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Abstract
Most deep learning based single image dehazing methods use convolutional neural networks (CNN) to extract features, 
however CNN can only capture local features. To address the limitations of CNN, We propose a basic module that combines 
CNN and graph convolutional network (GCN) to capture both local and non-local features. The basic module consist of 
a CNN with triple attention modules (CAM) and a dual GCN module (DGM). CAM that combines the channel attention, 
spatial attention and pixel attention is designed to earn more weight from important local features. DGM combines spatial 
coherence computing and channel correlation computing to extract non-local information. The architecture of the network 
is similar to U-Net, and skip connections used in the symmetrical network can pass the image details from shallow layers 
to deep layers. Experimental results in several datasets indicate that the proposed method outperforms the state-of-the-arts 
both quantitatively and qualitatively.

Keywords Graph convolutional network · Attention · Image dehazing · Deep learning

1 Introduction

Image dehazing is a typical low-level image processing 
problem in the real world. Since there exist infinite feasible 
solutions, it is a highly ill-posed problem, and it has become 
a hot topic in the field of image restoration. The atmosphere 
scattering model [1, 2] is a simple yet effective method to 
solve the problem.

where I(x) is the hazy image and J(x) is the clear image, A is 
the global atmospheric light which represents the intensity 
of the scattered light of the scene, and t(x) is the transmission 
map which describes the attenuation in intensity.

Let the clear image J(x) be the output, formula (1) can be 
re-written as:

From formula (2), we can observe that the way to restore 
the clear image J(x) is to estimate A and t(x) . However, only 

the hazy image I(x) is known, it is difficult to restore the 
clear image J(x).

In recent decades, lots of techniques have been proposed 
to remove the hazy from images, and significant progress 
has been achieved. Generally, single image dehazing meth-
ods can be categorized into two classes: model-driven and 
data-driven. Early works are mostly based on the physic 
model such as the atmosphere scattering model [1], and 
those methods usually try to design hand-crafted features 
to estimate A and t(x) via computing formula (2), or explore 
prior knowledge to deal with the problem [3]. However, 
those methods are easily sensitive to image variations such 
as changes in viewpoints, illumination, and scenes [4].

Recently, data-driven methods based on deep learning 
have become the dominant techniques to solve the low-
level image processing [4–8] and the high-level computer 
vision [9, 10]. The data-driven methods using deep learn-
ing directly regress the intermediate transmission matrix or 
the final clear images due to the massive training data and 
powerful computing power [5, 6]. Compared to traditional 
model-driven methods, the data-driven methods based on 
deep learning achieve superior performance with robustness.

Most deep learning methods use convolutional neural net-
works (CNNs) as the backbones, although great progress has 
been made in single image dehazing, CNN can only capture 
the local spatial image feature but lack in broad contextual 

(1)I(x) = J(x)t(x) + A(1 − t(x))
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information. Dilated convolution [11] is proposed to obtain 
larger receptive field, however it is still a convolution opera-
tion, the feature captured from dilated convolution is still 
local spatial information. While graph convolutional net-
work (GCN) is proved to extract long-range contextual fea-
tures [12], such as non-local net [13], which is widely used 
in image and video applications [14, 15]. However, there are 
still few works to apply GCNs into image dehazing.

Recently, various attention mechanisms are proposed to 
extract local information, including spatial neighbor infor-
mation [13], channel-wise and pixel-wise feature. However, 
haze in image is unevenly distributed, and the network with 
single attention mechanism cannot make full use of the 
information from the image.

In summary, we propose a network with GCN to address 
the limitations of CNNs, also, we introduce a CNN module 
with multi-attention mechanisms to gain more information 
from the image. The proposed end-to-end network combines 
GCN and multi-attention CNN, and it can extract both local 
and broad contextual information.

The follows are our contributions.

1) A CNN with triple attention modules (CAM) is pro-
posed, and the CAM combines the channel attention, 
spatial attention and pixel attention in channel-wise, 
spatial-wise and pixel-wise to earn more weight from 
important local features. The dilated convolution is used 
to obtain larger receptive field.

2) A dual GCN module (DGM) is proposed, and the DGM 
combines spatial coherence computing and channel cor-
relation computing to extract non-local information.

3) Our network is an end-to-end network and is easy to imple-
ment. The experiment results show that our work achieves 
superior performance in comparison with the state-of-the- 
arts on both synthetic and real- world data sets.

