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Abstract
Modern embedded image processing deployment systems are heterogeneous combinations of general-purpose and specialized 
processors, custom ASIC accelerators and bespoke hardware accelerators. This paper offers a primer on hardware acceleration 
of image processing, focusing on embedded, real-time applications. We then survey the landscape of High Level Synthesis 
technologies that are amenable to the domain, as well as new-generation Hardware Description Languages, and present our 
ongoing work on IMP-lang, a language for early stage design of heterogeneous image processing systems. We show that 
hardware acceleration is not just a process of converting a piece of computation into an equivalent hardware system: that naive 
approach offers, in most cases, little benefit. Instead, acceleration must take into account how data is streamed throughout 
the system, and optimize that streaming accordingly. We show that the choice of tooling plays an important role in the results 
of acceleration. Different tools, in function of the underlying language paradigm, produce wildly different results across 
performance, size, and power consumption metrics. Finally, we show that bringing heterogeneous considerations to the 
language level offers significant advantages to early design estimation, allowing designers to partition their algorithms more 
efficiently, iterating towards a convergent design that can then be implemented across heterogeneous elements accordingly.
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1 Introduction

Image processing was once delegated to offline activities [1]: 
image restoration, improvement, augmentation [2]; diagnos-
tics or information retrieval from visuals [3]; manipulation 
for creative purposes [4]; etc. In the last two decades, as com-
puting power grew (whilst form factors and costs decreased 
[5]), image processing was brought to the forefront of real-
time processing [6]. More generally, computer vision (where 
"vision" may include input from cameras, radars, LiDars, etc. 
[7]) now powers myriad application; from safety and security 
(tracking, behavior analysis [8]) to autonomous robots (scene 
perception [9]), and many others in between [10].

Of course, this increase in computing power creates a 
positive feedback loop: designers create more and more 
complex image processing algorithms (handcrafted [11], 
or, more recently, implemented through statistical training 
methods through Machine Learning [12]) which in turn fuel 
the need for faster, cheaper, more energy-efficient, deploy-
ment platforms. The time when this could be achieved by 
general-purpose processors alone is long gone. Heterogene-
ity is the name of the game.

Modern image processing deployment systems are het-
erogeneous combinations of general-purpose and specialized 
processors (e.g., DSPs [13]), custom ASIC accelerators (e.g., 
GPUs [14]) and bespoke hardware accelerators (deployed, 
e.g., on FPGAs [15]). This complexity is required to support 
the desired levels of performance, power consumption [16], 
determinism [17], and form-factor: i.e., through a design 
process that must partition an algorithmic description appro-
priately [18], choose the best architectural artifact for execut-
ing each partition, implementing the desired computation 
using hardware/software methodologies [19] and toolchains 
[20], and integrating and interoperating all the moving parts 
into a coherent system.
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Unsurprisingly, this is not easy. As the level of complex-
ity grows, so does the need for automated tools and methods 
that facilitate design. In this article, we concern ourselves 
with a small aspect of this ecosystem: hardware accelera-
tion for embedded image processing [21], i.e., the process 
of creating bespoke accelerators on FPGA logic. We begin 
by offering a primer on hardware acceleration, showing how 
FPGA acceleration should (and should not) be used, in the 
context of embedded (real-time) image processing. We then 
offer a review of the extant tools (specifically: High Level 
Synthesis (HLS) from different source languages [22]) for 
this purpose, with quantitative examples that demonstrate 
how different tools provide wildly different results, that the 
keen designer must be aware of. We conclude by describing 
our ongoing work on an open-source design language pur-
posely built for the early design space exploration of hetero-
geneous embedded image processing systems.

Specifically, this article offers the following contributions:

• We provide a primer on hardware acceleration of image 
processing, useful for practitioners entering the field 
(Sect. 2).

• We review the state of High Level Synthesis technology, 
focusing on the different paradigms utilized across lan-
guages, and how these affect generated designs (Sect. 3).

• We introduce IMP-lang, a language for heterogeneous 
design space exploration, amenable to the deployment of 
modern embedded image processing systems (Sect. 4), 
and show how it can be used for early design evaluation 
(Sect. 5).

Section 6 concludes this article, offering perspectives on 
ongoing efforts in this field.

2  Background: FPGAs and Acceleration 
Strategies

Hardware acceleration is the process of decreasing the 
total execution time (performance-oriented acceleration) 
or decreasing the total power consumption (power-oriented 
acceleration) of a given application (i.e., a software task) by 
moving parts of that task to dedicated hardware.

In this manuscript, we’ll strive to describe how hardware 
acceleration works, in function of architecture and specific 
task behavior, as well as identify common misconceptions 
about hardware acceleration to prevent designers from fall-
ing into these pitfalls. The examples in this manuscript 
assume the original task to be accelerated is running on 
a single-core system for simplicity, but the lessons apply 
equally to multi-core systems.

We are assuming that acceleration is performed on Field 
Programmable Gate Arrays (FPGA): for those inexperienced 

with them, there are three properties that must be understood 
to fully comprehend the rest of this manuscript: I/O inter-
faces, clock frequencies, and internal memory.

2.1  I/O Interfaces

A processor typically has a single I/O interface: memory 
ports. Memory ports are a collection of I/O pins that imple-
ment an address-based read/write interface. Typically, 
this interface is connected to a bus, where memory and 
other peripheral devices are attached to. Depending on the 
address, the bus system will propagate requests to the corre-
sponding device; either main memory, or a peripheral device 
such as a network card. All devices that can initiate memory 
accesses compete for bus use, and adding a new device that 
can transfer data to the processor must be done by append-
ing it to the bus.

FPGAs, on the other hand, possess far more available I/O 
pins, and, because of their configurable nature, there is no 
hard-coded behavior for each pin. Thus, it is possible to con-
nect several devices directly to an FPGA (without an inter-
mediate bus), and internal logic (operating in truly parallel 
fashion) can transfer data to/from several of those devices 
at the same time. It is, of course, still possible to connect an 
FPGA to a bus.

2.2  Clock Frequencies

The highest achievable clock frequency in any digital cir-
cuit is a function of the propagation delays (read: number 
of logic gates in series) in that circuit. Because FPGAs are 
comprised of programmable logic, there is always an over-
head in the number of gates in series, for a given circuit, 
compared to the same circuit implemented in Application 
Specific Integrated Circuit (ASIC). This means that, for an 
FPGA and an ASIC fabricated using the same technology 
implementing the same circuit, the FPGA always yields a 
lower clock frequency. Any digital circuit can be imple-
mented on FPGA, including a complete processor: but, it 
will always have worse performance than the same processor 
implemented on ASIC.

