
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:1297–1310 
https://doi.org/10.1007/s11265-023-01861-z

Accurate 77‑GHz Millimeter‑Wave Radar Noncontact Vital Sign Detection 
Using the Optimized Variational Mode Decomposition Algorithm

Yuefeng Zhao1 · Kun Wang1  · Jing Gao2

Received: 6 November 2022 / Revised: 30 March 2023 / Accepted: 31 March 2023 / Published online: 21 June 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Respiration and heartbeat are important vital signs of the human body. More detection systems, for these vital signs, espe-
cially for noncontact measurements, are being developed. However, owing to the large amount of noise in the signals, the 
accurate separation of respiratory and heartbeat signals has become challenging in the field of vital sign detection. We 
propose an optimized variational mode decomposition (VMD) method to realize the accurate separation of respiratory and 
heartbeat signals. We apply the relative entropy and sample entropy to optimize the VMD (RESE-VMD) algorithm and 
introduce the RESE-VMD method into 77-GHz millimeter-wave radar signal processing. The ideal parameters of the vari-
ational model are searched by relative entropy, and each modal function and central frequency are continuously updated to 
effectively avoid modal confounding. The signal is reconstructed by selecting the appropriate signal components according 
to the sample entropy and correlation coefficient. Accordingly, we build real experimental scenarios for the experiments; 
the results show that our method achieves better performance in separating respiratory and heartbeat signals. Our results 
pave the way for important applications in clinical noncontact vital sign detection.

Keywords Vital sign detection · Variational mode decomposition · Relative entropy · Sample entropy · RESE-VMD

1 Introduction

In recent years, human vital sign detection has become a 
topic of great interest in the field of biological signal detec-
tion. The vital sign signal detection system mainly includes 
two categories: contact and noncontact detection systems 
[1]. Contact detection systems usually use contact-based 
sensors to obtain the heart rate [2], which easily causes 
cross infection and makes detection inconvenient. There-
fore, more scholars have begun to pay attention to research 
on noncontact detection systems. Noncontact vital sign 
detection methods have been extensively developed [3]. The 
millimeter-wave radar system is the mainstream vital sign 
monitoring method [4, 5]. Noncontact millimeter-wave radar 
system is more portable, comfortable, and noninvasive than 
contact detection systems. They eliminate the limitation of 

contact measurements. Moreover, noncontact measurements 
are more suitable for individuals who are sensitive to contact 
measurements, including infants, burn victims, and patients 
with infectious diseases [6]. In [7], the authors proposed a 
noncontact vital sign monitoring in a bedroom. The whole 
analysis relies on a unique phase unwrapping process. The 
system effectively suppresses the effects of phase noise. As a 
result, millimeter-wave radar has been widely used in heart-
rate detection in recent years.

Human vital signs play a key role in the field of vital sign 
detection. Respiration and the heartbeat are greatly impor-
tant vital signals. A large number of studies have focused 
on the separation of respiratory and heartbeat signals. Fixed 
band-pass filtering does not always produce reliable findings 
because of interference from tiny movements and the vary-
ing frequency of vital signs in different people [8]. Several 
adaptive filtering approaches have been developed to filter 
noise in the data and properly separate respiratory and heart-
beat signals, including wavelet transform (WT) [9], empirical 
mode decomposition (EMD) [10], complete ensemble empir-
ical mode decomposition (CEEMD) [11], and variational 
mode decomposition (VMD) [12]. Yang et al. [13] proposed 
applying wavelet packet transform to decompose the signal 
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into low-frequency and high-frequency components to form 
a subspace tree. WT can decompose the signal into differ-
ent frequency components through multi-scale analysis. The 
method has good time-frequency localization characteristics. 
Kumar et al. [14] proposed an EMD method to eliminate 
electrocardiogram signal noise. Cheng et al. [15] proposed 
using CEEMD to remove the baseline wandering noise. 
Zheng et al. [16] proposed using VMD weighted reconstruc-
tion of the second harmonic of the heartbeat to estimate the 
heart rate. Zhang et al. [17] proposed a novel adaptive param-
eter optimization VMD algorithm that extracts vital signs 
from a signal containing residual noise. The VMD algorithm 
has a high level of efficacy and can overcome mode aliasing. 
The iterative approach and modal components in the VMD 
model are used to obtain the best solution. The VMD model 
can simultaneously deconstruct multi-component signals. In 
the processing of nonlinear and nonstationary signals, it is 
highly effective. The VMD algorithm decomposes the signal 
into multiple intrinsic mode functions (IMFs) and residual 
noise [18]. Respiratory and heartbeat signals are separated 
according to the center frequency and correlation coefficient. 
However, it is difficult to choose the correct wavelet func-
tion and decomposition layer based on the WT method. The 
method based on CEEMD has the problems of the endpoint 
effect and modal confounding [19]. Some scholars have pro-
posed optimizing the VMD model to fulfill the segregation 
of vital sign signals from noise [20]. The process requires 
the manual determination of the optimal parameters of the 
model. It is prone to issues like inadequate and excessive 
decomposition, and it diminishes the denoising impact.