2  Related Work

In general, most single image dehazing works can be cat-
egorized into model-driven and data-driven two classes. The 
atmospheric scattering model is a most widely used data-
driven method, and the works based on the model follow 
the similar three steps: (1) estimating the transmission map 
t(x) by the hazy image samples; (2) estimating the global 
atmospheric light A using empirical methods; (3) computing 
the clear image J(x) according to formula (3).

Early methods often require multiple images from the 
same scene under different conditions [2, 13–15] to estimate 
transmission mapt(x) . In the different weather conditions, 
researchers took several images of the same scene [2] or 

different angles [16] to estimate t(x) . However, these methods  
do not work when there only exist one image for a scene.

Fattal [17] proposed a refined image formation model 
to estimate the scene transmission and surface shading by 
separating the hazy image into regions of constant albedo. 
But the method can only deal with the images that contain 
a slight haze and it requires time-consuming computations. 
He [3] discovered the dark channel prior (DCP) and used the 
soft-matting operations to estimate the transmission matrix, 
and the method is more reliable and simple, followed by 
many successors. But when the color of the scene objects 
are similar to the atmospheric light, the DCP is found to be 
unreliable, and DCP is computationally expensive. Gibson 
et al. [18] proposed a standard median filter to improve the 
DCP computing speed. Martin et al. [19] adopted Markov 
Random Fields for image restoration.

Recently, with the great success of deep learning in 
diverse computer vision tasks, the data-driven de-hazing 
approaches using CNNs become popular. The CNN methods 
can directly learn t(x) or restore clear image from massive 
data. Li et al. [20] first proposed a novel end-to-end light-
weight CNN called AOD-Net by formulating the atmosphere 
light and transmission map in one matrix to generate clear 
images directly. But the architecture of AOD-Net is too sim-
ple, the results are not well. Cai et al. [6] designed a more 
complex network called DehazeNet to generate the clear 
image by estimating atmospheric light from the hazy image 
also, and the results are better than AOD-Net. Similarly, dif-
ferent architectures are designed generate clear image, such 
as multi-scale CNN [4, 21], which can generate a coarse-
scale transmission matrix and then gradually refined it. Liu 
et al. propose a mesh network structure for image dehazing 
[22]. Dong et al. [23] proposed a boosted U-Net based on 
boosting and error feedback. Liu et al. proposed a double 
residual connection [24] to perform the dehazing. Chen 
et al. proposed an encoder-decoder network called GCANet 
to fusion feature in different layers [25]. Besides, generative 
models such as GAN [8] and diffusion-driven [26] are used 
for image dehazing. However, the above networks are mostly 
based on CNN and cannot extract broad contextual feature.

Graph Convolutional Networks have been widely used 
in many high-level computer vision tasks to extract contex-
tual information. For image and video, the most widely used 
form of GCNs is the non-local network [13]. In recent years, 
the GCNs have been applied to capture the global contextual 
information [27]. However, there are still few works to apply 
GCNs into image dehazing.

Attention mechanisms are widely used in both high level 
computer vision and low level computer vision tasks, and 
its main idea is to capture long-range inter-dependencies 
in channel-wise, spatial-wise or pixel-wise. GridDehazeNet 
[22] used a channel-wise attention mechanism to make the 
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network more flexible information exchange and aggrega-
tion. FFA-Net [28] combined channel-wise and pixel-wise 
attention to capture more information, and it proved that 
multi-attention is feasible and effective.

3  Proposed Method

In this section, we mainly discuss the detail of the proposed 
graph convolution with attention network, which is a train-
able end-to-end network and has no reliance on the atmos-
phere scattering model. The architecture of our network 
looks like the U-Net [29], shown in Fig. 1. The skip con-
nection used in the symmetrical network can pass the image 
details from shallow layers to deep layers. The network takes 
the hazy image X as the input and the clear image Y as the 
predicted result. The network consists of two convolution 
layers for pre-processing, several basic units and two convo-
lution layers for reconstructing output. The pre-processing 
and reconstruction layers are designed standard 3 × 3 convo-
lutional operations. The basic unit contains CAM and DGM, 
as shown in Fig. 1.

