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Abstract
In this paper, we propose a modular navigation system that can be mounted on a regular powered wheelchair to assist disabled 
children and the elderly with autonomous mobility and shared-control features. The lack of independent mobility drastically 
affects an individual’s mental and physical health making them feel less self-reliant, especially children with Cerebral Palsy 
and limited cognitive skills. To address this problem, we propose a comparatively inexpensive and modular system that uses 
a stereo camera to perform tasks such as path planning, obstacle avoidance, and collision detection in environments with 
narrow corridors. We avoid any major changes to the hardware of the wheelchair for an easy installation by replacing wheel 
encoders with a stereo camera for visual odometry. An open source software package, the Real-Time Appearance Based Map-
ping package, running on top of the Robot Operating System (ROS) allows us to perform visual SLAM that allows mapping 
and localizing itself in the environment. The path planning is performed by the move base package provided by ROS, which 
quickly and efficiently computes the path trajectory for the wheelchair. In this work, we present the design and development 
of the system along with its significant functionalities. Further, we report experimental results from a Gazebo simulation and 
real-world scenarios to prove the effectiveness of our proposed system with a compact form factor and a single stereo camera.

Keywords  Assistive Technology · Human-machine Systems · SLAM · Rehabilitation · Smart Wheelchairs · Wheeled 
Mobility

1  Introduction

The world health organization has estimated that over 
65 million people worldwide require a wheelchair for self-
mobility [1]. Powered wheelchairs are among the commonly 
used assistive devices for the personal mobility of physically 
challenged people. Although current powered wheelchairs 
do address mobility issues, a majority of disabled population 
finds them difficult to operate due to physical, perceptual, or 
cognitive deficits. Several systems have been introduced for 
wheelchairs to make them autonomous but have their own 
demerits of being bulky or expensive.

Several studies have shown that an independence in 
mobility reduces dependence on caregivers and family mem-
bers, and hence increases vocational and educational oppor-
tunities thus promoting a feeling of self-reliance [1, 2, 6]. 

For young children, independent mobility is vital as, since it 
forms the foundation for being self-ambulatory [3], whereas 
for adults it is a matter of self-esteem within the society.

A survey conducted among 200 practicing clinicians [4] 
indicated that a significant number of disabled individuals 
have several common difficulties when controlling a wheel-
chair. Around 9–10% of patients with powered wheelchair 
training found it extremely difficult to use the wheelchair 
for their mundane activities. These statistics see a signifi-
cant jump to 40%, when asked specifically for the steering 
and maneuverability of the wheelchair. Further, 85% of the 
clinicians reported patients who lack motor skills, strength, 
or visual acuity cannot operate a wheelchair.

Nearly half of the patients who are unable to control a 
powered wheelchair by conventional methods would benefit 
from an autonomous navigation system [6]. To address these 
problems several researchers have used existing technolo-
gies such as radio frequency identification (RFID)-based 
tracking, ultrasonic sensors, and gesture control, originally 
developed for mobile robots to build “smart wheelchairs” 
[1, 5–7]. In a majority of cases, either a standard powered 

 *	 Vaishanth Ramaraj 
	 vaishanth.rmrj@gmail.com

1	 University of Maryland at College Park, Maryland, USA

http://orcid.org/0000-0002-0382-2814
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-022-01828-6&domain=pdf


204	 Journal of Signal Processing Systems (2024) 96:203–214

1 3

wheelchair was used as a base on which a system is mounted 
along with several other sensors, or a seat was attached 
on top of a mobile robot. A smart wheelchair is a mobile 
robot and has to be aware of its surroundings using differ-
ent embedded sensors, local and global path planning, and 
smart navigation algorithms. It should be able to avoid static 
and dynamic obstacles and navigate through an environment 
safely.