2.3  Internal Memory

FPGAs consist of configurable logic, capable of implement-
ing any computation, and distributed memory blocks. These 
distributed memory blocks are typically small (a few kilo-
bytes), and their interconnection is controlled by configur-
able logic. Thus, it is possible to implement large, mono-
lithic memory structures, similar to external main memories. 
But, more importantly, it is possible to implement custom 
memory architectures, with computations in-between stor-
age. This feature is one of the most powerful capabilities  
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of FPGAs: we’ll see how this can be used in practice in the 
examples below.

2.4  Performance Bounds

In this section we’ll consider completely converting a soft-
ware task into an equivalent hardware one; i.e., such that an 
FPGA completely replaces a processor in a system. In the next 
section, we’ll consider accelerating parts of a software task.

Consider the system depicted in Fig. 1: a single-core pro-
cessor, connected to a memory via a bus, executing a task T. 
This system will be the baseline case for all examples in this 
manuscript. It is an example of a Von Neumann architecture: 
memory holds both the code for task T (the instructions that 
implement its computation) and its data. Virtually all mod-
ern processors can be depicted as per Fig. 1; however, most 
processors include (at least one, potentially several) cache 
memorie(s) to accelerate execution. We’ll ignore caches for 
the time being.

The notion of performance of task T is context-dependent:  
in some situations, latency (average or maximum time 
between an input arrival and output processing) is an adequate 
measure of performance; in others, throughput (number of 
inputs processed per time unit) is a better one. For simplicity, 
we’ll assume task T must read D data (in bytes), process them, 
and write D data back to memory, and that the total latency 
(total execution time) is a valid measure of its performance.

Reading/writing data (including instructions) from/to 
memory requires a certain amount of time, determined by 
the specific implementation of the memory system and the 
specific access patterns. Processing that data (executing 
instructions), similarly takes a certain amount of time, deter-
mined by the specific implementation of the processor, and 
by the computation that must be performed. Determining the 
total execution time is not a trivial thing, as there are several 
sources of parallelism that make these inner latencies over-
lap (e.g., pipelined processors might be reading instructions 

from memory at the same time as they are processing previ-
ously read instructions; cache memories further complicate 
this timing analysis).

Task T is said to be compute-bound if making the memory 
system arbitrarily fast would have little to no influence on 
the execution time; the total latency is primarily a function 
of computation time (data processing). T is memory-bound 
if making the processor arbitrarily fast would have little to 
no influence on the execution time: the total latency is pri-
marily a function of memory access times. Most real-world 
workloads are likely neither memory- nor compute-bound, 
meaning that making either the processor or the memory 
system faster would accelerate their execution; however, 
most workloads are probably far closer to being memory- 
than compute-bound (thus the heavy use of cache memories 
in real processors).

The performance bounds of a task have implications on 
its hardware acceleration: let’s examine the two cases.

2.4.1  Accelerating Compute‑Bound Tasks

If task T is compute-bound, we can replace its software 
implementation by an equivalent hardware pipeline: the 
computed algorithm, rather than being implemented as a set 
of instructions, becomes a circuit with equivalent behavior, 
as depicted in Fig. 1. The relevant question, of course, is "Is 
this implementation faster than the original one?". Unsur-
prisingly, the answer is: it depends.

If the implementation technology for the old processor 
and the new circuit is the same (e.g., both implemented in 
FPGA logic) the answer is probably yes. The circuit does 
not need to fetch and decode instructions: what would have 
taken several clock cycles in the software implementa-
tion becomes a single clock cycle in the hardware version. 
Despite processing the same amount of data, in exactly 
the same way, the logic that computes those data is much 
faster (requires fewer clock cycles), and the clock frequen-
cies between the software and hardware versions are likely 
approximately the same.

If the implementation technology is different, things are 
less clear. For example, let’s say we’re converting a soft-
ware implementation running on a processor clocked at 
2GHz, and our resulting FPGA implementation is clocked at 
500MHz (FPGA implementations always boast lower clock 
frequencies than the same circuit implemented on custom 
silicon). In this example, clock frequency goes down by a 
factor of 4. The hardware implementation will be faster if, 
and only if, the number of required clock cycles to compute 
the algorithm goes down by a factor greater than 4. This is 
algorithm-dependent: in fact, it’s also instruction set depend-
ent and micro-architecture-dependent. In summary, it is not 
trivial to determine whether a task will be accelerated when 
we move across implementation technologies.

Figure 1  Processor-memory and FPGA-memory interconnect through 
shared bus. This architecture applies the prototypical processor- 
memory connection to FPGA design, failing to take advantage of 
bespoke memory systems.
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Data parallelism Of course, there is no reason to implement 
an "equivalent hardware pipeline": it is a much better idea 
to implement an optimized hardware pipeline. One of the 
obvious optimizations is parallelism.

Consider the following code:

If task T computes the code depicted in Listing 1, it is com-
pletely useless, in a single-core software implementation, to paral-
lelize the computation (i.e., through multi-threading); performance 
would actually decrease, as there would be no acceleration what-
soever (threads execute in temporal parallelism) and we would 
induce overhead in thread creation, etc. (in a multi-threaded/core 
processor scenario, any possible improvement would depend on 
the size of data, cache behavior, etc.: multi-threading is useful for 
hiding I/O latencies, not for data parallelism).

However, as we move the task to hardware, and still assum-
ing it is and would remain compute-bound, then we could 
truly parallelize data processing: we could create a circuit 
consisting of N identical computational pipelines (circuits 
execute in spatial parallelism), accelerating computation by a 
factor of N (as long as the system remained compute-bound).

Instruction parallelism In single-core software imple-
mentations, the code depicted in Listing 1 would execute 
under instruction-level parallelism in most modern proces-
sors (pipelined or superscalar). I.e., the instruction stream 
responsible for said code, when executing on the processor’s 
datapath, would temporally overlap, across pipeline stages or 
superscalar execution units (in- or out-of-order, depending 
on the architecture). This has been a standard performance 
acceleration technique for decades, extremely effective when 
there are few dependencies between instructions.

As we move the task to hardware, pipelining execution 
remains a standard technique, allowing hardware to execute 
several parts of the execution at the same time (most typi-
cally called temporal, rather than instruction-level, paral-
lelism, since the concept of instructions no longer applies). 
Execution tends to be further optimized, since dynamic 
dependencies that must be resolved by processor hazard 
logic in processors, for software implementations, can be 
resolved at design-time for hardware accelerators.