3.1  CNN with Attention Module

In our framework, a CNN with triple attention modules 
(CAM) is proposed, the architecture of basic CAM is 
depicted in Fig. 2, it consists of two dilated convolution lay-
ers with 3 × 3 kernel size, residual learning and an attention 
block, the first dilated convolution layer with DF = 1 is acti-
vated by ReLU, and the DF of the second dilated convolution 
layer is set to 3. A global residual learning connects the input 
feature and the output feature. With the local residual learn-
ing and global residual learning, the low-frequency regions 
from the input features can be learned by the skip connection.

Dilated convolutions can increase the receptive field 
without increasing parameters, the output of dilated convo-
lution is defined as:

Where FDF and Fin are output features and input features, 
respectively, DF is the dilation factor and K is the convolu-
tion kernel size.

The attention block (AB) combines the channel attention, 
pixel attention and spatial attention, which can provide addi-
tional flexibility in dealing with non-local and local informa-
tion, and can expand the representational ability of CNNs. 
and the architecture of AB is depicted in Fig. 3. The “S” in 
the figure means sigmoid activation function, and the “C” 
means concatenation operation.

(3)FDF = KDF ∗ Fin + b

3.1.1  Channel Attention

Generally, a network uses a set of convolutional layer to 
express the neighboring spatial dependencies within local 
receptive fields. However, the global spatial patterns also need 
to be considered under the complicated non-uniform condition. 
When the neighborhoods of the image contain strong hazy 
component, the contextual information from clear regions may 
be required. Recently, the channel attention module [30] is 
developed to capture a richer non-local and overall feature by 
modeling channel interdependencies. Thus, we propose the 
channel attention module to extract non-local context features.

The channel attention module mainly concerns that differ-
ent channel features have totally different weighted informa-
tion. Firstly, a global average pooling is used to capture the 
channel-wise global spatial features.

where Hp means the global average pooling function, Xc(i, j) 
is the value of c-th channel of input Xc at position(i, j) . And 
the dimension of the feature changes from C × H ×W to 
C × 1 × 1 , C denotes the channels, and H ×W is the size of 
the feature map.

Then two dilated convolution layers, which are activated by a 
ReLU function and a sigmoid function respectively are applied 
to get the weights of the different channels, and DF of the first 
dilated convolution layers is set to 1, and the second is set to 3.

where σ stands for the sigmoid function, and δ is the ReLU 
function.

Finally, the weight of the channel F∗
c
 is computed by ele-

ment-wise multiplying the input Finput and Cf .

3.1.2  Pixel Attention

Considering that the hazy image distribution is variant on 
the different image pixels, we further learn the spatially 
variant properties of the hazy images in an adaptive way by 
the pixel attention module. The pixel attention is applied to 
get weights from pixel, which makes the network pay more 
attention to informative features, such as thick-hazed pixels 
and high-frequency image region.

The architecture of pixel attention module is depicted 
in Fig. 3, it consists of two dilated convolution layers with 
ReLU and sigmoid activation function.

(4)gc = Hp

�

Fc

�

=
1

H ×W

∑H

i= 1

∑W

j= 1
Xc(i, j)

(5)Cf = σ(DConv(δ(DConv(gc))))

(6)F∗
c
= Finput ⊙ Cf
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Then, we element-wise multiply F*
c
 and Cp as the output 

of the channel-pixel attention map:

(7)Cp = σ(DConv(δ(DConv(F∗
c
))))

(8)FCP = F∗
c
⊙ Cp

3.1.3  Spatial Attention

Spatial attention is designed to exploit the spatial atten-
tion map from the input convolutional features Finput . The 
spatial attention module first applies global average pool-
ing on Finput along the channel dimensions and outputs a 

Figure 1  The architecture of the network. The network is symmetrical, it consists of two convolution layers for pre-processing, several basic 
units and two convolution layers for reconstructing output. The skip connections are used between shallow layers and deep layers.
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feature map f ∈ ℝ
H×W , the feature f then is passed through 

a dilated convolution layer with DF = 1 and sigmoid acti-
vation to get the spatial attention feature fSA ∈ ℝ

H×W.
Finally, the spatial attention map fSA and channel-pixel 

attention map FCP are concatenated, and then the concate-
nated feature map passed through a convolution layer with 
1 × 1 kernel size to obtain the attention map.

