sample, h[n] is the
coefficient and L is the number of filter taps.

Eigenvalue/vector decomposition can be imple-
mented through the Approximate Jacobi method, rep-
licated from [85]. If Ax = b , where A is an n × n matrix,
and x and b are column-vectors of length n, then A can
be decomposed into a diagonal component D, a lower tri-
angular part L and an upper triangular part U such that
A = D + L + U . The solution can be obtained iteratively
via x(k+1) = D−1(b − (L + U)x(k)).

Table 3 presents results for FIR filter implementation
through C �aSH (Haskell), Vivado HLS (C and SystemC),
without any optimizations performed; Table 4 lists the
same performance metrics obtained in the second scenario
where we used optimization directives for parallelization.
Tables 5 and 6 present the same results for Eigenvalue/vec-
tor decomposition.

(1)y[n] = x[n] ∗ h[n] =

L−1
∑

i=0

x[i]h[n − i]

Table 3   Standard Optimization Result (FIR Filter).

Haskell C SystemC

BRAM 0 0 0
DSP48E 0 2 2
FF 640 112 119
LUT 1235 129 200
Static Power (W) 0.574 0.123 0.123
Dynamic Power (W) 23.370 0.002 0.003
Latency(cycles) 10 617 248
Latency(absolute) (ns) 100 6170 2480

1190	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

Results are noteworthy, and particularly relevant to
designers who want to select a HLS approach for their
implementations. C �aSH regularly provides the best perfor-
mance (latency), at the expense of size and power consump-
tion (as a function of its greedy parallelization approach). In
contrast, C and SystemC based approaches give more bal-
anced results; their strategy is to minimize chip area by re-
using components for computation, at the expense of longer
processing time. These tradeoffs should guide adoption of
HLS framework.

4 � The IMP Language Architecture

IMP-lang (the IMage Processor Language) is a design space
exploration and simulation language, useful for early design
partitioning across heterogeneous cores. Its features are par-
ticularly relevant to the design of streaming systems, such as
typically found in the embedded image processing domain,
but it can be applied to other domains. The language compiler
and interpreter is open-source, and can be obtained here.1

IMP-lang code is compiled to an intermediate represen-
tation (IR), where each IR sequence comprises the code
required for each parallel computation ("task") in the IMP-
lang abstract machine, as well as constructs required for com-
munication and synchronization of each task. The interpreter
executes IR code, deciding when to execute each task in func-
tion of code semantics and runtime operation, managing
communication and synchronization (e.g.,, communication
between tasks at the highest abstraction level corresponds to
calls to the interpretation engine for data transfer and noti-
fication). The interpreter aids designers in performing early
design space exploration of their design options across heter-
ogeneous deployments, through iterative compilation/evalua-
tion loops. A finalized design can be committed to hardware
and software by replacing the interpreter with appropriate
back-ends for hardware and software code generation.

4.1 � Cores

A "core" is the primary unit in IMP-lang. It abstractly repre-
sents a piece of hardware that can execute code. For exam-
ple, a CPU, a GPU unit, or a bespoke accelerator, could all
be represented as a core. Each core has code assigned for it
in the form of functions (see Section 4.2). Each core should
execute independently of the others, as they represent sepa-
rate hardware units. A core is considered to be active as
long as at least one of its functions is running; if no cores
have running functions, the program is finished (see Fig. 4).

4.2 � Functions

There are three categories of functions: Main, Signal, and
Stream functions. These will be elaborated on in the sec-
tions below.

4.2.1 � Main Functions

The main function is the primary function of each core,
and every core requires one and only one main function. It
runs by default, and once the core’s main function reaches
the end of its code, or the function is terminated, the entire
core is considered to have finished its work and stops all

Table 4   Performance-Optimized Results (FIR Filter).

Haskell C SystemC

BRAM 0 0 0
DSP48E 0 0 0
FF 640 522 633
LUT 1235 686 894
Static Power (W) 0.574 0.123 0.123
Dynamic Power (W) 23.370 0.013 0.004
Latency(cycles) 10 14 27
Latency(absolute) (ns) 100 140 270

Table 5   Standard Optimization Result (EVD).

Haskell C SystemC

BRAM 0 4 2
DSP48E 12 11 38
FF 388 2185 5795
LUT 7519 3122 8624
Static Power (W) 0.157 0.123 NA
Dynamic Power (W) 4.999 0.017 NA
Latency(cycles) 10 1860 8130
Latency(absolute) (ns) 100 18600 81300

Table 6   Performance-optimized Result (EVD).

Haskell C SystemC

BRAM 0 0 4
DSP48E 12 28 41
FF 388 24455 6179
LUT 7519 28020 13876
Static Power (W) 0.157 0.124 NA
Dynamic Power (W) 4.999 0.170 NA
Latency(cycles) 10 135 824
Latency(absolute) (ns) 100 1350 82401  https://​github.​com/​paulo​frgar​cia-​cmkl/​IMP

https://github.com/paulofrgarcia-cmkl/IMP

1191Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

execution. As a result, if the core needs to remain idle until
some condition occurs (for example, a core representing a
co-processor that does nothing until triggered, computes a
value, and then returns to an idle state), the main function
should wait in a while-loop lasting until the end of the simu-
lation (see Fig. 5).

