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Abstract
Dataflow is a parallel and generic model of computation that is agnostic of the underlying multi/many-core architecture 
executing it. State-of-the-art frameworks allow fast development of dataflow applications providing memory, communicating, 
and computing optimizations by design time exploration. However, the frameworks usually do not consider cache memory 
behavior when generating code. A generally accepted idea is that bigger and multi-level caches improve the performance of 
applications. This work evaluates such a hypothesis in a broad experiment campaign adopting different multi-core configu-
rations related to the number of cores and cache parameters (size, sharing, controllers). The results show that bigger is not 
always better, and the foreseen future of more cores and bigger caches do not guarantee software-free better performance 
for dataflow applications. Additionally, this work investigates the adoption of two memory management strategies for data-
flow applications: Copy-on-Write (CoW) and Non-Temporal Memory transfers (NTM). Experimental results addressing 
state-of-the-art applications show that NTM and CoW can contribute to reduce the execution time to -5.3% and −15.8% , 
respectively. CoW, specifically, shows improvements up to -21.8% in energy consumption with -16.8% of average among 
22 different cache configurations.

Keywords Multi-core · Dataflow · Cache memory · Compilers

1 Introduction

The multi/many-core architecture is a widespread on-chip 
design, providing high computing power in a small silicon 
area. The computation power is achieved by supporting task-
level parallelism, splitting the application into parallel tasks 
running in different cores. A generally accepted expectation 

is that increasing the number of cores naturally leads to bet-
ter application performance. However, increasing the num-
ber of cores impacts other aspects, especially the memories 
subsystem. Since memories are costly in terms of area and 
power to be embedded on the chip, the memory hierarchy 
(cache memories) generally has a reduced on-chip size, mak-
ing it suffer from the high pressure in systems with a high 
number of cores. This phenomenon is known as memory 
wall [1].

From a software aspect, several efforts have been made 
to allow the efficient development of parallel applications 
regarding memory footprint, communication overhead, 
and computing parallelism. Existing for 40+ years, the 
dataflow programming model may eventually stand as the 
ideal approach to bridge the gap between application and 
architecture resources. Figure 1a presents an overview of 
the principles of a dataflow-based application. The applica-
tion is represented by a graph, where each node represents 
an actor having a single computing function (as exemplified 
by actor B1 code), and each edges representing the FIFO as 
a data dependency between two actors. Actors communicate 
via producing/consuming data tokens. An actor can start the 
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execution only if required data tokens are available in the 
input FIFOs and if enough space is available in the output 
FIFOs.

Dataflow models can naturally make use of parallel 
resources by means of actors that run in parallel while con-
suming and producing tokens. Several tokens can be pro-
duced and consumed at a time, but a token is produced and 
consumed only once. This feature favors data spatial locality. 
While the cache hierarchy also exploits temporal locality, a 
dataflow program may benefit from the latter for instructions 
and spatial locality for data as consecutive tokens are usu-
ally involved. Therefore, dataflow applications performance 
should be improved with the increasing size of caches. How-
ever, this paper shows that such an assumption does not hold 
in regard to multiple cache-based architecture designs.

Taking advantage of the generic principles of dataflow 
applications, some rapid prototyping frameworks have been 
proposed. Figure 1b addresses PREESM [2], a state-of-the-
art open-source framework for rapid prototyping of dataflow 
applications in multi/many-cores. It provides a graphical user 
interface for the designer to generate the application source 
code. Based on inputs provided by the designer including 
algorithm (graph of the application) and system constraints 
(mapping, scheduling and etc.), the framework generates a 
deadlock-free source code of the application (implemented 
in C language) and the respective actor mapping on each 
core, based on spatial and temporal requirements. Due to 
the well-defined modeling of dataflow applications, it is 
possible to reach design-time optimal scheduling for static 
applications.

Although the state-of-the-art techniques can lead to 
theoretical optimal schedules, this article demonstrates 
that even optimally scheduled applications do not scale as 

desired with the increasing number of cores, cache levels, 
size, and cache sharing factor. As expected, the memory 
contention is of utmost importance, and the CPU load-
based actor mapping used in the experiments does not lead 
to the best execution time. Therefore, the first contribution 
of this work is to study dataflow applications according 
to different caches configurations, providing experimental 
results that demonstrate their impact on the application’s 
execution time performance and cache miss. For this, we 
consider several configurations, including non-available 
yet platforms or non-realistic cache configurations, and 
use the Sniper simulator [3] to foresee the scalability of 
the considered dataflow applications.