Clinicians at the Children’s National Medical Center have 
suggested that total autonomy might not always have con-
structive effects. It might hinder the growth of motor skills 
in young children. For instance, cerebral palsy is a group of 
disorders that affect a person’s ability to move and maintain 
balance and posture. It is the most common motor disabil-
ity in childhood and accounts for about 1 in 345 children 
according to estimates from the Center for disease control 
(CDC) Autism and Developmental Disabilities Monitoring 
Network [8]. Assistive wheelchair technology must provide 
a means of mobility for these impaired children without hin-
dering their motor skills growth. Whereas, for elderly people 
whose developed motor skills are affected due to age might 
need much more assistance from the navigation system. 
Hence, to accommodate both age related demographics, a 
system that can operate both in semi-autonomous and fully-
autonomous modes is needed.

Hence, in this work, we propose a shared control approach 
as shown in Fig. 1. The system uses a camera and embeds 
a path planner to share control with the joystick provided 
with the wheelchair. Particularly, our system is developed 
to provide a semi-autonomous functionality that can assist 
a person in navigating through an environment. This is to 
ensure that children use part of their motor skills to move the 
wheelchair and at the same time correct their path in case of 
major deviation from the safe route as shown in Fig. 2. Our 
major contributions are as follows.

•	 We built a modular system for converting a regular pow-
ered wheelchair to a smart wheelchair.

•	 Our proposed navigation system operates only based on 
visual odometry.

•	 We propose a robot operating system (ROS)-based shared 
control architecture which is essential for children with 
Cerebral Palsy.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work to create a smart wheelchair 
with a focus on different populations and applications. Sec-
tion 3 explains our approach for solving the power wheel-
chair problems. Section 4 explains the implementation of the 
smart wheelchair. Section 5 demonstrates the validation of 
the concept in a simulation environment.

2 � Related Work

Several researchers have developed various techniques to 
build an effective and reliable smart wheelchair system to 
aid people with disabilities. Tomari et al. [5], proposed 
an intelligent framework to provide a hierarchical semi-
autonomous control strategy. Their system provides an 
interface by detecting head tilt and facial expressions to 
control the wheelchair’s heading. It uses a combination 
of semi-autonomous and manual approaches to navigate 
to the desired position. Various sensors were used includ-
ing a webcam, RGB-depth camera, laser range finder, and 
an inertial measurement unit (IMU) to perform the semi-
autonomous navigation tasks. But since the whole setup 
consists of several sensors and a bulky computer to process 
the data it is neither modular nor easy to install.

Simpson et  al. [6], proposed a system called “The 
Hephaestus” which consists of a series of components 
needed to be added to an existing powered wheelchair to 
provide assistive navigation features. Their setup consists Figure 1   The overall flow of our proposed shared control system.

Figure  2   The illustration represents the safely planned trajectory 
(green) of the wheelchair around the obstacles (red) by our proposed 
system. In semi-autonomous mode, the user is in control of the wheel-
chair’s motion and any major deviation from the safe path alerts the 
system to correct to a safe trajectory.
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of 24 sonar sensors for obstacle detection (1-meter range), a 
bump sensor which is a simple contact switch for detecting 
collisions, and a laptop that was used to process the data 
received by the National Instruments data acquisition card 
from the sensors. At a first glance, this system seems to be 
robust for navigating a wheelchair but comes with its own 
flaws. However, multiple blind spots were created due to 
interference in the signals received by the sonar sensors. 
The entire processing was done on a laptop which is not only 
bulky but also consumes a lot of energy.

Kuno et al. [7], implemented a system to detect face and 
hand gestures to control the wheelchair which is a useful 
feature for people with severe motor functional problems. 
A computer with a real-time image processing board was 
used along with 16 ultrasonic sensors to navigate through 
the environment including video cameras to detect ges-
tures. To avoid false gesture detection, the video camera 
feed was used along with ultrasonic sensor data to prevent 
the wheelchair from turning into an obstacle. Even though 
the system seems to be useful for patients with severe motor 
disabilities, it is very specific to that specific category of 
patients. Detecting face gestures has a lower success rate 
since human gestures are complex and can be falsely inter-
preted in multiple scenarios. The whole system with ultra-
sonic sensors, a video camera, and a personal computer is 
a very bulky setup.