4.2.2 � Signal Functions

Signal functions are analogous to interrupt service handlers.
If a core is given a signal function, and its main function
enables signal interrupts, the core will run its signal function
in response. It should run exclusively once triggered; that
is, other functions must wait for it to finish before they can
continue; Figs. 6 and 8 illustrate this blocking effect. A signal
function can alter its behavior depending on which core trig-
gered it, allowing for a single core to respond appropriately
to many different circumstances and hardware layouts.

4.2.3 � Stream Functions

Stream functions serve the role of asynchronous sub-
routines. They are composed of a block of executable code,
an input queue, into which arguments are passed, and an
output queue, onto which return values of the function
can be pushed. The stream function can be invoked by any
other function, including another stream function, or even
itself. By invoking it, the arguments supplied to the call are
collected and pushed onto the input queue, the capacity
of which is infinite (by default in simulation, but can be
modified in implementation to better suit the realities of
target hardware), so that the function can be invoked at any
time. Any argument passed to or returned from a stream
function can be null-valued; function code can be written to
behave differently when encountering a null argument, and
so null arguments can be used to convey information (such
as indicating that an error occurred, that a search returned
no results, or as a flag passed to a stream function to indicate
that it should perform an alternative set of operations on
other input arguments).

Once input data is at the head of the input queue, the
function’s code will execute, in parallel to the other func-
tions on the core (though it will still be paused while a
core is handling a signal interrupt). Once it reaches the end
of its code, it will terminate, and will push values of any
outputs that it is defined to return onto its output queue.
Just as any function of any core can write to the input of a
stream function, the data at the front of the queue is visible
publicly. Thus, any function can read from the queue; this
destructively consumes the value at the front. The archi-
tecture of a stream function and its input/output queues is
illustrated in Fig. 7.

A function may attempt to read from an output queue
at any time. However, if the queue is empty, that function
will block until data is present in the queue. This access
is on an opportunistic basis; if multiple functions are
attempting to access a queue, the next one to execute will
take its turn first. This is not an issue if all functions are
only reading, as the read process is non-destructive. If one
or more of the competing functions is waiting to discard a
value from the queue, however, this can result in destroy-
ing data that other functions are expecting to read, with
the other functions then erroneously reading the next value
in the queue, or blocking if the queue has been left empty.
These sorts of conflicts are presently the responsibility of
the developer to avoid; implementation-specific means to
these conflicts are possible, but currently unimplemented
(see Fig. 8).

Figure 4   Illustration of a core with a main, signal, and two stream
functions.

Figure 5   Class diagram illustrating the relationships between cores
and the three function types.

1192	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

4.3 � Inter‑core Communication

IMP-lang provides two methods for cores to intercommuni-
cate: stream and signal functions. Signal functions can be
used to emulate interrupts from hardware peripherals such
as keyboard, mice or other buttons, while stream functions
can be used to emulate data transfers over a bus: for exam-
ple, a primary core providing data to a core acting as a co-
processor and awaiting the result.

A straightforward example of a system that can be built in
IMP-lang is illustrated in Fig. 9. This system consists of three
cores, and highlights a basic use of both modes of inter-core
communication. The first is a main core, which could represent
the main processor of a computer. The second is a timer core,
which counts upwards until hitting a defined limit, signaling the
main core upon finishing its count, then beginning a new cycle;
this core could represent one of the timing modules built-in to
the main processor. The third is a printer core, to which the
main core sends an integer representing the current time to upon
receiving a signal from the timer core, which it then prints. This

could represent a hardware printer connected over a serial port,
or the standard output stream of the operating system.

4.4 � Hardware Synthesis

The constructs that make up IMP-lang are, by design, all
directly amenable to straightforward hardware implementa-
tion. Cores, the primary unit of parallel computation in the
implied model of computation, can be synthesized to inde-
pendent hardware modules, corresponding to spatial paral-
lelism. Internal functions represent further sub-divisions of
parallel computation. Signals control hardware schedulers
that enable or pause each computational pipeline, and trigger
sub-computations, i.e., interrupts. Inter-core communication is
achieved through abstract FIFOs at the language level, mapped
to concrete hardware FIFOs once average occupancy has been
determined through high level experimentation. Interfaces
across hardware and software (consistently, at the language
level, achieved though signals and FIFOs) can be trans-
lated to equivalent software/hardware interfaces in concrete

Figure 6   Timing diagram
illustrating the program flow on
a core when receiving a signal
interrupt.

Figure 7   Architectural diagram
of a stream function, illustrating
its input and output queues.

Figure 8   Timing diagram
illustrating the program flow on
a core and its stream function
when receiving a signal inter-
rupt. Note how Core 1’s stream
function also halts while the
signal function is being handled.

1193Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

implementations. Although these are target system dependent,
state of the art FPGA integration methodologies (e.g., Xilinx
Xillybus [86]) use equivalent constructs.

5 � Demonstrative Experimental Evaluation

5.1 � Experiment 1

Let us imagine an arbitrary function, Func. We will use this
function, run with inputs of increasing value, as an example
to implement and compare three different strategies for coor-
dinating parallel execution among a fixed number of cores.
This could represent any computation that generates a new
data frame from a previous one, where a data frame can be
an image: for example, pixel-wise or windowing operations
such as 2-D filters or a convolutional layer.