From such analysis, the second contribution of this paper 
consists in the investigation of using two dynamic memory 
management techniques for dataflow code generation: Copy-
on-Write (CoW) and Non-Temporal Memory (NTM) copy-
ing. Those techniques are not new since CoW is supported 
by Linux OS [11] and NTM is supported by some proces-
sor designs, including Intel [12, 13]. The novelty here is 
the study of the benefits and drawbacks of both approaches 
when applied to the dataflow programming model, evaluat-
ing whether they can contribute to speedup application’s exe-
cution, reduce cache misses, and save energy. Additionally, 
those techniques can be used as runtime memory optimiza-
tion approaches, complementary to static techniques [14]. 
Moreover, they are applied at the framework level and do not 
require changes for the application specification and code.

In summary, this work has two contributions:

• The evaluation of the impact of different cache param-
eters and number of cores over the performance of static 
dataflow applications;

Figure 1  (a) Overview of a dataflow application model with four actors. (b) Workflow of PREESM framework [2].
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• The evaluation of two existing memory management 
techniques (CoW and NTM) for three static dataflow 
applications.

The next section addresses related works that investigate the 
behaviors of dataflow applications running on systems with 
caches. Next, in Section 3 the multi-core model assumed in 
this work is presented. Section 4 presents the experiments 
varying cache parameters and the number of core. Section 5 
details CoW and NTM techniques, and Section 6 presents 
the achieved results from those techniques. Finally, Section 7 
concludes this work.

2  Related Work

This section highlights studies that target the behavior of 
dataflow applications running on systems with a memory 
hierarchy. In Domagala et al. [7], researchers extended the 
concept of tiling to the dataflow model to increase the data 
locality of applications for better performance by splitting 
iterations of nested loops. However, this type of optimiza-
tion does not address the coarse-grain inter-actor (i.e., inter-
tasks) relation.

In Maghazeh et al. [8], a method is proposed for GPU-
based applications by splitting both the GPU kernel into sub-
kernels and input data into tiles in size of GPU L2 cache. 
Their work is intended to accelerate applications whose 
performance is bound to memory latency. The method 
increases data locality, as the sub-kernels are scheduled in a 
way to have the least cache miss rate, for GPU applications 
over various settings. However, the method requires source 
code modification and does not target the dataflow model. 
Research about the cache effect on the performance of multi-
ple application types is presented in Garcia et al. [6]. Garcia 
et al. have evaluated the impact of Last Level Cache (LLC) 
sharing in GPU-CPU co-design platform for heterogeneous 
applications. According to their study, applications with low 
data interaction between GPU and CPU are sped up slightly 
by sharing the LLC. Data sharing of LLC minimizes mem-
ory access time and dynamic power, and accelerates syn-
chronization for fine-grained synchronization applications.

The cache behavior of multimedia workloads is evalu-
ated by Slingerland and Smith [4]. They appraised data 
miss rate of applications considering data cache size, asso-
ciativity, and line size parameters. The authors observed 
that multimedia applications benefit from longer data 
cache lines and have more data than instruction miss rate 
in comparison to other workloads. The experiment results 
reveal that most of the multimedia applications just need 
32 KB data cache size to have less than 1% cache miss 
rate, while other types of applications (3D graphic, docu-
ment processing) do not reach the same behavior. As the 

results of our work will show, sharing cache levels among 
more cores with larger sizes, up to 256 MB for LLC, does 
not help the performances of dataflow applications, but 
also results in data access latency overhead.

The work of Alvez et al. [5] investigates the impact of 
L2 sharing in order to find the best cache organization at 
this level. Assuming the NAS Parallel Benchmark, with 
heterogeneous workload set, and a 32-core SMP with two 
levels of caches (private L1-I and L1-D) and an L2, the 
work changes the sharing, size, associativity, and line size 
in the L2. Among the mains results, it was observed an 
execution time decrease when more cores share the L2 
cache, even when 2 cores share the same L2. Increasing 
line size (64 bytes to 128 bytes) contributed to -32% in 
cache misses and +1.95% in speedup. The work does not 
address 3-level caches either dataflow applications.

Stoutchinin et al. [9] present a novel framework, called 
StreamDrive, for dynamic dataflow applications. Stream-
Drive proposes a new communication protocol, reserve-
push-pop-release, for dataflow model instead of the stand-
ard send-receive. This protocol allows their solution to 
employ a zero-copy communication channel for actors. It 
employs a blocking mechanism to access FIFOs directly 
in shared memory; hence, no local copies are needed, 
which are commonly used in software dataflow model. 
This study is specific since it focuses on computer vision 
applications running on a special embedded multi-core 
platform (P2012) with dedicated hardware computer 
vision engines. Meanwhile, we propose two solutions to 
general-purpose architectures that do not require novel 
hardware components.