On comparing our work with the previously mentioned 
work, our system uses Jetson Nano for performing com-
puter vision tasks which is an inexpensive and low-powered 
solution. We make use of Realsense depth cameras thereby 
eliminating the use of bulky and expensive LIDAR or Ultra-
sonic sensors [7] for navigation and obstacle detection. Since 
our system aims to be a modular component of a powered 
wheelchair, it facilitates easy installation for the user. Our 
system also provides different modes of autonomy which are 
discussed in Section 3.3.

In this work, our proposed system attempts to overcome 
some of the flaws present in existing systems. Towards this, 
a vision-based approach is used to perform obstacle detec-
tion and path planning. Our design provides shared con-
trol and is developed to be used for both pediatric and adult 
populations.

3 � Methods

Our proposed system consists of the essential components 
found in a mobile robot system. In particular, we created a 
modular design such that the system can be mounted onto a 
powered wheelchair with little to no modifications. Towards 
this, we propose to use a vision system and IMU sensors 
only to localize the robot, rather than using wheel encoders 

and Lidar sensors. This will allow for an easy integration 
and a modular system thus streamlining the conversion of a 
regular powered wheelchair to a smart wheelchair.

The main hardware used is the NVIDIA Jetson Nano (https://​ 
devel​oper.​nvidia.​com/​embed​ded/​jetson-​nano-​devel​oper- 
​kit) which has sufficient processing power (with a graphi-
cal processing unit) to enable real-time task planning. To 
eliminate the bulkiness of the system, various active sensors 
required for different tasks are replaced with a stereo camera 
setup, thereby making it compact and inexpensive. Visual 
odometry plays a very crucial aspect in our system since the 
mapping and localization are done using visual feedback 
rather than opting for the bulky and expensive Lidar sensors 
or wheel encoders.

The robot operating system is used as the base platform 
on which other applications run. ROS is widely used in 
the robotics community for its flexibility and features. It 
provides compatibility with various hardware and software 
hence, providing an easy setup to interface with hardware. 
The proposed system, as shown in Fig. 3, is based on the 
ROS architecture with four nodes including (a) Interface 
system node, (b) Image processing node, (c) Path plan-
ning node, and (d) Motor controller system node. Each 
of these nodes serves a specific purpose, and some nodes 
rely on other nodes to conduct their tasks. The specific 
functionalities of each node are presented in the following 
subsections.

Figure 3   The proposed wheelchair system architecture.

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit


206	 Journal of Signal Processing Systems (2024) 96:203–214

1 3

3.1 � Interface System

This node acts as a bridge between other nodes to coordi-
nate their tasks and provide a collective output. It is also 
responsible for taking user inputs according to which the 
system acts.

A kivy-python-based package has been developed to 
provide the user interface for controlling manual, semi-
autonomous, and autonomous modes. The different modes 
of operation are discussed in Section 3.3. The interface was 
implemented and tested in simulation. The package is cross-
platform and capable of taking touch inputs from the user. 
The final prototype will have a touch-based LCD screen to 
control the smart wheelchair. The display will show a 2D 
map of the environment that’s mapped by the system, which 
can be utilized by the user to select checkpoints where the 
user intends to go.

3.2 � Image Processing

The crucial aspect of reliably navigating a system through 
an environment is to map and localize the object within the 
environment. This might be a challenging task since the 
environment in a real-world scenario is dynamic and can 
cause map distortions.