To solve the issues mentioned above, we propose an 
optimized VMD method to realize the accurate separation 
of respiratory and heartbeat signals. We apply the relative 
entropy and sample entropy to optimize the VMD (RESE-
VMD) algorithm and introduce the RESE-VMD method 
to radar signal processing. The ideal parameters of the 
variational model are searched by relative entropy, and 
each modal function and central frequency are continu-
ously updated to effectively avoid modal confounding. The 
signal is reconstructed by selecting the appropriate signal 
components according to the sample entropy and correla-
tion coefficient. We build real experimental scenarios for 
experiments, and the experimental results show that our 
method achieves better performance in separating respira-
tory and heartbeat signals.

Our major contributions are as follows.

• We propose a VMD method based on relative entropy and 
sample entropy adaptive optimization, which achieves the 
separation of respiratory and heartbeat signals.

• We build real experimental scenarios to conduct multiple 
sets of experiments.

• The experimental results show that our method achieves better 
performance in separating respiratory and heartbeat signals.

The remainder of the paper is organized as follows, Sec-
tion 2 introduces the theoretical introduction and parameter 
selection; Section 3 shows the experimental settings; Sec-
tion 4, we discuss the simulation and experimental results; In 
Section 5, we conclude our work in this paper.

2  Materials and Methods

In this section, we will introduce the acquisition and process-
ing of millimeter-wave radar signals. The separation and accu-
rate extraction of the respiratory heartbeat signal is achieved 
using the RESE-VMD algorithm. The system algorithm flow 
is shown in Fig. 1.

2.1  Signal Acquisition and Processing

The electromagnetic wave signal of the radar system is 
reflected after being impeded in its transmission path by vari-
ous objects [21]. The transmitting signal and the receiving 
signal enter the mixer for mixing. The difference between the 
transmitting signal and the receiving signal is obtained, which 
is the intermediate frequency (IF) signal [22, 23].

The transmitted signal of 77-GHz millimeter-wave radar 
based on frequency-modulated continuous wave (FMCW) 
radar [24] XTS(t) is defined as

where fs denotes the starting frequency, ATS is the trans-
mitted signal’s amplitude, �(t) represents the phase noise,  
B denotes the bandwidth, and Tdt represents the duration of 
the chirp signal pulse. Let x(t) denote the displacement of 
the front-to-back movement of the chest and c denote the 
velocity of light. The time delay is D = 2x(t)∕c. Currently, 
the echo signal XRS(t) is

which mixes the echo and transmitted signals from the two 
quadrature I/Q channels and filters out the interfering signals 
using a low-pass filter to produce the IF signal YIF(t),

The transmission antenna, reception antenna, radio fre-
quency components, analog components (e.g., clocks), and 
analog-to-digital converters (ADCs) make up the entire 

(1)XTS(t) = ATScos
(

2�fst + �
B

Tdt
t2 + �(t)

)

(2)
XRS(t) = ARScos

(

2�fs(t − D) + �
B

Tdt
(t − D)2 + �(t − D)

)

(3)YIF(t) = ATSARSexp
(

j(2�
2Bx(t)

cTdt
t +

4�x(t)

�
)
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77-GHz millimeter-wave radar system. In our system, Texas 
Instruments’ IWR1642 millimeter-wave radar is used for sig-
nal acquisition. It has low power consumption and is harm-
less to humans.