Fraguela et al. [10] propose the concept of a software 
cache with an autotuning method to configure its size accord-
ing to each application. The approach is built upon Unified 
Parallel C++ (UPC++) library. It consists of an algorithm 
called in periodic intervals, which dynamically re-allocates 
the software cache size. Results show that the software cache 
can reduce the communication among actors due to the effi-
cient cache sizing and allocation, presenting a hit rate just 
0.27% lower than an optimal scenario. Similar to CoW and 
NTM, that proposal also implements the algorithm as part of 
a library, however, with a limited evaluation without varying 
hardware parameters and adopting just one application.

Table 1 summarizes the main characteristics of the related 
works addressing the cache impact in parallel applications 
running in SMPs. The main novelties of this work regarding 
the related works are twofold: (i) we evaluate a wide range 
of cache configuration in a multi-core architecture, including 
realistic and non-realistic configurations; and (ii) two exist-
ing memory management methods are proposed to be used 
in dataflow application, which can reduce the memory cop-
ies penalties in numbers and latency, leading to an improved 
application execution time and energy consumption.
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Regarding contribution (i), works of [4–6] are also evalu-
ation works. However, in [4] the benchmark is limited to 
multimedia applications, in [6] the focus is the iteration 
between the CPU and GPU by addressing a heterogene-
ous set of applications but not considering dataflow, and in 
[5] the Authors did not consider a 3-level cache either the 
dataflow application profile. Therefore, to the best of the 
Author’s knowledge, the present research is the first to per-
form a comprehensive evaluation of the cache impact with 
3-level and targeting dataflow applications.

Regarding contribution (ii), it fills different gaps from 
related works focused on proposals [7–10]. Specifically, we 
are interested in: (i) keeping the original dataflow modeling 
granularity (differently from [7, 8]); (ii) not making modifi-
cation in the Linux-based kernel, or any part of the OS (con-
trary to [10]); and (iii), targeting generic SMP (differently 
from [9]). We endorse that the techniques of CoW and NTM 
are not new, and the goal of this study is to replace them in 
memcpys procedures in order to observe the impact in the 
cache and in the overall performance of dataflow applica-
tions, a study that is lacking in the literature.

3  Multi‑Core Model

This section presents the multi-core architecture model 
adopted in this work.

3.1  Architecture Overview

Figure 2 presents the architecture overview. We focus on 
detailing the memory hierarchy since it is the target of this 
work. The architecture is based on the Intel Xeon X5500 
chip. Each core implements the Nehalem Intel microarchi-
tecture [15], having a private L1 cache with 32KB, a pri-
vate L2 cache with 256KB, and a shared by four cores L3 
cache with 8MB. The chip also includes a triple channel 

DRAM memory controller to interface with off-chip DRAM 
memories.

The interconnection is bus-based with 20-bits width, and 
provides 12.8 GB/s per link in each direction (25.6 GB/s 
total).

The architecture depicted in Fig. 2 is the reference multi-
core model. The actual goal is to exploit different core 
counts and cache configurations by changing the following 
parameters:

• C: the number of cores (e.g., 4, 8, 16, 32)
• L2 (xC): sharing of L2 cache, where C represents the 

number of cores sharing one L2 cache. For instance, in 
the baseline architecture, the L2 is (x1), since each core 
has one L2 cache. An L2(x2) indicates that two cores are 
sharing the L2. The size of L2 for each core is fixed in 
256KB, therefore, in L2(x2), two cores are sharing an L2 
with 512KB.

• L3 (xC): sharing of L3 cache, where C represents the 
number of cores sharing one L3 cache. It adopts the same 
rule used in L2. For instance, the baseline architecture 
(assuming that there are 4 cores in total), adopts an L3 
(x4) configuration.

• L2 size: the size of the L2 cache dedicated for each core. 
When a core shares the L2 cache with another core, i.e, 
L2 (x2 or more), the final size of the L2 cache will be 
multiplied by the number of shared cores.

• L3 size: same rule than L2 size.

3.2  Model Description

This work adopts the Sniper multi-core simulator [3]. Sniper 
includes the description of the Nehalem cores as well as 
cache, memory controller, and DRAM.

Sniper is a consolidated system simulator for multi-
core architectures, used in many state-of-the-art works 
to evaluate application’s performance and, mainly, power 

Table 1  Related works studying the cache impact in parallel applications.