It is common to use a LIDAR sensor to map an environ-
ment, but it is a bulky and expensive solution. Hence, using 
a stereo camera to map an environment in real-time would 
be effective. The concept of visual odometry is used wherein 
the depth data from the stereo camera and the robot orienta-
tion from the IMU sensor are used in conjunction to create 
a 3D map of the environment. Various open-source simul-
taneous localization and mapping (SLAM) applications are 
available, but two essential requirements must be considered 
to make a selection. First, the SLAM algorithm needs to be 
well-performing, actively maintained, and needs to support 
the chosen algorithm and ROS. Secondly, the sensor needs 
to be supported by the library, should be easy to configure 
and set up, and has a good price-performance metric. Real-
Time Appearance Based Mapping (RTAB-map) is chosen 
since it fulfills the above-mentioned criteria and is widely 
used for visual odometry. The RTABmap creates and stores 
the mapped environment in a database of images with the 
camera orientation and matching key points. Using RTAB-
map, the localization could be performed by only using 
visual data and IMU sensor data eliminating the need for a 
wheel odometer, thus making the system installation easy.

Once the environment is mapped, the RTABmap can 
localize the robot using the camera feed by performing 
image matching with the existing database and also can 
provide the orientation of the robot. For the robot to move 
safely in a dynamic environment, it should be aware of its 

nearby obstacles. RTABmap provides an application pro-
gramming interface (API) for obstacle point clouds which 
are processed using the depth image data from the stereo 
camera. The obstacle point cloud, as shown by the white 
dots in Fig. 4, can be used to detect and categorize the obsta-
cles, thereby providing a safer way to navigate the system 
around the obstacle.

3.3 � Path Planning

The user is provided with manual, semi-autonomous, and 
autonomous control modes. The manual mode allows the 
user to control the wheelchair by providing directional com-
mands from the interface. In semi-autonomous mode, the 
user selects a destination and drives to it. The system creates 
a safe path connecting the destination and the current wheel-
chair position but interferes with the control only if the user 
diverges from the path beyond the threshold limit. This is 
feasible for disabled children who are required to train their 
motor-muscle skills which are vital for the child’s growth. 
Whereas in the autonomousmode, the system takes over the 
entire control and moves the wheelchair to the user-defined 
destination on the 2D map.

The virtual map created by the RTABmap provides a 
solid base on which we can use various path planning algo-
rithms to create a feasible path from the current location to 
the desired destination. ROS comes bundled with a package 
called move base which can be used to calculate a safe and 
quick path.

When calculating a path, there are physical system con-
straints to be considered to prevent collision with walls and 

Figure  4   The projected white point cloud represents the obstacle 
point data that is used for collision detection and obstacle avoidance.
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other static objects. The move base package creates a cost-
map by taking in sensor data from the image sensor that 
enables it to take the physical constraints of the system into 
account. A cost map as shown in Fig. 5 is basically a 2D 
occupancy grid of the data. A 2D occupancy grid is a 2D 
representation of the map where each pixel denotes three 
of the following states, free, occupied, or unknown. It basi-
cally determines if it’s possible for the wheelchair to move 
in a specific area. A 2D costmap is constructed based on 
the occupancy grid which incorporates the inflation layer. 
The inflation layer can be understood as padding applied 
to the walls and corners to prevent the robot from collid-
ing or coming in close contact with them. The inflamma-
tion layer is determined by the inflation radius provided by 
the user or the application developer. The inflation radius 
is always greater than the width of the wheelchair. It is 
always a good practice to have an inflation radius that is 
1.2 times the width of the wheelchair. Thus ensuring the 
optimal costmap decay curve is one that has a relatively 
low slope as mentioned by Dr. Pronobis in his move base 
navigation guide [10].

While each cell in the costmap can have one of 255 dif-
ferent cost values, the underlying structure that it uses can 
represent only three states. It can be either free, occupied, 
or unknown. Once the user has selected a destination on the 
2D map the move base algorithm efficiently plans a path as 
shown in Fig. 6. Hence, the move base package is able to 
navigate safely in the environment on the user’s command.