The first is the sequential approach, as illustrated in
Fig. 10. It runs on a single execution unit, which computes
and prints the output of each iteration of the function in turn.

The next approach introduces parallelism. It runs on three
cores; two are identical, programmed with a stream function
that executes the function, and the third acts as a coordinator.
The coordinator core issues commands to the two computing
cores to each compute Func, then collects the results and
prints them. Since the coordinator core issues a command
and then waits for the results, we call this a "synchronous"
parallelism strategy (see Fig. 11).

The third approach takes advantage of stream functions’
input and output queues. In it, instead of issuing and wait-
ing for one command at a time, the coordinator core issues a
batch of several commands at once to the computing cores and
then collects and prints the results of the batch. This "batch-
parallel" approach is illustrated in Fig. 12. This approach
simulates asynchronous behavior across main-secondary
computing units. Main unit issues as many requests (bundled
with input data) as requires, regardless of secondary units’
state. Requests sit in connection FIFOs, until such time when
secondary units are ready to accept them. This illustrates the
ease of separating concerns using FIFO interfaces (akin to
dataflow HLS, as described in Sect. 3).

Each of these three approaches were run, and data was
collected measuring the total execution time taken for com-
puting Func for each input value, as well as the amount of
time that the coordinator core (if present) spent blocked
while waiting for the computation cores to finish their work.
The results are detailed in Table 7.

Figure 9   Block diagram of a sample system illustrating inter-core
communication.

Figure 10   Program flow diagram of sequential function computation.

1194	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

Figure 11   Program flow diagram of synchronous-parallel function computation.

Figure 12   Program flow of batch-parallel function computation.

1195Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

5.2 � Experiment 2

Here, we explore the performance impact of offloading compu-
tation onto multiple cores. We begin with a single core tasked
with running three arbitrary functions, all of which take a sin-
gle integer as input and return a single integer as output; these
will be labeled F1, F2, and F3. We will then begin moving
these functions to additional cores, and examining the effect on
execution time and parallelism as offset by the increased cost in
"size" incurred by adding more compute units.

The first design is illustrated in Fig. 13. The single core
repeats a cycle of computing each function in turn, for inputs
ranging from 1 to 49, printing the result of each. The execu-
tion times of the functions were profiled, revealing that F1
took at worst 31 cycles to run, F2 took at worst 131 cycles,
and F3 took up to 649 cycles to complete.

The second design, illustrated in Fig. 14, adds a second
core, onto which the function shown to consume the most
time (F3) is offloaded by implementing it as a stream func-
tion that the original core calls, before computing F1 and
F2; the intent is to allow the added core to compute the most
time-consuming function in parallel.

The third design, illustrated in Fig. 15, furthers this strat-
egy by offloading the second most time-intensive function
(F2) onto yet another core. These parallelized designs are
also run, executing each function in turn with inputs ranging
from 1 to 49; data is collected on total execution time, the
number of cycles in which execution is occurring in parallel,
and the number of cycles that the coordinator core spends
blocked. A sibling configuration was also run, wherein F1
is offloaded instead of F2. Results of this experiment are
detailed in Table 8.

5.3 � Results

In the IMP-lang interpreter, each round-robin cycle of core
execution takes up one abstract time unit (whether that unit
is a microsecond, second, or hour is irrelevant at this level
of abstraction). Thus, the time a program takes to execute
can be measured in terms of these cycles. As the simulation
is fully deterministic, there is no issue of variance between
runs to account for.

Figure 16 displays the execution profiles of each of the
core coordination strategies. The Sequential strategy took
the longest to execute at 1279 cycles. This was expected, as
it makes no use of parallelism; this lack of parallelism also
means that the Sequential strategy cannot have spent any
time I/O blocked. The strategies that do make use of paral-
lelism (Synchronous and Batch) show significant improve-
ments in execution, with Synchronous showing a 42% reduc-
tion in execution time, and Batch improving even further
than Synchronous, with a 48% reduction in execution time.
Batch also spent 9.7% less time waiting for its co-processors
to finish their computations.

Overall, the Batch coordination strategy proved to be the
most time-efficient of the three proposed. Crucially, this gain
in performance was not difficult to achieve, as both altering
the architecture of the system (creating the two computing
cores) and tweaking the system’s behavior (modifying the

Table 7   Numeric Results of Experiment 1.

Strategy Execution Time (Cycles) Time I/O
Blocked
(Cycles)

Sequential 1279 N/A
Synchronous 738 576
Batch 654 520

Figure 13   Program flow diagram of F1, F2, and F3 running on a sin-
gle core.

1196	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

Figure 14   Program flow dia-
gram where F3 is offloaded to a
separate core.

Figure 15   Program flow diagram where F2 and F3 are both offloaded to separate cores.

1197Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

coordinator core’s call strategy) are very straightforward in
IMP-lang.