Author (et al.) Proposal Contribution Benchmark

Slingerland [4] N.A. (Evaluation work) Cache profile of multimedia applications Multimedia applications
Alvez [5] N.A. (Evaluation work) Evaluation of L2 properties Heterogeneous applications
Garcia  [6] N.A. (Evaluation work) Evaluation of impact of LLC sharing Heterogeneous applications
Domagala  [7] Splitting nested loops Increased Data locality StreamIt
Maghazeh  [8] Splitting GPU kernels to sub-kernel 

and data input into L2 size
Increased Data locality + Decreased 

cache miss rate
GPU-based applications

Stoutchinin and Benini 
[9]

Novel framework (StreamDrive) New communication protocol (zero-copy 
communication channel)

Dynamic Dataflow applications

Fraguela [10] Strategy to improve cache usage in 
dataflow

Minimize communication among threads Cholesky decomposition

This work Use of two dynamic memory manag. 
methods (CoW, NTM)

Cache configuration evaluation + Reduction 
in memory copy penalties

Static Dataflow applications

724 Journal of Signal Processing Systems (2022) 94:721–738
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and energy consumption [16, 17]. Sniper adopts an inter-
val-based core model simulation, which allows fast and 
accurate simulation. The Nehalem cores are by default 
provided within Sniper distribution. Sniper core model 
and cache hierarchy are validated against actual Xeon pro-
cessor using Splash2 benchmarks. Sniper takes as input 
configuration files that allow the user to set parameters 
as cache sizes, cache sharing, number of cores, core fre-
quency, among many others.

Next, in the experimental setup subsection, we present 
further details about the multi-core setup simulated on 
Sniper.

4  Experiments on Cache Configurations

This section addresses the first contribution of this work: 
experiments evaluating the cache limits for dataflow applica-
tions. The first subsection describes the experimental setup. 
The remaining subsections address the analyses of appli-
cation’s performance varying the following parameters: C, 
L2(xC), L3(xC), L2 size, and L3 size.

4.1  Experimental Setup

4.1.1  Application Set

Table 2b (1st column) lists the applications benchmark 
addressed in this work. We adopt three real applications 
named Stabilization, Stereo, and scale-invariant feature 
transform (SIFT), taken from PREESM repository [18]. 
Stabilization is used for video stabilization. Its principle is 
to compensate for the movements of a video recorded with 
a shaky camera. The main two steps of this process consist 
of tracking the movement of the image using image process-
ing techniques and creating a new video where the tracked 
motion is compensated. The input video adopted in experi-
ments comes from PREESM’s github repository [18] and 
has 40.9 MB of size with a resolution of 360x202 pixels.

Stereo is a computer stereo vision application that extracts 
3D information from images. Stereo matching algorithms 
are used in many computer vision applications to process 
a pair of images, taken by two separated cameras at a small 
distance, and produce a disparity map that corresponds to 
the 3rd dimension (the depth) of the captured scene. Stereo 

Figure 2  Architecture overview of the baseline multi-core model.
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matching algorithms and their implementations are still heav-
ily studied as they raise important research problems [19]. 
The two input images [18] adopted in experiments have the 
size of 506.3 KB with a resolution of 405x375 pixels.

SIFT is used to object recognition in cluttered real-world 
3D scenes [20]. The extracted features are invariant to image 
scaling, translation, and rotation, and partially invariant to 
illumination changes and affine or 3D projection. The appli-
cation behavior shares a number of properties in common 
with the responses of neurons in the inferior temporal cortex 
in primate vision. The input image [18] used in SIFT has a 
size of 512 KB with a resolution of 800x640 pixels, with 4 
levels of parallelism and 1400 number of keypoints.

These three applications are specified through the 
PREESM framework, which is responsible for the code gen-
eration, actors scheduling and mapping, as shown in Fig. 1b.

Table 2b highlights that the applications have heteroge-
neous memory requirements. Specifically, the 4th column 
details the sum of PREESM FIFOs size, which can be under-
stood as the memory footprint of inter-actor communica-
tion. SIFT is memory bounded and has high synchroniza-
tion demands (high number of actors and FIFOs), Stereo is 
computational and memory bounded, and Stabilization is 
computational bounded but with low memory and synchro-
nization demands. The heterogeneous memory requirements 
lead to different cache locality and memory footprints, mak-
ing such applications appropriated candidates for the evalu-
ation of cache impact intended in this work.

We use the optimal scheduling and mapping decision pro-
vided by PREESM [2], which is focused on workload balancing. 
The memory allocation adopts advanced memory optimization 
proposed in [14], which considerably reduces the applications’ 
memory overhead. The selected memory allocation uses the 
FirstFit algorithm with MixedMerged distributions and none 

data alignment. These features were selected because they have 
presented the lowest memory footprint at the same time that they 
are suitable to the target multi-core architecture used in this work. 
After the generation of C code by PREESM, the applications 
were compiled using GCC v7.5.0 optimization -O2 (default opti-
mization adopted by PREESM), and simulated on Sniper.