3.2  Dual GCN Module

Although dilated convolution and attention mechanism are 
used in the CAM, it is still a convolution operation essen-
tially, the feature captured from CAM is still lack in con-
textual information. To address the limitations of CAM, we 
adopt a dual GCN module to capture the contextual features 

Figure 2  CAM.

Figure 3  Attention block.
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for image de-hazing. The GCN module contains spatial 
GCN operation and channel GCN operation. The spatial 
GCN [14] is designed to explore global spatial information 
between pixels. The channel GCN [31] is derived from the 
channels of feature map to explore the global information 
between channels. With the dual GCN module, the global 
spatial and channel information are captured.

Spatial GCN is designed to explore global spatial 
information which contains the relationship between one 
pixel and all other pixel in the feature map. According 
to [15], let F ∈ ℝ

HW×C be the input feature map, where 
H and W  are the height and width of the features map F 
and C denotes the channels number, the GCN operation 
is defined as:

Where A and W are the adjacency matrix and the weight 
matrix, respectively. The pixels are the nodes of the graph, 
the information are passed between all the nodes, and the 
non-local information are extracted. The spatial GCN is 

(9)FGCN = AFW

depicted in Fig. 4. As the figure shows, the input feature 
is processed by three convolution layer with 1 × 1 kernel 
size, and the channel size is reduced from C to C∕2 , a 
softmax operation is used in the last two convolution layer 
to avoid numerical instabilities [32]. With a local shortcut, 
the output of spatial GCN FsGCN is defined as:

where Fs = conv
(

Fin

)

 , AsGCN is the adjacency matrix, which 
is calculated by matrix multiplication operation,

and WsGCN can be seen as the weight matrix, which is used 
to perform a hidden-to-output operation by a 1 × 1 convolu-
tion layer.

Channel GCN is designed to capture the channel correla-
tions between the feature maps, the channel GCN is defined as:

(10)FsGCN = Fin + AsGCNFsWsGCN

(11)AsGCN = conv
(

Fin

)

⊗ conv
(

Fin

)T

(12)FcGCN = Fin + �
(

F̂c

)

= F
in
+ �

(

AcGCNFcWcGCN

)

Figure 4  spatial GCN and 
channel GCN, the “1 × 1 Conv” 
means 1 × 1 convolution opera-
tion which is used to change the 
dimension of feature, exchange 
information from different chan-
nels and add non-linear activa-
tion. The “1D Conv” is dilated 
convolution layers with DF = 1 
to obtain larger receptive field. 
“×” means the matrix multipli-
cation operation.

Figure 5  The Dual GCN mod-
ule, the features from two GCNs 
are concatenated.
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where AcGCN can be considered as the adjacency matrix, 
WcGCN is the weight matrix, and �(⋅) is used to perform a 
hidden-to-output operation by a 1 × 1 convolution layer.

Two 1 × 1 convolution layers ς(⋅) and κ(⋅) re adopted on 
the input Fin to aggregate different channel features, where 
ς
(

Fin

)

∈ ℝ
HW×C∕2 and κ

(

Fin

)

∈ ℝ
HW×C∕4 . Then we multiply 

the two matrix to get the output:

(13)Fc = softmax(κ
(

Fin

)T
⊗ ς(Fin))

The output feature Fc∈ ℝ
C∕4×C∕2 contains C∕4 nodes 

whose dimension is C∕2 , also a softmax operation is used to 
avoid numerical instabilities. An identity matrix I is used to 
propagate the nodes [33], and the F̂c can be calculated by:

the adjacency matrix AcGCN∈ ℝ
C∕4×C∕4 and the weights 

matrix WcGCN∈ ℝ
C∕2×C∕2 are implemented by two dilated 

convolution layers with DF = 1 and DF = 3, respectively. 
Since the size of graph F̂c is C∕4 × C∕2 , a 1 × 1 convolu-
tion layer �(⋅) is used to reshape the output size to HW × C.

Dual GCN module consist of the spatial GCN and the channel 
GCN, The architecture is depicted in Fig. 5, and the “C” means 
concatenation operation. We concatenate the FsGCN and FcGCN , 
and then the concatenated feature map passed through a convolu-
tion layer with 1 × 1 kernel size to exchange information from 
different channels, and finally output the global information.