Figure 17 displays the execution profiles of each of the
function allocation strategies. As with the first experiment,
the strategy that made no use of parallelism was the slowest
to finish, though it also by definition spent no time blocked.
As might be expected, offloading F3, the slowest function,
provided a large savings in execution time (a nominal 22%

savings). Offloading the other functions provided compara-
tively negligible benefit to execution time, on the order of
less than a hundred cycles.

The large number of cycles that the main core spent wait-
ing for execution to complete in the strategy where only F3
was offloaded is consistent with the measured fact that F3
has an extremely outsized computation time compared to
the sum of F1 and F2; 63% of the execution time was spent
waiting, meaning that only 37% was needed for computing
F1 and F2 as well as printing results and issuing commands
to the core computing F3. A developer using IMP-lang for
design-space exploration could conclude that since even
when offloaded, F3 takes up a large amount of time, they
could use the time wasted by awaiting its completion dif-
ferently. By exploring coordination strategies similarly to
Experiment 1, they may decide that the extra time could be
used for computing iterations of F1 and F2 between each
iteration of F3, or on other independent tasks that the system
may be used for.

Figure 16   Execution times and
number of I/O blocked cycles
for each coordination strategy.

Table 8   Numeric Results of Experiment 2.

Strategy Execution
Cycles

Parallel
Cycles

Blocking Cycles

Single Core 21630 N/A N/A
Offload F3 16803 16792 10604
Offload F3 &

F2
16752 16741 14147

Offload F3 &
F1

16752 16741 11512

1198	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

6 � Conclusions and Perspectives

This paper offered a primer on hardware acceleration of
image processing, focusing on embedded, real-time appli-
cations. We surveyed the landscape of High Level Synthesis
technologies that are amenable to the domain, and presented
our ongoing work on IMP-lang, a language for early stage
design of heterogeneous image processing systems.

There are several critical insights readers should take
away. First, hardware acceleration is not just a process of con-
verting a piece of computation into an equivalent hardware
system: that naive approach offers, in most cases, little ben-
efit. Instead, acceleration must take into account how data is
streamed throughout the system, and optimize that streaming
accordingly. Second, the choice of tooling plays an impor-
tant role in the results of acceleration. Different HLS tools,
in function of the underlying language paradigm, produce
wildly different results across performance, size, and power
consumption metrics. Third, as can be observed from IMP-
lang, bringing heterogeneous considerations to the language

level offers significant advantages to early design estimation,
allowing designers to partition their algorithms more effi-
ciently, iterating towards a convergent design that can then
be implemented across heterogeneous elements accordingly.

Ongoing and future work must address several chal-
lenges. Closer integration of design and development is
still required; whilst IMP-lang is a step in that direction,
improvements on automatic code generation for different
targets must still be performed. Critically, there is still no
consensus on the optimum design flow for this class of sys-
tems; the methodology and tool landscape is as heterogene-
ous as the created designs.

Author Contributions  J. Fryer was responsible for software develop-
ment (IMP-Lang) and its description. P. Garcia was responsible for
conceptualization and article writing.

Availability of Data and Material  Not applicable.

Code Availability  Code publicly available under a Creative Commons
License.

Figure 17   Execution times,
amount of parallelism, and
number of I/O blocked cycles
for each function assignment
strategy.

1199Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

Declarations 

Ethics Approval  Not Applicable.

Consent to Participate  Not applicable.

Consent for Publication  Not applicable.

Conflict of Interest  No conflict of interest to report.

References

	 1.	 Fu, K.-S., et al. (1976). Pattern recognition and image processing.
IEEE Transactions on Computers, 100(12), 1336–1346.

	 2.	 Chen, Y., Yang, X.-H., Wei, Z., Heidari, A. A., Zheng, N., Li,
Z., Chen, H., Hu, H., Zhou, Q., & Guan, Q. (2022). Generative
adversarial networks in medical image augmentation: A review.
Computers in Biology and Medicine, 105382.

	 3.	 Salembier, P., & Garrido, L. (2000). Binary partition tree as an
efficient representation for image processing, segmentation, and
information retrieval. IEEE Transactions on Image Processing,
9(4), 561–576.

	 4.	 Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image
processing with imagej. Biophotonics International, 11(7), 36–42.

	 5.	 Bond, J. (1997). The drivers of the information revolution: Cost,
computing power, and convergence.

	 6.	 Mittal, S., Gupta, S., & Dasgupta, S. (2008). FPGA: An efficient
and promising platform for real-time image processing applica-
tions. In National Conference on Research and Development in
Hardware Systems (CSI-RDHS).

	 7.	 Huang, L., & Barth, M. (2009). Tightly-coupled lidar and com-
puter vision integration for vehicle detection. In 2009 IEEE Intel-
ligent Vehicles Symposium (pp. 604–609). IEEE.

	 8.	 Brunetti, A., Buongiorno, D., Trotta, G. F., & Bevilacqua, V.
(2018). Computer vision and deep learning techniques for pedes-
trian detection and tracking: A survey. Neurocomputing, 300,
17–33.

	 9.	 Zhang, X., Chen, Z., Wu, Q. J., Cai, L., Lu, D., & Li, X. (2018).
Fast semantic segmentation for scene perception. IEEE Transac-
tions on Industrial Informatics, 15(2), 1183–1192.