4.1.2  Hardware Setup

The experimental setup adopts the multi-core model 
described in Section 3, configured on Sniper. Table 2a pre-
sents the hardware setup. These parameters are based on the 
real Xeon X5500 multi-core.

To evaluate the number of cores and cache sharing we cre-
ated 22 multi-core cache configurations, varying the param-
eters C, L2(xC), and L3(xC). Figure 3 express graphically the 
reasoning behinds these configurations. Each configuration is a 
black spot in the figure. The configurations can be divided into 
4 groups (different background color on the figure) accord-
ing to the number of cores ( C = 4, 8, 16, 32 ) in which a given 
configuration was simulated. Note that the 22 configurations 
were not simulated for each C configuration. The minimal C 
evaluated for each configuration is dictated according to the 
sharing factor of the LLC. For instance, we do not evaluate a 
system with 4 cores for config. 9 (which have L3(x8) as LLC), 
since it is unfeasible because the L3 sharing (LLC sharing) 
requires at least 8 cores to meet the sharing factors of L3(x8).

The L2 sharing comprises configurations from L2(x1) up 
to L2(x32), with most of them (36%) addressing a private L2 
cache (since this L2 design choice is found in real architectures 
like Xeon Nehalem and AMD K10). Some configurations are 
unrealistic, specially those that have a big L2, as the case of 
configurations 8, 16, 21, where L2 = 2MB; configurations 12, 
22, where L2 = 4MB; and configuration 17, where L2 = 8MB. 

Table 2  Experimental setup 
settings.

cyc = cycles
lat = latency
LRU = Least Recently Used
a  sum of all copied memory using the memcpy procedure

(a) Hardware model settings

Core Model centering Intel Xeon X5550 4/8/16/32 @ 2.66 GHz (base clock)
L1-I Cache 32KB 8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L1-D Cache 32KB 8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L2 Cache 256KB 8way 3 cyc. tag lat. 8 cyc. data lat. LRU
L3 Cache (LLC) 8MB 16way 10 cyc. tag lat. 30 cyc. data lat. LRU

(b) Dataflow applications benchmark profile

Application Actors PREESM # FIFOs PREESM FIFOs size Memory  copyinga

PREESM Actors
Stabilization 30 607 0.92 MB 21 MB 0.2 MB
Stereo 36 811 29.09 MB 5 MB 13 MB
SIFT 77 2183 188.6 MB 12 MB 308.6 MB

726 Journal of Signal Processing Systems (2022) 94:721–738
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However, our goal is to address the trend in multi-core proces-
sor design, which features always bigger L2 caches.

The L3 sharing also adopts a very heterogeneous configu-
ration set, including no L3 (e.g. configuration 1), one private 
L3 cache (e.g. configuration 4), up to 32 cores sharing the 
same L3 (configuration 18-22).

The number of memory controllers is equal to the number 
of LLC. For instance, configuration 6 executed for 8 cores 
has two L3 shared by 4 cores (L3(x4)). Therefore, this con-
figuration has two memory controllers (one for each L3).

Although the results achieved are based on Xeon architec-
ture, the presence of 22 different hardware configurations, var-
ying the core count and cache sharing and size, helps to project 
the behavior of the benchmarks in architectures different from 
Xeon, especially those that adopt similar cache organizations.

4.2  Number of Cores – C

Figure 4 shows the application iteration time (time for the 
application to complete the execution of one loop), for Stabili-
zation (a), Stereo (b), and SIFT (c). The x-axis contains groups 

of bars, where each group represents one configuration (only 
the ones that support C varying from 4 to 32 were shown), and 
each bar represents a different C to that configuration.

The main evaluation to be extracted from these results is 
related to scalability with the number of cores C. It is possi-
ble to observe that Stabilization presents a continuous reduc-
tion in the execution time according to a higher C, reducing 
its execution time on average -46% from 4 to 8 cores, -43% 
from 8 to 16 cores, and -39% from 16 to 32 cores. However, 
the same does not occurs to Stereo and SIFT, which have a 
moderate or even worst improvement in C ≥ 16 , with Stereo 
presenting an execution time of -22%, -1.3%, +2.6%, for an 
increase in C of 4 to 8, 8 to 16, and 16 to 32, respectively.

Observing Table 2b, it is possible to note that Stereo and 
SIFT have a higher FIFOs size compared to Stabilization, 
which puts more pressure on the cache subsystem and does 
not allow the application to entirely benefit from a higher 
core count (reaching a memory wall).