Task parallelism This is the form of parallelism where the dif-
ferences between software and hardware implementations are 

most clear. When comparing software solutions on single-core 
processors, task parallelism is merely instruction-level parallel-
ism, at much coarser granularity. When transposed to hardware, 
independent tasks can be performed each using dedicated, truly 
independent hardware circuits. Thus, hardware acceleration is 
truly the transformation of temporal into spatial parallelism.

More commonly, now that multi-core processors are ubiq-
uitous, software tasks are allocated to different cores. Thus, 
task-level parallelism, in the context of hardware accelera-
tion, is nothing more than the union of the acceleration of 
each independent task (subjected to the aforementioned par-
allelization strategies).

2.4.2  Accelerating Memory‑Bound Tasks

It is worth re-iterating that most real-world workloads are 
probably far closer to being memory- than compute-bound: 
the memory system, not the computing system, is almost 
always the performance bottleneck. In this scenario, all the 
advantages of hardware acceleration presented so far are 
negated: even spatial parallelism is useless, since the pipe-
lines are starved of data, and must wait for memory. Naively 
converting a memory-bound task to hardware yields no per-
formance improvement whatsoever.

Consider, as an extreme case, random sampling of points 
from an image, as would be performed on the Random Sam-
ple Consensus (RANSAC) algorithm [23]. Code might look 
something like:

This is a clear memory-bound task. Little computation 
is performed (assuming random index generation is neg-
ligible): the bulk of the time is spent in accessing external 
memory for point sampling. Because of its random nature, 
access is likely to exhibit poor cache behavior, since there 
is little to no temporal or spatial locality, assuming image 
size is significantly larger than cache line size. Thus, any 
attempts at acceleration through hardware will result in no 
performance improvement whatsoever, since the bottleneck 
(memory access) remains unaltered.

The advantages of hardware acceleration come, not from 
naive conversion from software to hardware, but from using 
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this newly-available hardware to re-design how our system 
is architected (i.e., refactoring). One of the most powerful 
refactoring approaches comes from realizing that no data 
are born in memory: data are born from system inputs. 
If we have custom hardware available, we can propagate 
and store those data in different ways than just a monolithic 
memory, resulting in far more efficient implementations.

Consider the system depicted in Fig. 2: a camera is con-
nected to the system bus, providing real-time video stream-
ing. A configuration such as this typically employs Direct 
Memory Access (DMA) to transfer image frames from the 
camera directly to memory, without the need for processor 
polling; camera writes data in row-wise order. Let’s assume 
a simple region-wise image processing application, e.g., 
edge detection. Task T merely sees frames stored in memory 
(as a 2-dimensional array) that can be read and processed, 
generating output that is written back to a different memory 
region. Software implementation looks like this:

This is an example of Sobel edge detection, applies a 3x3 
sliding kernel to the input image. The specific computation 

is not important for our purposes: what is important is to 
observe data access patterns. For an input frame of width 
W and height H, this task would generate an output frame 
of width W − 2 and height H − 2 (frame edges are ignored). 
The double for loops traverse the output frame row-wise. For 
every j, i coordinate pair in the output frame, we must read 
the 8 adjacent values from the input frame, from j − 1, i − 1 
to j + 1, i + 1.

A naive conversion of this task to hardware, connected to 
memory in the same way, would result in a virtually identi-
cal implementation: the system would have to perform 8 
memory reads for each (W − 2) ∗ (H − 2) memory writes, 
after the camera had already written W ∗ H data. In total 
(ignoring instructions) the system would have to access 
memory W ∗ H (camera) +9 ∗ ((W − 2) ∗ (H − 2)) (process-
ing) ≈ 10 ∗ W ∗ H times.

Custom memory‑processing systems A more sophisticated 
hardware acceleration would take advantage of two observa-
tions: (1) the input frame is discarded after edge detection 
is computed. Thus, if we can process data in a streaming 
manner (as it is read from the camera), there is no need to 
write the input frame to memory. (2) the input frame data 
access pattern is regular: thus, it must be possible to imple-
ment a data storage system that allows us to process it more 
efficiently. This solution is depicted in Fig. 3.

Figure 3 depicts a shift-register row-buffer. Notice that 
it uses the smallest amount of storage required to compute 
the Sobel edge detection operation, taking advantage of dis-
tributed memory inside FPGAs to accelerate the computa-
tion, and discarding pixels as soon as they are no longer 
required. In this configuration, camera still has to write to 
FPGA memory (total of W ∗ H writes), but configurable 
logic needs only write the resulting frame (W − 2) ∗ (H − 2) 
to memory, for a total of ≈ 2 ∗ W ∗ H memory (main and 
FPGA internal) accesses, resulting in a 5x improvement over 
the original implementation.

3  High Level Synthesis

High-Level Synthesis (HLS) promises to boost hardware 
design productivity into software-like levels, ending the long 
development and verification processes typically associated 
with Register Transfer Level (RTL) design. The momentum 
behind the HLS movement is primarily fueled by two aspects: 
on one hand, the hardware community desires to increase pro-
ductivity and ensure design correctness in order to guarantee 
the time-to-market of complex SoCs keeps up with Moore’s 
law. On the other hand, the software community, lacking 
RTL-savvy, increasingly adopts FPGAs in fields as diverse 
as high performance computing or image processing, and 

Figure 2  Camera connected to system bus. Bus data transfer quickly 
becomes the performance bottleneck, as it does not take advantage of 
any specificities.
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wishes to program them using established software languages/
frameworks. The appearance of platform FPGAs, which are 
essentially SoCs combining general-purpose processor(s) and/
or other “hard” blocks with “soft” FPGA fabric, increased the 
demand for powerful HLS even further, thanks to opportuni-
ties for hardware-software co-design.

Despite approximately three decades of HLS develop-
ment, we are still far from the levels of productivity achieved 
in the software world. The HLS landscape, shaped by FPGA 
vendors’ proprietary toolchains, third-party commercial 
toolchains and academic/open-source projects, is made up 
of more than forty different HLS frameworks, none of which 
has gained widespread adoption: Verilog and VHDL are still 
the de facto development languages for FPGAs. The goal of 
this survey is to examine the reasons behind this and point 
out future research directions for HLS.

HLS research has been previously summarized from dif-
ferent perspectives: [24–27] and [28] have described the his-
torical evolution of HLS tools, primarily focusing on indus-
try adoption. Zhang and Ng [29], Compton and Hauck [30] 
and Cardoso et al. [31] focus on the dynamic-reconfiguration 
support of HLS tools. We summarize the field from a differ-
ent perspective, filling a gap in the literature; namely HLS 
languages’ abstractions, focusing on the clash of hardware 
and software traditional views.