	10.	 Al-Kaff, A., Martin, D., Garcia, F., de la Escalera, A., & Armingol,
J. M. (2018). Survey of computer vision algorithms and applica-
tions for unmanned aerial vehicles. Expert Systems with Applica-
tions, 92, 447–463.

	11.	 Feng, X., Jiang, Y., Yang, X., Du, M., & Li, X. (2019). Com-
puter vision algorithms and hardware implementations: A sur-
vey. Integration, 69, 309–320.

	12.	 Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis,
E. (2018). Deep learning for computer vision: A brief review.
Computational Intelligence and Neuroscience, 2018.

	13.	 Jinghong, D., Yaling, D., & Kun, L. (2007). Development of
image processing system based on DSP and FPGA. In 2007
8th International Conference on Electronic Measurement and
Instruments (pp. 2–791). IEEE.

	14.	 Castaño-Díez, D., Moser, D., Schoenegger, A., Pruggnaller, S.,
& Frangakis, A. S. (2008). Performance evaluation of image
processing algorithms on the GPU. Journal of Structural Biol-
ogy, 164(1), 153–160.

	15.	 Saegusa, T., Maruyama, T., & Yamaguchi, Y. (2008). How fast
is an FPGA in image processing? In 2008 International Con-
ference on Field Programmable Logic and Applications (pp.
77–82). IEEE.

	16.	 Bhowmik, D., Garcia, P., Wallace, A., Stewart, R., & Michaelson,
G. (2017). Power efficient dataflow design for a heterogeneous
smart camera architecture. In 2017 Conference on Design and
Architectures for Signal and Image Processing (DASIP) (p.
8122128). IEEE.

	17.	 Rt-shadows. (2015). Real-time system hardware for agnostic
and deterministic OSES within softcore. In 2015 IEEE 20th
Conference on Emerging Technologies & Factory Automation
(ETFA) (pp. 1–4). IEEE.

	18.	 Arató, P., Juhász, S., Mann, Z. Á., Orbán, A., & Papp, D.
(2003). Hardware-software partitioning in embedded system
design. In IEEE International Symposium on Intelligent Signal
Processing, 2003 (pp. 197–202). IEEE.

	19.	 Fryer, J., & Garcia, P. (2020). Towards a programming paradigm
for reconfigurable computing: Asynchronous graph programming.
In 2020 25th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA) (vol. 1, pp. 1721–1728).
IEEE.

	20.	 Brebner, G. (1999). Tooling up for reconfigurable system
design. In IEE Colloquium on Reconfigurable Systems (Ref. No.
1999/061) (pp. 2–1). IET.

	21.	 HajiRassouliha, A., Taberner, A. J., Nash, M. P., & Nielsen, P.
M. (2018). Suitability of recent hardware accelerators (DSPS,
FPGAS, and GPUS) for computer vision and image process-
ing algorithms. Signal Processing: Image Communication, 68,
101–119.

	22.	 Coussy, P., Gajski, D. D., Meredith, M., & Takach, A. (2009).
An introduction to high-level synthesis. IEEE Design & Test of
Computers, 26(4), 8–17.

	23.	 Borkar, A., Hayes, M., & Smith, M. T. (2009). Robust lane detec-
tion and tracking with Ransac and Kalman filter. In 2009 16th
IEEE International Conference on Image Processing (ICIP) (pp.
3261–3264). IEEE.

	24.	 Martin, G., & Smith, G. (2009). High-level synthesis: Past, pre-
sent, and future. IEEE Design & Test of Computers, 4, 18–25.

	25.	 Nane, R., Sima, V. M., Pilato, C., Choi, J., Fort, B., Canis, A.,
Chen, Y. T., Hsiao, H., Brown, S., Ferrandi, F., Anderson, J., &
Bertels, K. (2016). A survey and evaluation of FPGA high-level
synthesis tools. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, PP(99), 1–1. https://​doi.​org/​10.​
1109/​TCAD.​2015.​25136​73

	26.	 Trimberger, S. M. (2015). Three ages of FPGAs: a retrospective
on the first thirty years of FPGA technology. Proceedings of the
IEEE, 103(3), 318–331.

	27.	 Meeus, W., Van Beeck, K., Goedemé, T., Meel, J., & Stroobandt,
D. (2012). An overview of today’s high-level synthesis tools.
Design Automation for Embedded Systems, 16(3), 31–51.

	28.	 Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., &
Zhang, Z. (2011). High-level synthesis for FPGAs: From pro-
totyping to deployment. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 30(4), 473–491.
https://​doi.​org/​10.​1109/​TCAD.​2011.​21105​92

	29.	 Zhang, X., & Ng, K. W. (2000). A review of high-level synthe-
sis for dynamically reconfigurable FPGAs. Microprocessors and
Microsystems, 24(4), 199–211. https://​doi.​org/​10.​1016/​S0141-​
9331(00)​00074-0

	30.	 Compton, K., & Hauck, S. (2002). Reconfigurable computing: A
survey of systems and software. ACM Computing Surveys (csuR),
34(2), 171–210.

	31.	 Cardoso, J. M., Diniz, P. C., & Weinhardt, M. (2010). Compiling
for reconfigurable computing: A survey. ACM Computing Surveys
(CSUR), 42(4), 13.