It is also possible to observe that there are different 
performances among the configurations of the x-axis. 
Such performance is impacted due to the different L2 

Figure 3  Overview of the reasoning behind the 22 cache configuration adopted in the experiments. C = number of cores simulated for each con-
figuration.
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and L3 sharing configurations. The next two subsections 
enter into details about the impact of L2 and L3 sharing.

4.3  L2 Sharing

Figure 5 presents a comprehensive evaluation of the L2 
sharing impact over the execution time, L2 miss rate, and 
L2 miss rate for the three applications. The left y-axis of 
each plot represents the application iteration time, the right 

y-axis represents the miss rate, and the x-axis represents 
the configurations.

Each application has 4 plots, one for each simulated C. As 
the purpose is to evaluate the results only varying L2 shar-
ing, the plots have the L3 sharing fixed according to the max-
imum number of cores (as well as in the Xeon architecture).

The L2 miss rate decreases for all applications, more 
sharply for Stabilization (-59%), and less significantly for 
SIFT (-23%), and Stereo (-22%), considering the average 

(a) (b) (c)

Figure 4  Application iteration time over different number of cores for three applications: (a) Stabilization, (b) Stereo, (c) SIFT.

Figure 5  L2 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c) SIFT.
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between the leftmost configuration and the rightmost con-
figuration. This decrease in L2 miss rate happens because 
a high L2 sharing increases the probability of an actor to 
share a FIFO inside the same L2 that is being shared with 
another actor (without the need to retrieve the data at the 
L3 cache level). The decrease is less significant in high 
memory demand applications – as SIFT and Stereo – since 
they naturally require more memory than Stabilization.

The L3 miss rate increases for all applications accord-
ing to the higher L2 sharing. Such increase makes the L3 
reach high miss rates of 84.3% for SIFT, 84% for Stereo, 
and 66.32% for Stabilization in configuration 22. Again, 
the memory demands of each application play an important 
role to stress the cache. The number of L3 accesses helps 
to justify this L3 miss rate increase. With a more shared 
L2, the L3 accesses consequently decreases, reaching, on 
average of -39.7% for Stabilization, -32.3% for Stereo, and 
-17.6% for SIFT. This makes the L3 lose temporal and spa-
tial locality and increasing its miss rate, which transfers the 
data access to DRAM level and delays the execution time.

The execution time remains constant for Stabilization 
regardless of higher L2 sharing. For Stereo and SIFT, it 
remains constant for C = 4, 8 , but for C ≥ 16 , the execution 
time starts to increase from L2(x2), reaching up to +56% 
of increase for Stereo and to +17% for SIFT L2(x32). This 
increase in execution time is attributable to the significant 
increase of the L3 miss rate compared to a not-so-high 
decrease of the L2 miss rate, which generates miss penal-
ties from both sides (L2 and L3 caches).

In summary, increasing L2 cache sharing is not beneficial 
to dataflow applications, specifically those that demand more 
memory as in the case of Stereo and SIFT. This is in compli-
ance with the cache design choices of some processor archi-
tectures as Intel Nehalem and AMD K10, which use private 
L2 caches. As can be observed from the results, assigning 
to each core a private L2 reduces the execution time since 
this allows a more balanced rate of L2 and L3 misses, which 
reduces cache contention earlier avoiding data to be fetched 
in a higher level of caches or even DRAM.

4.4  L3 Sharing

Figure 6 presents a similar set of plots of L2 sharing analy-
sis, but now varying L3 sharing. The L2 sharing is fixed in 
L2(x1) since the previous subsection has shown that this is 
the best L2 sharing configuration.

The results show three trends: (i) L2 miss rate remains 
constant; (ii) L3 miss rate decreases significantly according 
to the increasing of L3 sharing; and (iii) the execution time 
can benefit from a higher L3 sharing.

Regarding the L2 miss rate, it is expected that it remains 
constant since the L2 was not changed. Regarding the L3 
miss rate, it decreases significantly for all applications 

according to higher L3 sharing, reaching a miss rate in the 
L3(xC) of, on average, 9.3% for Stabilization (-87.34%), 
8.4% for Stereo (-87%), and 37.8% for SIFT (-38%). This 
result is expected since a higher L3 sharing allows all appli-
cation data to fit on the L3 cache (note that SIFT presented 
the lowest improvement due to its higher memory demands). 
Consequently, the execution time also benefits from this L3 
miss rate decrease, specifically for the applications with 
higher memory demands such as Stereo and SIFT.

In summary, increasing L3 cache sharing is beneficial to 
dataflow applications, specifically those that demand more 
memory. A single L3 cache is slower but larger, allowing it 
to store all application data on it.