The diverse nature of HLS languages/toolchains (some 
are novel full-fledged languages such as Bluespec, others 
subsets of legacy languages such as C, and others are domain 
specific embedded languages, such as C �ash) complicates 
this analysis; we treat each as comparable languages per se 
when appropriate, and we make very fine distinctions in 
other cases. Different toolchains which use the same under-
lying language are also treated distinctly: throughout this 
manuscript, we use the terms language and toolchain inter-
changeably when referring to HLS.

Hardware Description Languages (HDL), such as Verilog 
and VHDL, lack many of the features typically associated 
with high level languages. There is no complex type sys-
tem: every signal is a bit array (integer types are merely 

placeholders for a specific bit width). There are very few 
syntactic constructs: the various loop and type constructs 
typically found in software make no sense. This is because 
HDLs specify the behavior, not as a sequential computa-
tion (where parallelism must be explicitly managed through 
threads/processes) but as a computation for every single 
moment in time (behavior at each clock cycle) where par-
allelism is implicit. Loop unrolling is seen as a compiler 
optimization in C, while in HDL, it is built into the language 
semantics: a loop that cannot be fully unrolled at design time 
will result in a synthesis error. This paradigm shift from 
temporal flexibility to temporal strictness is one of the main 
reasons software programmers struggle with HDLs, and one 
HLS tools attempt to abstract.

However, this temporal paradigm is one of the greatest 
strengths of HDLs and one of the weaknesses of HLS (we 
will elaborate on this in the following sections); HDLs can 
cope with complex timing requirements, such as refresh 
rates for DRAM memories, communication protocols, or 
circuit initialization procedures. When HLS languages fail 
to provide mechanisms to perform these procedures effi-
ciently and clean interfaces to HDL code, there is little moti-
vation for hardware engineers to adopt such a toolchain. This 
advents from the fact that many HLS languages are datapath-
oriented, rather than control-oriented (HDLs are both).

Clock signals are arguably the most important signals 
in an FPGA design, and thus, they are explicitly stated in 
HDLs. Designers can distribute complex designs across 
asynchronous clock domains, perform clock gating for 
power reduction and keep an accurate record of elapsed 
time (every hardware designer has had to implement a clock 
cycles counter for some low-level communication protocol 
at one time). Most HLS languages, however, do not have an 
explicit clock signal. Either each language construct oper-
ates in one clock cycle or, as is the case in some dataflow 
languages, there is no programmer-visible concept of time. 
To the best of our knowledge, very few HLS toolchains are 
yet capable of handling multiple clock domains automati-
cally, inserting appropriate synchronization logic (e.g., [32]).

Figure 3  Camera connected to 
FPGA with custom memory sys-
tem (width of shift register is W).
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3.1  Imperative Languages

C is the most familiar software language for hardware 
designers. Hence, it is not surprising that many HLS tool-
chains use C, and other similar imperative languages and 
Object-Oriented (OO) variants, as a foundation (although 
many software programmers would disagree C should be 
considered ”high level"). Table 1 depicts imperative-based 
HLS toolchains. It is by no means complete, but suffices to 
grasp the amount of effort invested in imperative languages 
to FPGA design.

There are three main advantages to this flavor of HLS: 
familiarity, control and co-design. The familiar syntax 
allows programmers to express algorithms quickly, often 
re-using code. Tried and tested software applications can 
be migrated to hardware for acceleration. The sequential 
semantics of C-like languages, rich in loop and conditional 
constructs, lends itself well to the implementation of proto-
cols and control operations. Since software and hardware 
are described in the same language, design space explo-
ration strategies can be employed to meet design perfor-
mance, power and area constraints, mapping an algorithm 
to CPU(s)/FPGA hybrid systems. This paradigm is espe-
cially favorable when targeting platform FPGAs; hence the 

extensive support offered by FPGA vendors (e.g., Xilinx 
Vivado HLS and SDK).

This paradigm is not without several drawbacks. It is 
notoriously difficult to explicitly express parallelism in 
imperative languages; it must typically be expressed through 
compiler directives (pragmas) for loop unrolling, which 
rely on compiler optimizations. Granularity is an issue: 
most HLS compilations operate at the function granularity, 
which might force legacy software to be re-written in order 
to encapsulate hardware-destined and software-destined 
code separately. Timing is an issue, as it may be impossible 
to predict how many clock cycles a particular language con-
struct will take to execute, depending on the HDL generation 
strategy. As these languages were built for Von Neumann 
machines (implying a large, shared memory space), many 
language features are not directly amenable to hardware syn-
thesis (pointers and dynamic memory allocation are notori-
ous examples).

3.2  Functional Languages

Advocates for functional programming have developed sev-
eral HLS functional flavors, either through new complete 
languages or through small languages embedded in consoli-
dated ones such as Haskell. Table 2 depicts an overview of 
functional languages targeting FPGAs.

In some ways, functional languages are a better fit for 
HLS than imperative languages. The referential transparency 
that makes functional languages inherently suitable for par-
allelism lends itself well to hardware synthesis. Functional 
HDLs like C �aSH are able to model functions as structural 
definitions of circuits and function applications as instances 
of those circuits. The fundamental support for higher-order 
functions means that designs are often automatically para-
metric. In many ways, functional languages constructs can 
be mapped almost directly to RTL, allowing a designer 
working in a functional HLS language to have a very good 
idea of exactly what the hardware they are writing will look 
like, in contrast to imperative languages where there can be 
a much larger gap between the code and the hardware gener-
ated by synthesis tools.

There are also a number of disadvantages to using func-
tional languages for high level synthesis. Some constructs 
used in functional programming are not easily synthesizable. 
E.g., recursive functions can pose particular difficulties; if 
function applications are realized by instantiating hardware 
components, a recursive function would conceptually result 
in an infinitely large hardware construct. It is possible to 
identify certain special cases of recursion and generate 
specific hardware for them, but it is difficult to find a gen-
eral solution to the problem. Similarly, it is generally not 
possible to realize recursive data types in hardware. These 
limitations can be an issue for programmers who are used 

Table 1  Imperative/OO HLS.

Language Source

SystemC [33]
Handel-C [34]
OCAPI-XL [35]
Catapult-C [36]
Vivado HLS [37]
Impulse C [38]
C-to-Silicon [39]
Synphony C [40]
Cynthesizer [41]
LegUp [42]
ASC [43]
Altera C2H [44]
CHiMPS [45]
ROCCC [46]
GAUT [47]
Trident [48]
Altera SDK for OpenCL [49]
Xilinx SDAccel [50]
FCUDA [51]
LIME [52]
KIWI [53]
DWARV [54]
Bambu [55]
Hercules [56]
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to functional languages. As they may need to learn a very 
different approach to many problems then they are used to 
when writing software, this can negate some of the advan-
tages of high level synthesis.