	32.	 Lhairech-Lebreton, G., Coussy, P., & Martin, E. (2010). Hier-
archical and multiple-clock domain high-level synthesis for
low-power design on FPGA. In 2010 International Conference

https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1016/S0141-9331(00)00074-0
https://doi.org/10.1016/S0141-9331(00)00074-0

1200	 Journal of Signal Processing Systems (2023) 95:1181–1201

1 3

on Field Programmable Logic and Applications (pp. 464–468).
https://​doi.​org/​10.​1109/​FPL.​2010.​94

	33.	 Panda, P. R. (2001). SystemC: A modeling platform supporting
multiple design abstractions. In Proceedings of the 14th Inter-
national Symposium on System Synthesis, 2001 (pp. 75–80).
IEEE.

	34.	 Loo, S., Wells, B. E., Freije, N., & Kulick, J. (2002). Handel-C
for rapid prototyping of VLSI coprocessors for real time sys-
tems. In Proceedings of the Thirty-Fourth Southeastern Sym-
posium on System Theory, 2002 (pp. 6–10). IEEE.

	35.	 Vanmeerbeeck, G., Schaumont, P., Vernalde, S., Engels, M., &
Bolsens, I. (2001). Hardware/software partitioning of embedded
system in OCAPI-xl. In Proceedings of the Ninth International
Symposium on Hardware/Software Codesign, 2001, CODES
2001 (pp. 30–35). IEEE.

	36.	 Bollaert, T. (2008). Catapult synthesis: A practical introduction
to interactive C synthesis. In High-Level Synthesis (pp. 29–52).
Springer.

	37.	 Feist, T. (2012). Vivado design suite. White Paper, 5.
	38.	 Xu, J., Subramanian, N., Alessio, A., & Hauck, S. (2010). Impulse

C vs. VHDL for accelerating tomographic reconstruction. In 2010
18th IEEE Annual International Symposium on Field-Program-
mable Custom Computing Machines (FCCM) (pp. 171–174).
IEEE.

	39.	 Cadence. C-to-Silicon Compiler High-Level Synthesis. Retrieved
November 1, 2022, from https://​www.​caden​ce.​com/​rl/​Resou​rces/​
datas​heets/​C2Sil​icon_​ds.​pdf

	40.	 Synopsis. Synphony C Compiler. Retrieved November 1, 2022,
from https://​www.​synop​sys.​com/​Tools/​Imple​menta​tion/​
RTLSy​nthes​is/​Pages/​Synph​onyC-​Compi​ler.​aspx

	41.	 Cadence. Cynthesizer Solution. Retrieved November 1, 2022,
from http://​www.​caden​ce.​com/​rl/​Resou​rces/​datas​heets/​cynth​esizer_​
ds.​pdf

	42.	 Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A.,
Anderson, J. H., Brown, S., & Czajkowski, T. (2011). Legup:
High-level synthesis for FPGA-based processor/accelerator sys-
tems. In Proceedings of the 19th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays (pp. 33–36). ACM.

	43.	 Mencer, O. (2006). ASC: A stream compiler for computing with
FPGAs. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 25(9), 1603–1617.

	44.	 Nios, I. (2007). C2h compiler users guide. Altera.
	45.	 Putnam, A., Bennett, D., Dellinger, E., Mason, J., Sundararajan,

P., & Eggers, S. (2008). Chimps: A C-level compilation flow for
hybrid CPU-FPGA architectures. In International Conference
on Field Programmable Logic and Applications, 2008, FPL
2008. IEEE.

	46.	 Villarreal, J., Park, A., Najjar, W., & Halstead, R. (2010). Designing
modular hardware accelerators in C with ROCCC 2.0. In 2010 18th
IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM) (pp. 127–134). IEEE.

	47.	 Coussy, P., Lhairech-Lebreton, G., Heller, D., & Martin, E.
(2010). Gaut–a free and open source high-level synthesis tool.

	48.	 Tripp, J. L., Gokhale, M. B., & Peterson, K. D. (2007). Trident:
From high-level language to hardware circuitry. Computer, 3,
28–37.

	49.	 Settle, S. O. (2013). High-performance dynamic programming
on FPGAS with OpenCL. In Proceedings on IEEE High Per-
formance Extreme Computing Conference (HPEC) (pp. 1–6).

	50.	 Fifield, J., Keryell, R., Ratigner, H., Styles, H., & Wu, J. (2016).
Optimizing OpenCL applications on Xilinx FPGA. In Proceed-
ings of the 4th International Workshop on OpenCL (p. 5). ACM.

	51.	 Papakonstantinou, A., Gururaj, K., Stratton, J. A., Chen, D.,
Cong, J., & Hwu, W.-M. W. (2009). FCUDA: Enabling effi-
cient compilation of Cuda Kernels onto FPGAs. In IEEE 7th

Symposium on Application Specific Processors, 2009. SASP’09
(pp. 35–42). IEEE.

	52.	 Auerbach, J., Bacon, D. F., Cheng, P., & Rabbah, R. (2010). Lime:
A Java-compatible and synthesizable language for heterogene-
ous architectures. In ACM Sigplan Notices (vol. 45, pp. 89–108).
ACM.