3.3  Loss Function

Researchers have proposed lots of loss functions to deal with 
image de-hazing, such as perceptual loss, Mean squared 
error (MSE), GAN loss, L2 loss and smooth L1 loss. Since 
the smooth L1 loss performs better PSNR and SSIM metrics 
in many image restoration tasks [34], we adopt the loss func-
tion to train our network also:

(14)�Fc = (I + AcGCN)(κ
(

Fin

)T
⊗ ς(Fin))WcGCN

Figure 6  Loss curve on SOTS.

Figure 7  Qualitative comparisons on SOTS.
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where

Ĵi(x) and Ji(x) stand the intensity of the i th color channel of 
pixel x in the de-hazed image and hazy image, respectively, 
and N is the pixel count of the image.

4  Experiment Results

4.1  Datasets

We evaluate our method on several datasets including 
RESIDE [35], Dense-Haze [36], NH-HAZE [37] and real-
world dataset [38]. RESIDE is a new benchmark for image 
de-hazing to from large-scale training sets, the dataset con-
tains synthetic hazy images in both in-door and outdoor sce-
narios from depth dataset [39] and stereo datasets [40]. After 
data cleaning, the Indoor Training Set (ITS) of RESIDE 
contains 1399 clean images and 13,990 hazy images that 
generated by the clean images with global atmosphere light 

(15)Ls =
1

N

∑N

x=1

∑3

i=1
Fs(Ĵi(x) − Ji(x))

(16)Fs(e) =

{

0.5e2, if |e| < 1,

|e| − 0.5, otherwise.

A ∈ [0.7,1.0] and scatter parameters t ∈ [0.6,1.8] . The Out-
door Training Set (OTS) contains 8477 clean images and 
296,695 hazy images that generated by the clean images 
with A ∈ [0.8,1.0] and t ∈ [0.04,0.2] . The Synthetic Objec-
tive Testing Set (SOTS) of RESIDE is used for testing, and 
the SOTS contains 500 indoor images and 500 outdoor 
images. And the Real-world Task-driven Testing Set (RTTS) 
of RESIDE contains 4, 322 real-world hazy images crawled 
from the web. The images of Dense-Haze, NH-HAZE and 
real-world dataset [33] are also real-world hazy images, and 
we evaluate the robustness of our method in the real-world.

4.2  Training Settings and Implementations

We resize the size of training images to 240 × 240, and ran-
domly rotate the images by 90,180,270 degrees and hori-
zontal flip the images for data augmentation. We choose the 
Adam optimizer for accelerated training, where β1 and β2 take 
the default values of 0.9 and 0.999, respectively. The num-
ber of Basic Unit is set to 11. We adopt the cosine anneal-
ing strategy [41] to adjust the learning rate ηtfrom the initial 
value � = 1 × 10

−4 , to 0 by following the cosine function:

(17)ηt =
1

2
(1 + cos(

t�

T
))�

Table 1  Quantitative 
comparisons.

Method Indoor Outdoor Dense-Haze NH-HAZE

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP [3] 16.62 0.8179 19.13 0.8148 10.06 0.3856 10.57 0.5196
AOD-Net [20] 19.06 0.8504 20.29 0.8765 13.14 0.4144 15.40 0.5693
GCANet [25] 30.23 0.9800 28.68 0.9712 13.21 0.4253 17.23 0.6138
GFN [21] 22.30 0.8800 21.55 0.8444 13.96 0.4274 16.87 0.5317
DehazeNet [6] 21.14 0.8472 22.46 0.8514 13.84 0.4252 16.62 0.5283
GridDehazeNet [22] 32.16 0.9836 30.86 0.9819 13.31 0.3681 13.80 0.5370
FFA-Net [28] 36.39 0.9886 33.57 0.9849 14.39 0.4524 19.87 0.6915
Ours 37.01 0.9912 34.69 0.9903 15.36 0.4853 19.96 0.7216

Figure 8  Qualitative comparisons on RTTS.
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where T  is the total number of training batches, and t  is 
the current training batch. We implement the network on 
Pytorch, we can observe that the loss drops fast, the model 
converges easily as show in Fig. 6, where X axis indicates 
training steps, and Y indicates loss value.