3.3  Domain Specific Languages

In an effort to avoid the challenges of synthesizing complete 
complex languages, several Domain Specific Languages 
(DSL) have emerged in recent years. DSLs are well known 
in the software domain: they allow programmers to express 
solutions at a higher abstraction level than typical general-
purpose languages, within the semantics of the particular 
application domain.

In the context of HLS, DSLs have several other advan-
tages. The limited syntactical constructs are more easily 
synthesizable; in other words, it is far simpler to ensure 
complete language coverage. Knowledge of the application 
domain allows the use of hardware templates optimized 
for the domain: rather than generic hardware structures 
designed for flexibility, the HLS tool is free to infer spe-
cialized architectures, optimized for power, performance 
and area within the domain (e.g., in synchronous dataflow 
DSL synthesis, the HLS compiler is aware of the timing 
relationships between modules and can infer pipeline stages 
separated by registers; in asynchronous dataflow, the HLS 
compiler is forced to infer FIFOs between modules).

Darkroom [68] is language and compiler for image pro-
cessing. Its semantics allow it to synthesize line-buffered 
pipelines, with all intermediate values in local line-buffer 
storage. Images at each stage of computation are specified 
as pure functions from 2D coordinates to the values at those 
coordinates, declared using a lambda-like syntax. In the first 
version, it only supports programs that are straight pipelines 
with one input, one output, and a single consumer of each 
intermediate value. HIPAcc [69] (Heterogeneous Image Pro-
cessing Acceleration) is another DSL for image processing. 
It is a C++ embedded DSL [70], which uses the LLVM 

back-end [71] for software code generation, and C code 
annotated with pragmas for Vivado HLS.

RVC-CAL [72] is an asynchronous dataflow language 
which possesses backends for FPGA, e.g., Xronos [73]. 
RVC-CAL is based on dataflow process networks with the 
addition of firing rules. Xronos uses Orcc compiler [74] 
as its front-end, which parses RVC-CAL actors and gener-
ates an intermediate representation suited to its OpenForge 
back-end. Another streaming DSL is Optimus [75], based 
on the StreamIt language [76]. A common feature of both 
languages is that embedded memories are used to implement 
local arrays and other data structures used by the filters. 
Thus, for large stream graphs, embedded memories quickly 
become the bottleneck resource.

Spiral [77] is a code generation system for Digital signal 
Processing (DSP) transforms which has been extended to 
generate DSP IP cores for FPGA [78]. RIPL [79] employs 
image processing algorithmic skeletons as a general frame-
work for the application of user-defined functions, generat-
ing efficient streaming hardware pipelines.

3.4  New Generation Hardware Description Languages

Three new generation HDLs are particularly relevant: 
Bluespec [80], Chisel [81] and Cx [82].

Bluespec extends SystemVerilog to provide a higher level 
of abstraction. Interfaces are a core construct of Bluespec. 
Interfaces group signals according to methods, which define 
the semantics of access to a signal and can be used to param-
eterize modules upon instantiation. Rather than ”always" or 
”process" constructs familiar to Verilog/VHDL designers, 
Bluespec defines behavior through rules (i.e., guarded actions) 
which specify how data are moved from state to state.

Chisel is an HDL embedded in the Scala language 
which supports multiple design paradigms, including 
object orientation, functional programming, parameterized 
types, and type inference. Two notable features are the 
capability to specify composite types (i.e., C-like structs) 
and automatic inference of bit-widths, unlike strict bit-
width definitions in legacy HDLs. OO-like inheritance 
allows modules to be re-used in the definition of higher-
order modules without the messy sub-module instantiation 
(and corresponding ”rats nest" wiring). Computations can 
be expressed in functional-friendly constructs such as map 
and fold and the expressive generator systems simplifies 
the re-use of parameterizable modules.

Cx offers a highly structured syntax with strong bit-
accurate static typing. A Cx design is described as a set of 
sequential tasks connected together and executed concur-
rently, where dependency injection and inheritance can be 
applied to tasks. The Cx compiler generates human reada-
ble Verilog/VHDL code or C code for verification. Cx sys-
tems are described as Kahn Process Networks [83] where 

Table 2  Functional HLS. Language

C�aSH [57]
HML [58]
ForSyDe [59]
Lava [60]
PARO [61]
Esterel [62]
MMAlpha [63]
Verity [64]
ReWire [65]
SAFL [66]
Hume [67]
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connections are inferred by discrete non-interruptible exe-
cution rules. Unlike legacy HDLs, clocks are not explicitly 
declared within code, but language semantics strictly spec-
ify the timing behavior of language constructs, providing 
cycle aware design much like VHDL and Verilog.

Bluespec, Chisel and Cx are greatly superior to legacy 
HDLs. Software concepts such as inheritance and type com-
position have found the way to HDLs, reducing the seman-
tic gap between concept and implementation. Rather than 
leveraging existing software languages for FPGA synthesis 
(with the associated semantic problems), new generations 
HDL incorporated high-level language concepts in lan-
guages fine-tuned for hardware design. However, these new 
generation HDLs are still far from producing the type of 
disruptive innovations expected from HLs, primarily due 
to three reasons:

• They follow the same design principle as decades-
old legacy HDLs: FPGAs as a self contained entity. 
This contrasts the approach offered by FPGA ven-
dors, who provide software suites that allow design at 
board, rather than chip, level. These suites are made 
up of several stacks which, through a complex design 
process involving constraint files, IP libraries, propri-
etary buses, etc, generate FPGA designs incorporating 
peripheral devices access and software interaction. It 
would be expected of new generation HDLs to incorpo-
rate more complex constructs, modeling off-chip inter-
faces within the semantics.

• They do not incorporate the Von Neumann notion of 
memory. A substantial portion of state of the art FPGA 
systems incorporate external memory to accommodate 
data requirements. On new generation HDLs, this must 
be handled as in legacy HDLs: the programmer is respon-
sible for interfacing with memory and managing data 
transmission to and from, burdening them with imple-
mentation details independent of the top level computa-
tion. It would be expected of new generation HDLs to 
model memory transparently (e.g., by specifying mem-
ory-allocated data as a built-in type) and generate hard-
ware to transfer to and from memory seamlessly, through 
an on-chip hierarchy (physical constraints such as which 
FPGA pins are connected to memory can be resolved at 
linking stage, prior to synthesis).