The move-base package provides an inbuilt recovery 
behavior for situations where the wheelchair is stuck in 

an obstacle zone. By default, the move_base node will 
take the following actions to attempt to clear out space. 
First, obstacles outside of a user-specified region will be 
cleared from the robot’s map. Next, if possible, the robot 
will perform an in-place rotation to clear out space. If this 
too fails, the robot will more aggressively clear its map, 
removing all obstacles outside of the rectangular region 
in which it can rotate in place. This will be followed by 
another in-place rotation. If all this fails, the robot will 
consider its goal infeasible and notify the user that it has 
aborted. These recovery behaviors can be configured using 
the recovery_behaviors parameter and disabled using the 
recovery_behavior_enabled parameter [11]. But some-
times the algorithm still struggles to get the wheelchair 
out of such scenarios. In that case, our algorithm detects 
that the wheelchair has not performed any motion for a 
threshold time period and resets the move base algorithm, 
and plans another path.

One of the inconveniences that come with using ROS1 
for any system has to be looked at is the pseudo-real-time 
architecture of ROS1 itself. The absence of a task sched-
uler and the fact that it is built on top of Linux makes 
ROS1 less equipped for strict time-bound requirements. 
While ROS is fast and used for several robot operations, a 
small control cycle delay exists in every ROS application. 
However, during rigorous testing in our simulations, it 
was observed that this tiny delay is negligible since the 
real-time factor in Gazebo never dropped below 1, which 
represents a real-time operation. Based on this observa-
tion, we argue that our proposed system will not have 
any significant issues while performing its operation in 
real-time.

The ability of the package within ROS (move_base) to 
plan in real-time is dependent on the underlying hardware. 

Figure 5   Side-by-side comparison of the original map and the cost-
map. The blue layer represents the inflammation layer, the walls are 
represented by black lines and the gray area indicates the safe area to 
plan paths.

Figure 6   The planned path for the given destination point. The blue 
layer surrounding the walls represents the inflation layer in the cost 
map to prevent the wheelchair from moving too close to the walls or 
other obstacles.
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However, for our application the smart wheelchair moves 
at relatively slower speeds (simulation velocity of 0.5 m/s) 
thus a limited latency could be acceptable.

3.4 � Motor Controller System

This node is responsible for providing pulse width modulated 
signals to the motor driver that in turn actuates the motor 
at different speeds. The system’s motor is based on simple 

differential drive actuation. The input from the joystick 
controller is also processed by this node for manual control 
over the system. For disabled children, it is recommended to 
drive the wheelchair on their own to train their motor muscle 
skills. But in situations where the user losses control over the 
wheelchair’s motion in case of accidental control input, the 
semi-autonomous mode would take control of the (Fig. 7).

wheelchair and correct its heading based on the safe path 
computed previously. The autonomous mode is particularly 
aimed at disabled elderly people who have a tough time con-
trolling the wheelchair. Hence, they can input their destina-
tion and let the autonomous system drive the user.

The controller receives the command input from the 
safety decision-maker system as shown in Fig. 1. The safety 
decision maker feeds either output from the joystick device 
or the path planner node based on the collision prediction 
and assigned safety margin.

4 � Hardware and Software Implementation

4.1 � Hardware

In our work, the system is intended to be modular such that 
to provide for an easy installation on an already existing 
powered wheelchair. The image processing computation is 
carried out on the Jetson Nano hardware which provides 
the much-required GPU computational power required by 
the system. To keep the form factor small and provide suf-
ficient computational power, our system consists of a Jetson 
Nano 2GB developer board at its heart. The Jetson Nano is 
2.72 × 1.77 × 1.77 inches in dimension and weighs less than 
100 g making the system compact and efficient.Figure 7   The overall workflow of the system.