4.5  Cache Size

In the previous L2 and L3 sharing analysis, it was possible 
to conclude that an private L2 and an L3 shared by all cores 
presents the best results related to application speedup and 
L2/L3 miss rate. To the cache size evaluation, we keep this 
sharing configuration, and changed only the size of L2 or L3 
per core, creating 15 new cache configurations (3 varying 
L2 size × 5 varying L3 sizes). Besides, the evaluation only 
addresses configurations with 32 cores, since lower core 
count have presented the same trend and are not interesting 
in terms of a state-of-the-art analysis.

Figure 7 shows the results varying the L2 size (256KB, 
512KB, and 1MB) at x-axis. The left y-axis represents the 
application iteration time, and the right y-axis represents the 
cache miss rate. Each plot represents one application, with each 
one having 3 sets of results representing different L3 sizes.

It is possible to observe that the increase in L2 and L3 
size has a low influence on the L2 and L3 miss rate for all 
applications. The execution time has a small reduction 
according to higher L2 sizes, however, this value is insig-
nificant, representing an average reduction from the lower 
L2 size (256KB) to the higher L2 size (1MB), of -0,49% for 
Stereo, -1.76% for SIFT, and -4.62% for Stabilization.

The results varying the L3 sizes follows the same trend 
observed for L2. Figure 8 shows an example with the L2 size 
fixed in 512KB (other L2 sizes present very similar behav-
ior). It is possible to see that both L2 and L3 cache misses 
remains stable, and with an insignificant reduction in the 
execution time (not better than -0.26% for all applications).

In summary, increasing the L2 and L3 sizes does not guar-
antee an automatic improvement for dataflow applications. 
In such a case, when a higher amount of hardware resources 
cannot provide speedup to the application, other aspects 
must be taken into consideration, specifically at the software 
level, by allowing the mapping and scheduling algorithms to 
make better use of such availability of resources and improv-
ing the parallel workload of the application.

729Journal of Signal Processing Systems (2022) 94:721–738



1 3

4.6  Summary of Findings

Bigger is not always better with dataflow; increasing the 
number of cores, cache levels, size, does not guarantee 
a faster application execution. This finding is especially 
significant for working sets that demand more than the 
total cache size.

The next items summarize the finding for each analysis:

• Number of cores: increasing the number of cores does not 
guarantee automatic improvement in the execution time, 
since the overhead of cache protocols and required synchro-
nization does not allow applications to increasingly speed-
up, specifically the ones with more memory demands.

• Cache sharing: reducing L2 sharing and increasing L3 
sharing was the most beneficial configuration for the 
addressed dataflow applications.

Figure 6  L3 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c) SIFT.

(a) (b) (c)

Figure 7  L2 cache size comparison varying L2 size over multiples L3 sizes. (a) Stabilization, (b) Stereo, (c) SIFT.
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• Cache size: increasing the L2 and L3 sizes have an insig-
nificant effect on the adopted dataflow benchmarks.

One interesting finding is that private L2 and L3 shared by 
all cores was the configuration that presented the best results 
related to application speedup and L2/L3 miss rate. While this 
conclusion can sound similar as Intel had reached some years 
ago, justifying its current cache organization with L3 shared by 
all cores, it was not so apparent from our point of view. First, 
our focus was to evaluate the impact specifically for dataflow 
applications, research that, to the best of our knowledge, was 
not addressed yet. Secondly, our initial hypothesis was that 
when two actors – sharing the same FIFO – are mapped on dif-
ferent processors that share an L2 cache (increased sharing fac-
tor), this will improve performance due to the reduction in the 
coherence traffic and the L2 miss rate reduction. This behavior 
is supported by the results (Fig. 5). However, this leads to a 
higher miss rate for L3, which has higher penalties than L2, 
and consequently, has a higher influence on the execution time, 
as shown in the case of the three applications studied (Fig. 6).

Table 2b shows that PREESM uses memory copying 
mechanisms extensively for FIFO handling. Some memory 
copying is expected in a dataflow design; however, memory 
copying is done to the degree that negates the cache hierarchy 
benefits. Therefore, alternative approaches must be investi-
gated to allow reducing memory copies penalties at runtime. 
The next sections detail the research made in this sense.

5  Dynamic Memory Management 
Techniques

This section presents the second contribution of this work: 
the evaluation of two dynamic memory management tech-
niques and its impact when used in the context of static 
dataflow applications. These techniques are Copy-on-
Write (CoW) and Non-Temporal Memory (NTM) copy-
ing. They are not novel in their principle, CoW is a well-
known approach supported by Linux OS by the mmap() 
syscall [11], and NTM is essentially a direct RAM-to-RAM 

copy, supported in some Intel processors [12]. The novelty 
here is to exploit opportunities of using such techniques 
in dataflow frameworks, and quantify how much they can 
improve the applications execution time and system energy 
by saving memory transfers.