In this work, the signal generator adopts the time- 
division multiplexing technique. First, multiple transmit-
ting antennas transmit FMCW signals to the target. Then, 
the receiving antennas receive the return signal. Finally, we 
analyze and process the respiratory and heartbeat signals. 
Specifically, the transmitting antenna transmits continuous 
waves to the surface of the human chest cavity. The echo 
signal reflected by the measurement target is received by 
the radar receiver. The echo signal is mixed with the trans-
mit signal by a quadrature receiver. Further, the mixed sig-
nal is passed through a filter to extract a valid signal. Next, 
the valid signal is sampled by an ADC and processed by 
MATLAB software, such as fast Fourier transform (FFT), 
phase extraction, and signal separation. Finally, the time 
domain and frequency domain information of respiration 
and the heartbeat are obtained. Respiration and the heart-
beat are known to cause vibrations on the surface of the 
chest cavity, and static reflectors in the same range of the 
target during measurement (e.g., stationary body parts, 
furniture) produce direct current offsets, which can lead 
to nonlinear combinations of doppler signals, resulting 
in phase distortion. We use the moving target indication 
(MTI) method based on the principle of pulse cancellation 
to achieve static clutter removal.

2.2  Variational Mode Decomposition

A novel approach to adaptive signal processing is VMD, 
which aims to decompose a real-valued input signal z(t) into 
multiple modes. The procedure is essentially the answer to 
the variational problem in terms of achieving effective sig-
nal separation from a low to high frequency. The constraint 
variational expression can be written as

where 
{

�k

}

=
{

�1,�2,⋯�K

}

 and 
{

�k

}

=
{

�1,�2,⋯�K

}

 
represent all modes of decomposition as well as their respec-
tive central frequencies. Here, ∥∥2 represents the L2-norm. 
The bandwidth is estimated through the squared L2-norm 
of the gradient. k stands for the number of decomposition 
layers. A unit pulse function is �(t) . j is a fictional unit. * 
represents the convolution operation. The computed partial 
derivative is denoted by �t.

In a noisy environment, the quadratic penalty factor � 
ensures the effectiveness of signal extraction [25], while 
the Lagrange multiplier � reduces the constraint require-
ment [26]. The restricted variational problem represented 
in Eq. (4) is turned into an unconstrained variational issue, 
and the augmented Lagrange expression is derived as

(4)
min

{�k},{�k}

�

∑

k

∥ �t

��

�(t) +
j

�t

�

∗ �k(t)
�

e−j�k t ∥
2

2

�

s.t.
k
∑

k=1

�K = z(t)

Figure 1  System algorithm flow 
of noncontact vital sign detec-
tion.  XTS represents the millim-
eter-wave radar transmit signal. 
 XRS represents the millimeter-
wave radar reception signal. 
 YIF represents the intermediate 
frequency signal after mixing 
and filtering of the transmitted 
and received signals.
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The augmented Lagrange is sought by iteratively updat-
ing �n+1

k
 , �n+1

k
 , and �n+1

k
 to obtain the optimal the solution 

to the constrained variational model.

where �̂  stands for Fourier transform, n represents the num-
ber of iterations, � means fidelity. Finally, the iteration stops 
when the following formula is satisfied:

where V  denotes the tolerance of the convergence standard. 
The standard default value is 1 × 10

−7.

2.3  Relative Entropy and Sample Entropy

VMD is greatly affected by parameters, but an artificial 
setting cannot achieve the best result. k and � are the key 
factors that determine the quality of signal decomposition 
[27]. When both k and � are small, the two signals are easily 
mixed. When � is small and k is large, some decomposed 
components may contain noise. When both k and � are large, 
an important part of the signal may be decomposed into two 
or more decomposed components. When � is large and k is 
small, the target signal is easily lost in the noise. As a result, 
in order to determine the optimal parameters accurately and 
quickly, we use the relative entropy optimization VMD in 
this paper to realize the effective decomposition of the sig-
nal. According to the optimized VMD, the vital sign signal 
is carried out through decomposition, and we calculate the 
relative entropy of the intrinsic mode function. The corre-
sponding k with the lowest relative entropy and � with the 
lowest relative entropy are selected.