Figure  8   The custom world imported into Gazebo. Green boxes in 
the first image indicate the ceiling lights.
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It is powered by a compact 8 volt (V) power module 
attached to the Nano’s base. Nvidia’s Jetson platform can 
handle computer vision and path planning tasks in real-
time with minimal lag. The setup is equipped with an Intel 
RealSense stereo camera module that provides with vision 
data required to map the environment. Two separate 43 A 
24 V DC motor drivers are used to control the right and 

left 24 V DC motor. These components are mounted on a 
powered wheelchair.

4.2 � Software

During the first startup, the robot is completely blind since 
it has no map to localize itself. Hence, it is changed to 
mapping mode wherein the robot moves around to map 
the environment. Even when there is no map to give an 
estimate of the nearby obstacle the RTAB-map provides 
an API for obstacle point cloud using which we can map 
the environment safely. When the environment is suffi-
ciently mapped it takes approximately the same path back 
to where it started to perform loop closure. This allows 
tuning out the irregularities in the map due to a drift in 
the IMU sensor data.

Once done, the user can set it to the localization mode 
after which the wheelchair can localize in the environment 
using visual odometry.

Figure  9     A detailed model of the wheelchair. The red circle high-
lights the RGBD sensor mounted on the wheelchair.

Figure 10   Both images denote the presence of dynamic obstacles in 
bost hospital and home-like environments. The red circle highlights 
the dynamic obstacles.

Figure 11   The costmap being updated based on the nearby dynamic 
obstacle using the cloud point data.

Table 1   Simulation trials involving the wheelchair to plan and navi-
gate to goal location 1 with static obstacles.

Trial No. Distance (m) Real 
Time 
Taken
(secs)

Goal reached Remarks

1 28.40 150 True -
2 27.50 155 True Spinned 2 

times near 
the wall

3 28.50 146 True -
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5 � Experiments

5.1 � Simulations

Simulators are very powerful tools to test out prototypes 
in various real-world scenarios which might be difficult to 
physically recreate due to cost and availability concerns. 
ROS provides a simulation package called Gazebo that can 
simulate various environments in real time [9].

The wheelchair system was simulated in a hospital envi-
ronment and a home-like environment obtained from AWS 
Robotics’ open-source github repository as shown in Fig. 8 
to test out the capabilities. The system was able to map and 
localize in its environment as well as to detect nearby obsta-
cles and avoid collisions with them.

A realistic model of the wheelchair was modeled and 
imported into the Gazebo simulation environment as shown 
in Fig. 9. It is driven by a differential motor driver provided 
by the ROS package. An RGBD camera plugin is mounted 
in front of the wheelchair as highlighted in Fig. 9, and it is 
aligned so that it would not obstruct the user’s view.

It is crucial to test the controller’s ability to navigate 
through dynamic obstacles. The gazebo provides a plugin 
to create dynamic obstacles and provide a trajectory to it. 
The dynamic obstacles were placed in the environments 
as shown in Fig. 10, such that it mimics the behavior of a 
human being doing mundane things.

The path planning performed by the move base pack-
age can be visualized in RVIZ. The path planning node 
takes care of the integration of user input to the move base 
package. Both the local and global costmaps are updated to 
accommodate for the changes in the feasible path planning 

area. The obstacle cloud points provided by the RTABmap 
API are processed to update the costmaps. The costmaps 
are updated when there is an obstacle in the threshold value 
which represents the distance of the obstacle from the 
wheelchair. It is also able to clear areas of the cost map that 
previously had an obstacle but are free now.

5.1.1 � Quantitative Measures

To evaluate the effectiveness of the wheelchair’s control 
system, simulation trails were performed with both specific 
goal points and random goal points. The robot moved with 
a maximum linear velocity of 0.5 m/s and maximum angular 
velocity of 1.5 m/s. The start and end locations are selected 
manually such that it takes the following criteria under con-
sideration. Firstly, it must not be a simple straight path but 
must have turns around the corners (Fig. 11).

and should pass through a narrow region. secondly, It 
must have either a static or dynamic obstacle along the path. 
Thus we selected two paths considering the above criteria 
and ran trials on that paths. The measured results are shown 
below (Tables 1, 2, 3, 4, 5, 6).