	53.	 Singh, S., & Greaves, D. (2008). Kiwi: Synthesis of FPGA cir-
cuits from parallel programs. In 16th International Symposium
On Field-Programmable Custom Computing Machines, 2008.
FCCM’08 (pp. 3–12). IEEE.

	54.	 Nane, R., Sima, V.-M., Olivier, B., Meeuws, R., Yankova, Y., &
Bertels, K. (2012). Dwarv 2.0: A cosy-based C-to-VHDL hardware
compiler. In 2012 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL) (pp. 619–622). IEEE.

	55.	 Pilato, C., & Ferrandi, F. (2013). Bambu: A modular framework
for the high level synthesis of memory-intensive applications.
In 2013 23rd International Conference on Field Programmable
Logic and Applications (FPL) (pp. 1–4). IEEE.

	56.	 Kavvadias, N., & Masselos, K. (2015). Source and IR-level opti-
misations in the hercules high-level synthesis tool. International
Journal of Innovation and Regional Development, 6(3), 243–266.

	57.	 Harmsen, R. (2012). Compiling recursion to reconfigurable hard-
ware using clash.

	58.	 Li, Y., & Leeser, M. HML: an innovative hardware description
language and its translation to VHDL. In Proceedings of the ASP-
DAC’95/CHDL’95/VLSI’95., IFIP International Conference on
Hardware Description Languages. IFIP International Conference
on Very Large Scal (pp. 691–696). IEEE.

	59.	 Sander, I., Acosta, A., & Jantsch, A. (2009). Hardware design and
synthesis in ForSyDe. In Workshop on Hardware Design Using
Functional Languages (HFL 09).

	60.	 Singh, S., & Sheeran, M. (2004). Designing FPGA circuits in lava.
Unpublished paper. Retrieved October 15, 2022, from https://​www.​
gla.​ac.​uk/​satnam/​lava/​lava_​intro.​pdf

	61.	 Hannig, F., Ruckdeschel, H., Dutta, H., & Teich, J. (2008). Paro:
Synthesis of hardware accelerators for multi-dimensional data-
flow-intensive applications. In Reconfigurable Computing: Archi-
tectures, Tools and Applications (pp. 287–293). Springer.

	62.	 Hammarberg, J., & Nadjm-Tehrani, S. (2003). Development of
safety-critical reconfigurable hardware with Esterel. Electronic
Notes in Theoretical Computer Science, 80, 219–234.

	63.	 Derrien, S., & Risset, T. (2000). Interfacing compiled FPGA pro-
grams: The MMAlpha approach. In PDPTA.

	64.	 Aguilar-Pelaez, E., Bayliss, S., Smith, A., Winterstein, F., Ghica,
D. R., Thomas, D., & Constantinides, G. A. (2014). Compiling
higher order functional programs to composable digital hard-
ware. In 2014 IEEE 22nd Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM) (pp.
234–234). IEEE.

	65.	 Procter, A., Harrison, W. L., Graves, I., Becchi, M., & Allwein, G.
(2015). Semantics driven hardware design, implementation, and
verification with rewire. SIGPLAN Not., 50(5), 13–11310. https://​
doi.​org/​10.​1145/​28087​04.​27549​70

	66.	 Sharp, R. (2004). 5. high-level synthesis of SAFL. In Higher-Level
Hardware Synthesis (pp. 65–86). Springer.

	67.	 Sérot, J., & Michaelson, G. (2012). Harnessing parallelism in
FPGAs using the hume language. In Proceedings of the 1st ACM
SIGPLAN Workshop on Functional High-performance Computing
(pp. 27–36). ACM.

	68.	 Hegarty, J., Brunhaver, J., DeVito, Z., Ragan-Kelley, J., Cohen,
N., Bell, S., Vasilyev, A., Horowitz, M., & Hanrahan, P. (2014).
Darkroom: Compiling high-level image processing code into hard-
ware pipelines.

	69.	 Membarth, R., Reiche, O., Hannig, F., Teich, J., Körner, M.,
& Eckert, W. (2016). Hipacc: A domain-specific language and

https://doi.org/10.1109/FPL.2010.94
https://www.cadence.com/rl/Resources/datasheets/C2Silicon_ds.pdf
https://www.cadence.com/rl/Resources/datasheets/C2Silicon_ds.pdf
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx
http://www.cadence.com/rl/Resources/datasheets/cynthesizer_ds.pdf
http://www.cadence.com/rl/Resources/datasheets/cynthesizer_ds.pdf
https://www.gla.ac.uk/satnam/lava/lava_intro.pdf
https://www.gla.ac.uk/satnam/lava/lava_intro.pdf
https://doi.org/10.1145/2808704.2754970
https://doi.org/10.1145/2808704.2754970

1201Journal of Signal Processing Systems (2023) 95:1181–1201	

1 3

compiler for image processing. IEEE Transactions on Parallel
and Distributed Systems, 27(1), 210–224. https://​doi.​org/​10.​1109/​
TPDS.​2015.​23948​02

	70.	 Cuadrado, J. S., & Molina, J. G. (2007). Building domain-specific
languages for model-driven development. IEEE Software, 24(5),
48–55.