Firstly, the range of k is set as [2–10] and the range of � 
is set as [100–2000]. Then, we initialize the parameters k 
and � after inputting the signal. It is worth noting that the k  
to be 2 and the � to be 100. Finally, perform a variational 
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modal decomposition of the signal and calculate the relative 
entropy minimum for each component. Based on relative 
entropy minimum, ours obtain the k value corresponding 
to it, and further find the value of � corresponding to the 
relative entropy minimum according to the optimal k value. 
The algorithm optimization flow chart is shown in Fig. 2.

Relative entropy is equivalent to the information entropy 
difference between the real probability distribution and theo-
retical probability distribution [28].

M
(

xi
)

 shows the probability distribution of the actual data, 
and N

(

xi
)

 represents the theoretical probability distribution. 
When the two groups of data are more similar, the relative 
entropy is smaller, and vice versa. Choose k and � with the 
lowest relative entropy. The decomposed signal component 
includes the dominant signal component and the dominant 
noise component. In this paper, the signal component and 
noise component are determined by sample entropy [29, 30].

For the time series {x(n)} = x(1), x(2),⋯ x(N) composed 
of N data, a set of vector sequences Xm(1),⋯Xm(N − m + 1) 
with dimension M is formed by a serial number.

Define the distance d
[

Xm(i),Xm(j)
]

 between vector Xm(i)

andXm(j) as the absolute value of the maximum difference 
between their corresponding elements.

For a given Xm(i) , count the number of j whose distance 
between Xm(i) and Xm(j) is less than or equal to r , and call it Zi.

Z(m)(r) is the probability of two series matching m points with 
a similar tolerance r . Increase the dimension to m + 1 , count 
the number of j whose distance between Xm+1(i) and Xm+1(j) 
is less than or equal to r , and call it Ai . Ai is defined as

A(m)(r) is the probability of two series matching m + 1

points. The sample entropy is denoted as

(10)D(M ∥ N) =
N
∑
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when N is finite, it is defined as

(17)SE(m, r) = lim
N→∞

{

−ln
[

A(m) (r)

Z(m) (r)

]}

(18)SE(m, r,N) = −ln
[

A(m) (r)

Z(m) (r)

]

2.4  Signal Denoising and Reconstruction

The optimal value of k and � are calculated by relative 
entropy. The optimized VMD method is performed to disas-
semble the initial signal that is divided into k intrinsic mode 
functions, and the sample entropy function is calculated for 

Figure 2  Flow chart of the opti-
mization algorithm proposed in 
this paper.
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each intrinsic mode function. The signal is denoised and 
reconstructed according to sample entropy, correlation 
parameters, and center frequency. The signal-to-noise ratio 
(SNR) before and after denoising is calculated as

where F represents the original signal, and f  denotes the 
denoising signal.

3  Results

3.1  Experimental Scene and Parameter Setting

In this section, we analyze the performance of the noncon-
tact vital sign detection system. The experimental scene is 
shown in Fig. 3, where the measured target is in a stationary 
position in a chair at a distance of 0.5-1 m from the radar 
system. 

The experimental parameters are shown in Table 1. Fre-
quency Modulated Continuous Wave (FMCW) millimeter-
wave radar sensors are becoming increasingly popular in sev-
eral applications where system requirements and parameter 
selection vary. Distance requirements, distance resolution, 
maximum speed requirements, sensor field of view, data 
memory etc. are all influencing factors. Frequency slope, 
scanning bandwidth etc. can affect system performance. The 

(19)SNR = 10 log10

K
∑

k=1

F 2(k)

K
∑

k=1
[f (k)−F(k)] 2

maximum and minimum distance at which a radar sensor 
can detect a target is an important parameter for radar sen-
sors. In addition, distance resolution is another important 
metric. The minimum distance between two objects that 
allows them to be detected as separate objects is known as 
the distance resolution. This depends primarily on the chirp 
scan bandwidth that the radar sensor can provide. TI’s radar 
devices support a scan bandwidth of 4 GHz, allowing a dis-
tance resolution as low as approximately 4 cm. The formula 
for calculating the maximum distance is shown below

where IFmax represents maximum IF bandwidth supported. 
IFmax is also dependent on the ADC sampling frequency 
( Ms ) used. c represents speed of light. Fs represents slope of 
the transmitted chirp. The distance resolution is calculated as

(20)Rangemax =
IFmax∗c

2Fs

=
Ms∗ Tdt ∗c

2B
= M ∗

c

2B

Figure 3  The schematic 
diagram of experiment scene. 
DCA1000 and IWR1642 
represent ADC data acquisition 
board and integrated single-chip 
millimeter-wave sensor based 
on FMCW radar technology, 
respectively. The watch is used 
as the reference sensor for heart 
rate detection to evaluate the 
accuracy of the noncontact 
detection system.