It took an average time of 150.3 s to reach the goal at an 
average distance of 28.13 m.

It took an average time of 136 s to reach the goal at an 
average distance of 23.85 m.

Out of the two successful attempts it took an average time 
of 170 s to reach the goal at an average distance of 28.85 m.

Table 2   Simulation trials involving the wheelchair to plan and navi-
gate to goal location 2 with static obstacles.

Trial No. Distance (m) Real Time 
Taken
(secs)

Goal reached Remarks

1 23.85 135 True -
2 24.20 133 True -
3 23.50 140 True -

Table 3   Simulation trials 
involving the wheelchair to plan 
and navigate to random goal 
points with static obstacles.

Trial No. Distance (m) Real Time Taken
(secs)

Goal reached Remarks

1 23.41 189 True -
2 15.39 202 True Struggled to avoid 

colliding with 
the walls

3 17.41 160 True -
4 25.23 192 True -

Table 4   Simulation trials involving the wheelchair to plan and navi-
gate to goal location 1 with dynamic obstacles.

Trial No. Distance (m) Real 
Time 
Taken
(secs)

Goal reached Remarks

1 29.20 170 True -
2 28.50 165 True -
3 28.40 250 False Collided with 

obstacle and got 
stuck
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In this trail it was able to achieve success in only one 
trial because of the complexity of the path. Since the path 
had two dynamic obstacles moving in different directions, 
the wheelchair was able to avoid one obstacle but collided 
with the other.

To summarize, the wheelchair achieved a 100% suc-
cess rate while reaching a goal in a static environment. It 
did struggle sometimes to align itself in the direction of 
the path but it managed to recover from the situation and 
reach the goal. But in the case of dynamic environments, 
the wheelchair was only able to achieve a 70% success rate. 
This proves that the wheelchair control algorithm is able to 
detect the dynamic obstacle and navigate around it but still 
requires fine tuning to improve the success rate.

5.2 � Hardware Implementation

5.2.1 � Hardware Setup

Testing out the system in the real world was a challeng-
ing task. Because of the high risk of damaging the powered 
wheelchair during the testing process, we decided to build a 
basic model as shown in Fig. 12 that represents the base of 
the wheelchair. The motors and the battery setup resemble 
that of the powered wheelchair which is rated at 24 V DC. A 
wooden plank is mounted in the front of the battery to hold 
the system modules.

The hardware setup consists of a 24 V DC motor powered 
by 2 series connected 12 V battery with max current input of 
18 A as highlighted in red and blue in Fig. 13. The motors 
are equipped with electronic brakes and a lever mechanism 
to manually actuate brakes. The brakes can be disengaged 
by providing 24 V DC power to the brake terminals. A 24 V 
30 A PWM motor driver is used to actuate the motor drivers 
based on the control input from Jetson Nano.

Arduino Uno is used to deliver the signal to the motor 
driver. A 12v DC power supply is used to supply power to the 
Arduino Uno and Jetson Nano has a separate 8 V power mod-
ule mounted at its bottom to provide a compact form factor. 
The Realsense camera is mounted on the front making sure it 
has the best visibility of the environment. The stereo camera 
data is relayed to the Jetson Nano using a USB-C cable.

5.2.2 � Real‑Time Mapping and Localization

The mapping and the localization were completely per-
formed on the Jetson nano. We were able to map our lab and 
navigate around it. RTABmap processes the RGB and the 
depth images captured by the Realsense camera. Features are 
extracted from the captured images using the GFTT (Good 
Features to Track) and ORB (Oriented FAST and Rotated 
BRIEF) algorithms as shown in Fig. 14. The extracted fea-
tures enable the algorithm to compare it with consecutive 
images that are in turn used for localizing the robot as shown 
in Fig. 15. The images are captured at a frequency of 5 Hz 
and are stored in the database along with the camera’s intrin-
sic and extrinsic factors.