4.3  Results and Analysis

In this section, we will compare our network with previous 
state-of-the-art image de-hazing algorithms including the 
DCP [3], AOD-Net [1], GCANet [25], GFN [21], DehazeNet 
[6], GridDehazeNet [22] and FFA-Net [28] both quantita-
tively and qualitatively. Among these methods, DCP method 
is a prior-based method which is regarded as the baseline in 
single image de-hazing, and the others are all data-driven 
methods based on CNN. Peak signal to noise ratio (PSNR) 
and structure similarity (SSIM) are used for quantitative 
assessment of the de-hazed outputs. The quantitative com-
parison results are shown in Table 1.

From Table 1, it can be seen that the value of PSNR 
and SSIM of our proposed is better than the other meth-
ods. Compared to the FFA-Net which only capture the local 
information by attention net, our result of PSNR improves 
up to about 1%.

The qualitative comparisons of visual effect on SOTS 
are shown in Fig. 7. We select four images from the outdoor 
dataset and the indoor dataset respectively, and the upper 

two rows are indoor results, the left two rows are outdoor 
results. The first column is the hazy input and the last col-
umn is the ground-truth, and the middle columns are de-
hazed results from DCP, AOD-Net, GCANet, FFA-Net 
and our network respectively. From the results, we can find 
that the DCP method suffers from severe color distortion 
extremely, especially the blue sky and the halo of the sun in 
the outdoor images, also DCP loses some details. AOD-Net 
cannot remove all the hazy regions from the hazy image 
because of its simple network architecture, and the bright-
ness value of the output is lower than others. GCANet also 
performs not well at the blue sky and the halo of the sun. 
FFA-Net performs as well as ours on SOTS. The images 
recovered from our network are almost entirely in line with 
real scene information, especially, the restoration of blue sky 
and halo images is much better.

We further give the qualitative comparisons on RTTS [35] 
and real-world dataset [38] in Figs. 8 and 9, respectively, 
the models used are all trained on RESIDE, and the results 
are largely consistent with those on the SOTS dataset. The 
DCP and GCANet still suffer from severe color distortions, 
and AOD-Net can’t remove the haze completely and the out-
put images are of low-brightness. GridDehazeNet also can’t 
remove the haze completely and produce some white spots. 
Compares to our results, FFA-Net performs not well either 
such as the second image in Fig. 9. All the methods cannot 
remove the hazy far away such as the end of the road in the 

Figure 9  Qualitative comparisons on the real-world dataset.

Table 2  Comparisons of model 
complexity.

Method AOD-Net GCANet DehazeNet FFA GridDehazeNet ours

Parameters  (106) 0.002 0.7 0.008 4.7 3.3 2.1
FLOPs  (109) 0.2 24 0.9 530 124 246



526 Journal of Signal Processing Systems (2023) 95:517–527

1 3

first row of Fig. 8 and the last row of Fig. 9, but other methods 
suffer from severe color distortions in the hazy regions. Above 
all, our method is capable of outperforming the other methods 
in image details and color fidelity in general.

Furthermore, we provide the model complexity compari-
son with SOTA methods using total parameter number and 
floating point operations (FLOPs) and the results are reported 
in Table 2. The total parameter number reflects the memory 
required, and FLOPs reflects the computation required. AOD-
Net shows a clear advantage because of its simplest network. 
Compared with the SOTA methods, our net performs best but 
not cost the most.

4.4  Ablation Studies

In this section, we present ablation experiments to discuss 
the CAM and DGM of our network. The factors below are 
mainly concerned: (1) CAM and DGM in the basic unit; (2) 
the attention modules in CAM; (3) the GCN modules in DGM. 
Evaluation is performed on SOTS outdoor dataset with the 
same training epoch of each model, and the images as training 
input are cropped to 120 × 120, and the other parameters are 
set the same as Section 4.2. The results are shown in Table 3. 
From the results, we can observe that the PSNR achieves a 
best value when CAM and DGM are used completely, and 
when some modules are not used in the Basic Unit, the PSNR 
value decreased.

5  Conclusion

In this work, we propose a simple yet effective network which 
combines CNN and GCN for image de-hazing. The network 
uses a CNN module with triple attention to extract local spatial 
information and a dual GCN module to extract broad contex-
tual information. The CNN part combines the channel atten-
tion, spatial attention and pixel attention to earn more weight 
from important local features. The GCN part combines spatial 

coherence computing and channel correlation computing to 
extract non-local information. The results in several datasets 
show that the proposed network outperforms the state-of-the-
arts and has a powerful advantage in the restoration of image 
detail and color fidelity.
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