Table 1  Radar configuration parameters.

Parameter Configuration

Start frequency ( fs) 77 GHz
Frequency slope (Fs) 70 MHz/µs
Frequency modulation period ( Tdt) 57 µs
Bandwidth (B) 3.99 GHz
ADC samples (M) 256
Chirp loops 128
ADC Sampling rate ( Ms) 4.49 Msps
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where B represents sweep bandwidth of FMCW chirp.

The distance resolution of the system is calculated to 
be 3.76 cm. The fast time sampling of the IF signal allows 
for the acquisition of target distance information, while the 
slow time sampling allows for the acquisition of informa-
tion such as target speed and respiratory heartbeat. When 
the ADC sampling point is 256, the maximum detection 
distance is 9.63 m, which meets the environmental require-
ments for indoor vital signs detection. Based on the number 
of fast time samples and the number of slow time samples 
the received data size can be calculated as 512 KB. The 

(21)Rangeresolution =
1

Ms

Fs∗Tdt∗c

2B
=

c

2B

(22)B = Fs ∗ Tdt

system’s parameters are set with high distance resolution 
and detection accuracy. And the received data storage size 
is moderate.

3.2  Comparison with Other Methods  
in Simulation Experiments

The respiratory signal’s frequency range is 0.1–0.6 Hz, 
while that of the heartbeat signal is 0.8-2 Hz. When the 
noise frequency is within the range of respiration and the 
heartbeat frequency, it is easy to produce errors, especially 
if the heartbeat signal is weak and prone to respiratory har-
monic interference. As a result, we propose that the opti-
mized VMD method be used to deconstruct and rebuild the 
signal for denoising and that the relative entropy algorithm 

Figure 4  Denoising results of 
WT, CEEMD, and RESE-VMD 
on the respiratory signal.
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is used to optimize the parameters k and � are used to divide 
the signal into k modes. According to the sample entropy, 
the respiration and heartbeat signals are reconstructed to 
achieve denoising.

In order to verify the effectiveness of the algorithm, simula-
tion experiments are carried out on the respiratory and heartbeat 

signals. The respiratory signal simulation is carried out at an 
average respiratory rate of 20 breaths per minute, and the nor-
mal electrocardiogram data in the MIT-BIH database [31] are 
used as the heartbeat simulation data to avoid the influence of 
the respiratory harmonic noise error. The superiority of this 
method is verified by a comparison with other methods.

Figure 5  Denoising results of 
WT, CEEMD, and RESE-VMD 
on the heartbeat signal.

Table 2  Average SNR of respiratory signals at different Gaussian 
white noise.

Methods SNR of respiration (dB)

5dB 10dB 15dB 20dB

WT 10.1635 12.3460 13.2571 15.1630
CEEMD 15.4690 16.4832 17.2511 18.3562
RESE-VMD 19.0226 21.3490 23.5574 25.5096

Table 3  Average SNR of heartbeat signals at different Gaussian white noise.

Methods SNR of heartbeat (dB)

5dB 10dB 15dB 20dB

WT 9.1377 10.5691 11.7320 12.5411
CEEMD 10.7620 11.4821 12.0521 13.0982
RESE-VMD 17.8872 18.9381 19.1362 20.3110
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Figures  4  and 5  show the denoising effects of WT, 
CEEMD, and RESE-VMD methods. The denoising wave-
form of the RESE-VMD method is smoother and retains 

effective information. The denoising effect of the proposed 
method is the best.

Figure 6  SNR for parameters 
K and �.

Figure 7  RESE-VMD decompo-
sition time-domain diagram and 
spectrogram of the respiratory 
signal.