	71.	 Lattner, C., & Adve, V. (2004). LLVM: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO
2004 (pp. 75–86). IEEE.

	72.	 Wipliez, M., Roquier, G., & Nezan, J.-F. (2011). Software code
generation for the RVC-CAL language. Journal of Signal Process-
ing Systems, 63(2), 203–213.

	73.	 Bezati, E., Mattavelli, M., & Janneck, J. W. (2013). High-level
synthesis of dataflow programs for signal processing systems. In
2013 8th International Symposium on Image and Signal Process-
ing and Analysis (ISPA) (pp. 750–754). IEEE.

	74.	 Yviquel, H., Lorence, A., Jerbi, K., Cocherel, G., Sanchez, A., &
Raulet, M. (2013). ORCC: Multimedia development made easy.
In Proceedings of the 21st ACM International Conference on Mul-
timedia (pp. 863–866). ACM.

	75.	 Hormati, A., Kudlur, M., Mahlke, S., Bacon, D., & Rabbah, R.
(2008). Optimus: Efficient realization of streaming applications
on FPGAs. In Proceedings of the 2008 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems
(pp. 41–50). ACM.

	76.	 Thies, W., Karczmarek, M., & Amarasinghe, S. (2002). StreamIt:
A language for streaming applications. In Compiler Construction
(pp. 179–196). Springer.

	77.	 Püschel, M., Moura, J. M., Johnson, J. R., Padua, D., Veloso, M.
M., Singer, B. W., Xiong, J., Franchetti, F., Gačic, A., Voronenko,
Y., et al. (2005). Spiral: Code generation for DSP transforms.
Proceedings of the IEEE, 93(2), 232–275.

	78.	 D’Alberto, P., Milder, P. A., Sandryhaila, A., Franchetti, F., Hoe,
J. C., Moura, J. M., Puschel, M., & Johnson, J. R. (2007). Generat-
ing FPGA-accelerated DFT libraries. In 15th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines,
2007. FCCM 2007 (pp. 173–184). IEEE.

	79.	 Stewart, R., Duncan, K., Michaelson, G., Garcia, P., Bhowmik,
D., & Wallace, A. (2018). RIPL: A parallel image processing
language for FPGAs. ACM Transactions on Reconfigurable Tech-
nology and Systems, 11(1). https://​doi.​org/​10.​1145/​31804​81

	80.	 Nikhil, R. (2004). Bluespec system Verilog: Efficient, correct
RTL from high level specifications. In Proceedings. Second ACM
and IEEE International Conference on Formal Methods and Mod-
els for Co-Design, 2004. MEMOCODE’04 (pp. 69–70). IEEE.

	81.	 Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A.,
Avižienis, R., Wawrzynek, J., & Asanović, K. (2012). Chisel:
Constructing hardware in a scala embedded language. In Pro-
ceedings of the 49th Annual Design Automation Conference (pp.
1216–1225). ACM.

	82.	 Synflow. Introducing Cx. Retrieved November 1, 2022,
from http://​cx-​lang.​org/

	83.	 Edwards, S. A. (2000). Kahn process networks. In Languages for
Digital Embedded Systems (pp. 189–195). Springer.

	84.	 Fleming, S. T., Beretta, I., Thomas, D. B., Constantinides, G. A.,
& Ghica, D. R. (2015). PushPush: Seamless integration of hard-
ware and software objects via function calls over AXI. In 2015
25th International Conference on Field Programmable Logic and
Applications (FPL) (pp. 1–8). https://​doi.​org/​10.​1109/​FPL.​2015.​
72940​24

	85.	 Liu, Y., Bouganis, C.-S., Cheung, P. Y., Leong, P. H., & Motley, S.
J. (2006). Hardware efficient architectures for eigenvalue compu-
tation. In Proceedings of the Design Automation & Test in Europe
Conference (vol. 1, pp. 1–6). IEEE.

	86.	 Srivastava, S. (2018). Memory interface design for integrating
accelerators with Xilinx Zynq platform.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1145/3180481
http://cx-lang.org/
https://doi.org/10.1109/FPL.2015.7294024
https://doi.org/10.1109/FPL.2015.7294024

	The Good, the Bad and the Ugly: Practices and Perspectives on Hardware Acceleration for Embedded Image Processing
	Abstract
	1 Introduction
	2 Background: FPGAs and Acceleration Strategies
	2.1 IO Interfaces
	2.2 Clock Frequencies
	2.3 Internal Memory
	2.4 Performance Bounds
	2.4.1 Accelerating Compute-Bound Tasks
	2.4.2 Accelerating Memory-Bound Tasks

	3 High Level Synthesis
	3.1 Imperative Languages
	3.2 Functional Languages
	3.3 Domain Specific Languages
	3.4 New Generation Hardware Description Languages
	3.5 HLS Evaluation

	4 The IMP Language Architecture
	4.1 Cores
	4.2 Functions
	4.2.1 Main Functions
	4.2.2 Signal Functions
	4.2.3 Stream Functions

	4.3 Inter-core Communication
	4.4 Hardware Synthesis

	5 Demonstrative Experimental Evaluation
	5.1 Experiment 1
	5.2 Experiment 2
	5.3 Results

	6 Conclusions and Perspectives
	References