• There are no semantic considerations for software inter-
face. With the rise of the platform FPGA, it would be 
expected that new generation HDLs would borrow 
concepts from research in hardware-software interface 
research (e.g., PushPush [84]) in order to provide seman-
tic mechanisms for incorporating typed functions for bi-
directional interaction with software objects.

3.5  HLS Evaluation

To compare the implications of different HLS paradigms, 
we implement two computations that are ubiquitous in the 
image processing domain: Finite-Impulse Response (FIR) 
filter and Eigenvalue/vector decomposition.

Since the HLS-acceleration of complete algorithms is 
significantly influenced by algorithm particulars (includ-
ing, e.g., input size), we instead focus on evaluating partial 
computations that are applicable to several classes of repre-
sentative solutions. E.g., FIR filters are applied within large 
groups of smoothing and sharpening applications, whilst 
Eigenvalue computation plays prominent roles in algorithms 
such as Principal Component Analysis and Optical Flow. 
Thus, their analysis provides valuable insights to designers 
interested in accelerating their own algorithms.

An FIR filter in discrete-time domain is defined in Eq. 1, 
where y[n] is the output, x[n] is the input sample, h[n] is the 
coefficient and L is the number of filter taps.

Eigenvalue/vector decomposition can be imple-
mented through the Approximate Jacobi method, rep-
licated from [85]. If Ax = b , where A is an n × n matrix, 
and x and b are column-vectors of length n, then A can 
be decomposed into a diagonal component D, a lower tri-
angular part L and an upper triangular part U such that 
A = D + L + U . The solution can be obtained iteratively 
via x(k+1) = D−1(b − (L + U)x(k)).

Table 3 presents results for FIR filter implementation 
through C �aSH (Haskell), Vivado HLS (C and SystemC), 
without any optimizations performed; Table 4 lists the 
same performance metrics obtained in the second scenario 
where we used optimization directives for parallelization. 
Tables 5 and 6 present the same results for Eigenvalue/vec-
tor decomposition.

(1)y[n] = x[n] ∗ h[n] =

L−1
∑

i=0

x[i]h[n − i]

Table 3  Standard Optimization Result (FIR Filter).

Haskell C SystemC

BRAM 0 0 0
DSP48E 0 2 2
FF 640 112 119
LUT 1235 129 200
Static Power (W) 0.574 0.123 0.123
Dynamic Power (W) 23.370 0.002 0.003
Latency(cycles) 10 617 248
Latency(absolute) (ns) 100 6170 2480
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Results are noteworthy, and particularly relevant to 
designers who want to select a HLS approach for their 
implementations. C �aSH regularly provides the best perfor-
mance (latency), at the expense of size and power consump-
tion (as a function of its greedy parallelization approach). In 
contrast, C and SystemC based approaches give more bal-
anced results; their strategy is to minimize chip area by re-
using components for computation, at the expense of longer 
processing time. These tradeoffs should guide adoption of 
HLS framework.

4  The IMP Language Architecture

IMP-lang (the IMage Processor Language) is a design space 
exploration and simulation language, useful for early design 
partitioning across heterogeneous cores. Its features are par-
ticularly relevant to the design of streaming systems, such as 
typically found in the embedded image processing domain, 
but it can be applied to other domains. The language compiler 
and interpreter is open-source, and can be obtained here.1

IMP-lang code is compiled to an intermediate represen-
tation (IR), where each IR sequence comprises the code 
required for each parallel computation ("task") in the IMP-
lang abstract machine, as well as constructs required for com-
munication and synchronization of each task. The interpreter 
executes IR code, deciding when to execute each task in func-
tion of code semantics and runtime operation, managing 
communication and synchronization (e.g.,, communication 
between tasks at the highest abstraction level corresponds to 
calls to the interpretation engine for data transfer and noti-
fication). The interpreter aids designers in performing early 
design space exploration of their design options across heter-
ogeneous deployments, through iterative compilation/evalua-
tion loops. A finalized design can be committed to hardware 
and software by replacing the interpreter with appropriate 
back-ends for hardware and software code generation.

4.1  Cores

A "core" is the primary unit in IMP-lang. It abstractly repre-
sents a piece of hardware that can execute code. For exam-
ple, a CPU, a GPU unit, or a bespoke accelerator, could all 
be represented as a core. Each core has code assigned for it 
in the form of functions (see Section 4.2). Each core should 
execute independently of the others, as they represent sepa-
rate hardware units. A core is considered to be active as 
long as at least one of its functions is running; if no cores 
have running functions, the program is finished (see Fig. 4).

4.2  Functions

There are three categories of functions: Main, Signal, and 
Stream functions. These will be elaborated on in the sec-
tions below.

4.2.1  Main Functions

The main function is the primary function of each core, 
and every core requires one and only one main function. It 
runs by default, and once the core’s main function reaches 
the end of its code, or the function is terminated, the entire 
core is considered to have finished its work and stops all 

Table 4  Performance-Optimized Results (FIR Filter).

Haskell C SystemC

BRAM 0 0 0
DSP48E 0 0 0
FF 640 522 633
LUT 1235 686 894
Static Power (W) 0.574 0.123 0.123
Dynamic Power (W) 23.370 0.013 0.004
Latency(cycles) 10 14 27
Latency(absolute) (ns) 100 140 270

Table 5  Standard Optimization Result (EVD).

Haskell C SystemC

BRAM 0 4 2
DSP48E 12 11 38
FF 388 2185 5795
LUT 7519 3122 8624
Static Power (W) 0.157 0.123 NA
Dynamic Power (W) 4.999 0.017 NA
Latency(cycles) 10 1860 8130
Latency(absolute) (ns) 100 18600 81300

Table 6  Performance-optimized Result (EVD).

Haskell C SystemC

BRAM 0 0 4
DSP48E 12 28 41
FF 388 24455 6179
LUT 7519 28020 13876
Static Power (W) 0.157 0.124 NA
Dynamic Power (W) 4.999 0.170 NA
Latency(cycles) 10 135 824
Latency(absolute) (ns) 100 1350 82401 https:// github. com/ paulo frgar cia- cmkl/ IMP

https://github.com/paulofrgarcia-cmkl/IMP
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execution. As a result, if the core needs to remain idle until 
some condition occurs (for example, a core representing a 
co-processor that does nothing until triggered, computes a 
value, and then returns to an idle state), the main function 
should wait in a while-loop lasting until the end of the simu-
lation (see Fig. 5).

4.2.2  Signal Functions

Signal functions are analogous to interrupt service handlers. 
If a core is given a signal function, and its main function 
enables signal interrupts, the core will run its signal function 
in response. It should run exclusively once triggered; that 
is, other functions must wait for it to finish before they can 
continue; Figs. 6 and 8 illustrate this blocking effect. A signal 
function can alter its behavior depending on which core trig-
gered it, allowing for a single core to respond appropriately 
to many different circumstances and hardware layouts.