1306 Journal of Signal Processing Systems (2023) 95:1297–1310

1 3

In order to verify the accuracy as well as the reasonable-
ness of the denoising effect. 200 experiments were carried 
out in this paper. Gaussian white noise of 5dB, 10dB, 15dB 
and 20dB were added to the original signal. As shown in 
Tables 2 and 3, we compare the average SNR values of 200 
different experimental methods. The algorithm proposed in 
this paper achieves the highest SNR in the denoising process 
of the simulated signals. The denoising performance is bet-
ter than other algorithms under different noise disturbances.

3.3  Optimize Parameters

k and � are automatically searched by the relative entropy 
method. To verify the effectiveness of the RESE-VMD 

method, we carry out a manual parameter selection experi-
ment on the real collected data. The respiratory signal’s 
appropriate parameters are k = 3 and � = 100 , and the heart-
beat signal’s appropriate parameters are k = 3 and � = 100 . 
Figure 6 shows the results for various combinations of k and 
� . In Fig. 6, the maximum SNR for respiration is obtained 
when k = 3 and � = 100 . The maximum SNR for heartbeat 
is obtained when k = 3 and � = 100 . Therefore, our method 
can reduce the calculation time and improve work efficiency.

3.4  Extracting Vital Signs by RESE‑VMD

Figures  7  and  8  show the time and frequency domain 
plots of respiration and the heartbeat by the RESE-VMD 

Figure 8  RESE-VMD decom-
position time-domain diagram 
and spectrogram of the heart-
beat signal.

Figure 9  Respiration and heartbeat signals before and after RESE-VMD decomposition and reconstruction.
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method, respectively. Respiration and the heartbeat are 
decomposed into three modal components. When the 
frequencies are within their respective frequency ranges, 
the sample entropy is applied to determine the vital sign 
signal content of each modal component. When the sam-
ple entropy is smaller, the signal content is higher and the 
noise content is lower. The appropriate modal component 
is selected according to the sample entropy for signal 
reconstruction and denoising.

Figure 9 shows respiration and heartbeat signals before 
and after reconstruction by the RESE-VMD method. Com-
paring the respiration and heartbeat signals before and after 
denoising, we can see that the significant denoising effect 
after applying the optimization algorithm, as well as the 
SNR, is greatly improved, which ensures that the effective 
signal is not lost during noise removal.

The vibration of the chest cavity caused by respiration 
is greater than that of the heartbeat. At the same time, the 
vibration is not easily affected by noise. To demonstrate the 
superiority of the presented algorithm, the WT, CEEMD, 
and RESE-VMD methods are used to denoise the real res-
piration signals. The red boxes in Fig. 10 show the error 
parts. Our method has a significant denoising effect on the 
error parts. The waveform after RESE-VMD denoising is 
smoother and has no false spectral peaks. The accuracy of 
subsequent calculations is guaranteed.

Table 4 shows the SNR and times of the respiratory heart-
beat signals under the three methods, and the SNR calculated 
by the optimized method achieves a significant enhance-
ment. Due to the time-sensitive nature of vital signs. The 
program run time varies with the amount of data. Table 4 
shows the running times for different methods for the same 
size of data. The WT method has the shortest running time 
but is less accurate, while the CEEMDAN method has the 
longest running time and is prone to untimely diagnosis. 
Therefore, the RESE-VMD method proposed in this paper 
is the best choice in terms of runtime and accuracy.

Figure 11 shows the results of the heartbeat detection by 
the RESE-VMD method and contact detection equipment in 
this paper. The experimental results show that the accuracy 
of noncontact heart rate detection reaches about 98%.

where Rradar is the result of the radar measurement, and 
RReference is the result of the reference sensor.

3.5  System Interface Display

Figures 12 and 13 show the results of tester 1 and tester 2 
while maintaining normal respiration. During the detection 
process, the system can smoothly display the waveform of 
respiration and heartbeat signals.

Figure 14 shows the test results, in which the tester 3 
holds their breath; at the same time, the measured personnel 
respiratory rate is 0, and the respiratory waveform change is 
small and tends to zero. However, the heartbeat waveform is 
clear because the tester holds their breath. The displacement 
of the thoracic cavity is caused by the heartbeat. The dis-
placement of the chest due to the human heartbeat is much 
smaller than that due to respiration. From normal respira-
tion to apnea, thoracic displacement decreases gradually.

(23)Ratio =
Rradar

RReference

× 100%

Figure  10  Comparison of the denoising effect of different methods 
for respiratory signals.