In very up close and complicated situations the algorithm 
finds it difficult to localize itself due to a lack of features from 
the RGBD images. But the algorithm manages to solve the 
issue by making use of data from an IMU sensor embedded in 
the Realsense camera. In case both situations fail the algorithm 
updates its location when the robot moves further and detects 
enough features on the RGBD image. The green and red axis, 
shown in Fig. 14, represents the robot`s pose and orientation.

In a real-world scenario, there are a lot of constantly mov-
ing obstacles. It is necessary to map the environment such 
that it removes moving objects from the scenario and takes 
only the static.

Table 5   Simulation trials involving the wheelchair to plan and navi-
gate to goal location 2 with dynamic obstacles.

Trial No. Distance (m) Real 
Time 
Taken
(secs)

Goal reached Remarks

1 24.50 150 True -
2 24.20 300 False Collided with 

second 
obstacle

3 23.80 350 False Collided with 
first obstacle 
and the 
walls

Table 6   Simulation trials 
involving the wheelchair to plan 
and navigate to random goal 
points with Dynamic obstacles.

Trial No. Distance
(m)

Real Time 
Taken
(secs)

Goal reached Remarks

1 14.39 250 True -
2 24.42 210 True Moved very close to obstacle
3 18.52 400 False Failed to reach the goal because of collision
4 26.31 255 True Got stuck near the wall for few seconds
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objects into the algorithm, thus making it easy to use the 
final 2D map to plan the path. The algorithm performs very 
well in such scenarios and was able to remove the dynamic 
obstacle from the mapped floor plan (Fig. 16).

6 � Limitations

Our objective was to design and develop a comparatively 
inexpensive and compact system to mount on a powered 
wheelchair. The approach we took was to minimize the num-
ber of sensors and use a sufficiently powerful yet compact 

microcomputer. The Realsense camera is our primary sensor. 
Our system comes with the following limitations.

1.	 Since only one stereo camera sensor is mounted in the 
front of the wheelchair, any obstacle not visible in the 
camera frame cannot be processed as a dynamic obstacle 
unless it comes inside the frame.

2.	 Relying solely on the RGBD data instead of a physical 
odometer can sometimes be unreliable and the wheel-
chair might find it difficult to localize itself.

Figure  12   The basic hardware prototype with the system modules 
mounted on the front and a 24 V DC motor setup at the back.

Figure 13   An image labeling the different components of the hardware 
system.

Figure 14   The features extracted from the input RGB-D camera data.

Figure 15   The wheelchair localizes itself in the mapped environment 
using the stereo camera data also taking its orientation into account.



213Journal of Signal Processing Systems (2024) 96:203–214	

1 3

3.	 RGBD cameras provide depth up to a certain distance 
of 3 m in the case of Intel RealSense, depth estimate is 
often noisy and has a limited field of view.

4.	 Even Though a move base can quickly and safely plan 
a path, it lacks the ability to navigate the robot in nar-
row obstacle space and often get stuck. The algorithm’s 
recovery behavior mentioned in Section 3.3 kicks in but 
sometimes the algorithm still struggles to get the wheel-
chair out of such scenarios.

7 � Conclusion

In this paper, we introduce a modular system that can be 
mounted on an existing powered wheelchair to provide 
autonomous assistive functionality to the disabled user. 
The system is designed such that it is compact and cost-
efficient but at the same time delivers the required sup-
port for the users. Making full use of machine vision is 
difficult, but it can provide various opportunities as well 
as cut down the use of bulky and expensive sensors. By 
using open-source software, we provide developers to cre-
ate their own applications to improve the product. Our 
wheelchair system is intended to be used in a dynamic 
environment, which may be a hospital or an indoor space 
inside a house. It will be able to assist the user to navigate 
to their specified destination with ease and safety.
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