4.2.3  Stream Functions

Stream functions serve the role of asynchronous sub- 
routines. They are composed of a block of executable code, 
an input queue, into which arguments are passed, and an 
output queue, onto which return values of the function 
can be pushed. The stream function can be invoked by any 
other function, including another stream function, or even 
itself. By invoking it, the arguments supplied to the call are 
collected and pushed onto the input queue, the capacity  
of which is infinite (by default in simulation, but can be 
modified in implementation to better suit the realities of 
target hardware), so that the function can be invoked at any 
time. Any argument passed to or returned from a stream 
function can be null-valued; function code can be written to 
behave differently when encountering a null argument, and 
so null arguments can be used to convey information (such 
as indicating that an error occurred, that a search returned 
no results, or as a flag passed to a stream function to indicate 
that it should perform an alternative set of operations on 
other input arguments).

Once input data is at the head of the input queue, the 
function’s code will execute, in parallel to the other func-
tions on the core (though it will still be paused while a 
core is handling a signal interrupt). Once it reaches the end 
of its code, it will terminate, and will push values of any 
outputs that it is defined to return onto its output queue. 
Just as any function of any core can write to the input of a 
stream function, the data at the front of the queue is visible 
publicly. Thus, any function can read from the queue; this 
destructively consumes the value at the front. The archi-
tecture of a stream function and its input/output queues is 
illustrated in Fig. 7.

A function may attempt to read from an output queue 
at any time. However, if the queue is empty, that function 
will block until data is present in the queue. This access 
is on an opportunistic basis; if multiple functions are 
attempting to access a queue, the next one to execute will 
take its turn first. This is not an issue if all functions are 
only reading, as the read process is non-destructive. If one 
or more of the competing functions is waiting to discard a 
value from the queue, however, this can result in destroy-
ing data that other functions are expecting to read, with 
the other functions then erroneously reading the next value 
in the queue, or blocking if the queue has been left empty. 
These sorts of conflicts are presently the responsibility of 
the developer to avoid; implementation-specific means to 
these conflicts are possible, but currently unimplemented 
(see Fig. 8).

Figure  4  Illustration of a core with a main, signal, and two stream 
functions.

Figure  5  Class diagram illustrating the relationships between cores 
and the three function types.
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4.3  Inter‑core Communication

IMP-lang provides two methods for cores to intercommuni-
cate: stream and signal functions. Signal functions can be 
used to emulate interrupts from hardware peripherals such 
as keyboard, mice or other buttons, while stream functions 
can be used to emulate data transfers over a bus: for exam-
ple, a primary core providing data to a core acting as a co-
processor and awaiting the result.

A straightforward example of a system that can be built in 
IMP-lang is illustrated in Fig. 9. This system consists of three 
cores, and highlights a basic use of both modes of inter-core 
communication. The first is a main core, which could represent 
the main processor of a computer. The second is a timer core, 
which counts upwards until hitting a defined limit, signaling the 
main core upon finishing its count, then beginning a new cycle; 
this core could represent one of the timing modules built-in to 
the main processor. The third is a printer core, to which the 
main core sends an integer representing the current time to upon 
receiving a signal from the timer core, which it then prints. This 

could represent a hardware printer connected over a serial port, 
or the standard output stream of the operating system.

4.4  Hardware Synthesis

The constructs that make up IMP-lang are, by design, all 
directly amenable to straightforward hardware implementa-
tion. Cores, the primary unit of parallel computation in the 
implied model of computation, can be synthesized to inde-
pendent hardware modules, corresponding to spatial paral-
lelism. Internal functions represent further sub-divisions of 
parallel computation. Signals control hardware schedulers 
that enable or pause each computational pipeline, and trigger 
sub-computations, i.e., interrupts. Inter-core communication is 
achieved through abstract FIFOs at the language level, mapped 
to concrete hardware FIFOs once average occupancy has been 
determined through high level experimentation. Interfaces 
across hardware and software (consistently, at the language 
level, achieved though signals and FIFOs) can be trans-
lated to equivalent software/hardware interfaces in concrete 

Figure 6  Timing diagram 
illustrating the program flow on 
a core when receiving a signal 
interrupt.

Figure 7  Architectural diagram 
of a stream function, illustrating 
its input and output queues.

Figure 8  Timing diagram 
illustrating the program flow on 
a core and its stream function 
when receiving a signal inter-
rupt. Note how Core 1’s stream 
function also halts while the 
signal function is being handled.
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implementations. Although these are target system dependent, 
state of the art FPGA integration methodologies (e.g., Xilinx 
Xillybus [86]) use equivalent constructs.

5  Demonstrative Experimental Evaluation

5.1  Experiment 1

Let us imagine an arbitrary function, Func. We will use this 
function, run with inputs of increasing value, as an example 
to implement and compare three different strategies for coor-
dinating parallel execution among a fixed number of cores. 
This could represent any computation that generates a new 
data frame from a previous one, where a data frame can be 
an image: for example, pixel-wise or windowing operations 
such as 2-D filters or a convolutional layer.

The first is the sequential approach, as illustrated in 
Fig. 10. It runs on a single execution unit, which computes 
and prints the output of each iteration of the function in turn.

The next approach introduces parallelism. It runs on three 
cores; two are identical, programmed with a stream function 
that executes the function, and the third acts as a coordinator. 
The coordinator core issues commands to the two computing 
cores to each compute Func, then collects the results and 
prints them. Since the coordinator core issues a command 
and then waits for the results, we call this a "synchronous" 
parallelism strategy (see Fig. 11).

The third approach takes advantage of stream functions’ 
input and output queues. In it, instead of issuing and wait-
ing for one command at a time, the coordinator core issues a 
batch of several commands at once to the computing cores and 
then collects and prints the results of the batch. This "batch-
parallel" approach is illustrated in Fig. 12. This approach 
simulates asynchronous behavior across main-secondary 
computing units. Main unit issues as many requests (bundled 
with input data) as requires, regardless of secondary units’ 
state. Requests sit in connection FIFOs, until such time when 
secondary units are ready to accept them. This illustrates the 
ease of separating concerns using FIFO interfaces (akin to 
dataflow HLS, as described in Sect. 3).

Each of these three approaches were run, and data was 
collected measuring the total execution time taken for com-
puting Func for each input value, as well as the amount of 
time that the coordinator core (if present) spent blocked 
while waiting for the computation cores to finish their work. 
The results are detailed in Table 7.