Table 4  SNR and runtime of respiration and heartbeat signals for dif-
ferent methods.

The bolded contents in the table indicate the results of the research 
method in this paper

Methods SNR of 
respiration (dB)

SNR of  
heartbeat (dB)

Times (s)

WT 13.2014 -6.6257 1.84
CEEMD 16.5067 11.7332 29.22
RESE-VMD 39.0974 21.9800 8.59

Figure 11  The results of the heartbeat detection by the RESE-VMD 
method and contact detection equipment in this paper.
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4  Discussion

The theoretical analysis, simulation, and experiment in the 
previous sections propose a new signal processing scheme 
to detect vital signs. Based on the experimental results, the 
accuracy of the method proposed in this paper can be con-
sidered reasonable.

The idea of detecting cardiopulmonary function using 
millimeter-wave radar technology realizes noncontact meas-
urement. Its potential use is that in some applications, the 
monitoring equipment is not attached to the patient, which 
has the advantages of comfort and convenience. The sig-
nals obtained by the radar are the thoracic vibration signals 
caused by respiration and the heartbeat as well as the inter-
ference signals caused by the patient’s involuntary move-
ments. However, owing to the complexity of micromotion 
signal extraction and the error caused by human random 
motion, the idea has become an important research topic [32, 
33]. This paper introduces a 77-GHz millimeter-wave radar 
device with a low cost and high sensitivity, which is used 
to detect vital signs and separate respiration and heartbeat 
signals. The system has achieved good results. However, 
errors such as patients’ involuntary movement and power 
frequency noise generated by hardware are a key research 
direction in the future.

To reduce the influence of interfering signals, we pro-
pose the RESE-VMD method to separate respiratory and 
heartbeat signals. Range-FFT and MTI methods allow us to 
accurately determine the target and avoid the interference of 
static clutter. Phase unwrapping and phase differential are 
used to obtain phase information related to the heartbeat 
and respiration. The heartbeat and respiration signals are 
decomposed and reconstructed by the RESE-VMD method. 
The RESE-VMD method can reduce irregular waveforms, 
effectively reduce noise and harmonic interference, and 
retain the time-frequency characteristics of the original sig-
nal. Compared with the traditional band-pass filtering, WT 
and CEEMD, the RESE-VMD method separates the respira-
tory and heartbeat signals with higher accuracy.

In addition, when multiple millimeter-wave radars work 
close to each other at the same time, they interfere with each 
other. To avoid the influence of error, this paper only con-
siders the measurement results of a single radar. After that, 
we further study the interaction between radars and how to 
reduce interference.

Although the potential of the proposed scheme is obvi-
ous, it still needs more research before clinical application. 
Owing to the above limitations of the proposed scheme, it 
is suggested that the application scenario be an environment 
with relatively stable objectives. In future work, we plan 

Figure 12  The first tester is 
about 0.6 m away from the 
radar. At this time, tester 1’s 
respiratory rate is 16 breaths/
minute, and their heartbeat rate 
is 69 beats/minute.

Figure 13  The second tester 
is about 0.9 m away from the 
radar. At this time, tester 2’s 
respiratory rate is 15 breaths/
minute. The heartbeat rate is 74 
beats/minute.
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to carry out further research and continuously improve the 
system to further improve its accuracy.

5  Conclusions

Noncontact vital sign detection is the current mainstream 
trend. This paper adopts the 77-GHz millimeter-wave radar 
signal acquisition system. We apply the relative entropy 
and sample entropy to optimize the VMD algorithm and 
introduce the RESE-VMD method into radar signal pro-
cessing. The ideal parameters of the variational model are 
searched by relative entropy, and the signal is reconstructed 
by selecting the appropriate signal components according 
to the sample entropy. We propose the RESE-VMD method 
to realize the accurate separation of respiratory and heart-
beat signals. Through simulation and real scene experi-
ments, the denoising effect of the RESE-VMD method 
is found to be superior to other methods proposed in this 
paper, and the SNR ratio is greatly improved. The authen-
ticity of the signal is preserved to a large extent, and more 
accurate results are obtained. The results of the heartbeat 
detection by our proposed method and contact detection 
equipment are given in this paper. The experimental results 
show that the accuracy of noncontact heart rate detection 
reaches about 98%.
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