Figure  9  Block diagram of a sample system illustrating inter-core 
communication.

Figure 10  Program flow diagram of sequential function computation.
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Figure 11  Program flow diagram of synchronous-parallel function computation.

Figure 12  Program flow of batch-parallel function computation.
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5.2  Experiment 2

Here, we explore the performance impact of offloading compu-
tation onto multiple cores. We begin with a single core tasked 
with running three arbitrary functions, all of which take a sin-
gle integer as input and return a single integer as output; these 
will be labeled F1, F2, and F3. We will then begin moving 
these functions to additional cores, and examining the effect on 
execution time and parallelism as offset by the increased cost in 
"size" incurred by adding more compute units.

The first design is illustrated in Fig. 13. The single core 
repeats a cycle of computing each function in turn, for inputs 
ranging from 1 to 49, printing the result of each. The execu-
tion times of the functions were profiled, revealing that F1 
took at worst 31 cycles to run, F2 took at worst 131 cycles, 
and F3 took up to 649 cycles to complete.

The second design, illustrated in Fig. 14, adds a second 
core, onto which the function shown to consume the most 
time (F3) is offloaded by implementing it as a stream func-
tion that the original core calls, before computing F1 and 
F2; the intent is to allow the added core to compute the most 
time-consuming function in parallel.

The third design, illustrated in Fig. 15, furthers this strat-
egy by offloading the second most time-intensive function 
(F2) onto yet another core. These parallelized designs are 
also run, executing each function in turn with inputs ranging 
from 1 to 49; data is collected on total execution time, the 
number of cycles in which execution is occurring in parallel, 
and the number of cycles that the coordinator core spends 
blocked. A sibling configuration was also run, wherein F1 
is offloaded instead of F2. Results of this experiment are 
detailed in Table 8.

5.3  Results

In the IMP-lang interpreter, each round-robin cycle of core 
execution takes up one abstract time unit (whether that unit 
is a microsecond, second, or hour is irrelevant at this level 
of abstraction). Thus, the time a program takes to execute 
can be measured in terms of these cycles. As the simulation 
is fully deterministic, there is no issue of variance between 
runs to account for.

Figure 16 displays the execution profiles of each of the 
core coordination strategies. The Sequential strategy took 
the longest to execute at 1279 cycles. This was expected, as 
it makes no use of parallelism; this lack of parallelism also 
means that the Sequential strategy cannot have spent any 
time I/O blocked. The strategies that do make use of paral-
lelism (Synchronous and Batch) show significant improve-
ments in execution, with Synchronous showing a 42% reduc-
tion in execution time, and Batch improving even further 
than Synchronous, with a 48% reduction in execution time. 
Batch also spent 9.7% less time waiting for its co-processors 
to finish their computations.

Overall, the Batch coordination strategy proved to be the 
most time-efficient of the three proposed. Crucially, this gain 
in performance was not difficult to achieve, as both altering 
the architecture of the system (creating the two computing 
cores) and tweaking the system’s behavior (modifying the 

Table 7  Numeric Results of Experiment 1.

Strategy Execution Time (Cycles) Time I/O 
Blocked 
(Cycles)

Sequential 1279 N/A
Synchronous 738 576
Batch 654 520

Figure 13  Program flow diagram of F1, F2, and F3 running on a sin-
gle core.
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Figure 14  Program flow dia-
gram where F3 is offloaded to a 
separate core.

Figure 15  Program flow diagram where F2 and F3 are both offloaded to separate cores.
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coordinator core’s call strategy) are very straightforward in 
IMP-lang.

Figure 17 displays the execution profiles of each of the 
function allocation strategies. As with the first experiment, 
the strategy that made no use of parallelism was the slowest 
to finish, though it also by definition spent no time blocked. 
As might be expected, offloading F3, the slowest function, 
provided a large savings in execution time (a nominal 22% 

savings). Offloading the other functions provided compara-
tively negligible benefit to execution time, on the order of 
less than a hundred cycles.

The large number of cycles that the main core spent wait-
ing for execution to complete in the strategy where only F3 
was offloaded is consistent with the measured fact that F3 
has an extremely outsized computation time compared to 
the sum of F1 and F2; 63% of the execution time was spent 
waiting, meaning that only 37% was needed for computing 
F1 and F2 as well as printing results and issuing commands 
to the core computing F3. A developer using IMP-lang for 
design-space exploration could conclude that since even 
when offloaded, F3 takes up a large amount of time, they 
could use the time wasted by awaiting its completion dif-
ferently. By exploring coordination strategies similarly to 
Experiment 1, they may decide that the extra time could be 
used for computing iterations of F1 and F2 between each 
iteration of F3, or on other independent tasks that the system 
may be used for.

Figure 16  Execution times and 
number of I/O blocked cycles 
for each coordination strategy.

Table 8  Numeric Results of Experiment 2.

Strategy Execution 
Cycles

Parallel 
Cycles

Blocking Cycles

Single Core 21630 N/A N/A
Offload F3 16803 16792 10604
Offload F3 & 

F2
16752 16741 14147

Offload F3 & 
F1

16752 16741 11512
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6  Conclusions and Perspectives

This paper offered a primer on hardware acceleration of 
image processing, focusing on embedded, real-time appli-
cations. We surveyed the landscape of High Level Synthesis 
technologies that are amenable to the domain, and presented 
our ongoing work on IMP-lang, a language for early stage 
design of heterogeneous image processing systems.

There are several critical insights readers should take 
away. First, hardware acceleration is not just a process of con-
verting a piece of computation into an equivalent hardware 
system: that naive approach offers, in most cases, little ben-
efit. Instead, acceleration must take into account how data is 
streamed throughout the system, and optimize that streaming 
accordingly. Second, the choice of tooling plays an impor-
tant role in the results of acceleration. Different HLS tools, 
in function of the underlying language paradigm, produce 
wildly different results across performance, size, and power 
consumption metrics. Third, as can be observed from IMP-
lang, bringing heterogeneous considerations to the language 

level offers significant advantages to early design estimation, 
allowing designers to partition their algorithms more effi-
ciently, iterating towards a convergent design that can then 
be implemented across heterogeneous elements accordingly.

Ongoing and future work must address several chal-
lenges. Closer integration of design and development is 
still required; whilst IMP-lang is a step in that direction, 
improvements on automatic code generation for different 
targets must still be performed. Critically, there is still no 
consensus on the optimum design flow for this class of sys-
tems; the methodology and tool landscape is as heterogene-
ous as the created designs.
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Figure 17  Execution times, 
amount of parallelism, and 
number of I/O blocked cycles 
for each function assignment 
strategy.
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