First, Subsection 5.1 presents the motivation to employ these 
techniques in dataflow applications. In sequence, the Subsec-
tion 5.2 presents CoW, and Subsection 5.3 presents NTM.

5.1  Motivation

Figure 9 shows a fork-join actor graph implemented as a 
dataflow application. Actor A produces data tokens t1 and 
t2 to actors B1 and B2, which access those data, process, 
and generate a token to actor C, which merges the data and 
generates the application output.

Figure 8  L3 cache size comparison varying L3 size with an private L2 of 512KB. (a) Stabilization, (b) Stereo, (c) SIFT.

(a)

(b) 14

Figure 9  Communication overview among actors of a dataflow-based 
fork-join application.

731Journal of Signal Processing Systems (2022) 94:721–738



1 3

A memcpy is used to transfer a data token between actors. 
A non-overlapping memory space (dedicated buffer), is 
required for each actor, since producer actors (for instance, 
actor A), can, during its processing, modify the data pro-
duced but not consumed yet in its output buffer. And the 
other way round, a consumer actor can use the input buffer 
for temporary values. Besides this fork and join pattern, 
dataflow applications can also have broadcast and round-
buffer actors which also assumes non-overlapping memory 
spaces between actors [14].

Taking advantage of this high waste of memory and time by 
applying memory copies, Desnos et al. [14] proposed memory 
reuse techniques over those dataflow applications. In summary, 
the designer can inform the framework which buffers can be 
merged in the same memory space, resulting in the graph pre-
sented by Fig. 9b. Thus, the memcpy are avoided, helping to 
significantly save memory footprint and execution time.

However, such design-time approach only works assuming 
two conditions: (i) the designer must know the framework and 
the application very well in order to extract applications behav-
ior and to model into the framework the desired memory reuse; 
(ii) it only works for buffers that are known to be read-only 
over all the actor lifetime, as the case of buffer t1 of actor B1 
of Fig. 9a. If the actor – due to a branch in its algorithm flow 
– chooses to write in t1 buffer space, these memory reuses can-
not be adopted. Even if the actor has a probability of less than 
1% to write in this buffer, the memory reuse cannot be applied 
since it is fundamentally a design-time exploration technique.

Thinking about how to fulfill this lack, our idea is to inves-
tigate two dynamic memory management techniques which 
are CoW and NTM. Differently from static memory manage-
ment, they were designed to be used at runtime, and have the 
potential to avoid unnecessary memory copies (CoW), and 
cache trashing (NTM). In the next subsections, we present 
the details of each one and how they were implemented in our 
multi-core model, as well as, the evaluation of its drawbacks 
and benefits.

5.2  Copy‑On‑Write (CoW)

Figure 10 details the CoW concept. The principle of CoW 
is simple. It consists in allowing two or more threads (actors 
in our case) to share to the same memory space. When one 
thread attempts to write in that space a new memory space 
is dynamically created, bringing the data with it (a copy on 
write). It thus prevents the writing thread from overwriting 
the data in the first memory space [11]. Figure 10 depicts at 
time t1 thread A and thread B pointing to the same memory 
space 1. At the time t2, thread B writes in the memory space 
1. At the time t3, the OS detects this write and makes a copy 
of the memory space, creating the memory space 2 and mak-
ing thread B point to it. Now, any data written/read by thread 
B will be placed/accessed in memory space 2.

This functionality can be implemented in a dataflow 
application by making the buffers involved in a given oper-
ation (like a fork, join, and broadcast) point to the same 
memory space after the producer actor writes data in this 
space. If the destination buffer receives a write attempt by 
any actor, a CoW happens, preserving the original values of 
the buffer to the consumer actor.

The core code change to support CoW is shown on the 
right side of Table 3 as a single line. Initialization and termi-
nation has been omitted for this example. The CoW mecha-
nism is achieved by mapping all destination buffers (named 
dst_buffer) into the same physical address, which is refer-
enced by file descriptor shm_open_fd. This latter address 
was initialized by the shm_open procedure. Besides, we 
map the region as private (MAP_PRIVATE) with read and 
write permissions (PROT_READ | PROT_WRITE). The 
combination of these two flags will create a new copy of the 
physical address when a write has been made to the memory 
area (in other words, a copy-on-write). Finally, we allow the 
OS to decide the virtual address of this new buffer by pass-
ing nil (NULL) as the first parameter to mmap.

The CoW procedure is typically handled by the OS 
kernel. Unfortunately, the Sniper simulator has limited 
operating system modeling capabilities to evaluate kernel-
based strategies [3]. Thus, for our experiments, we used a 
combination of user- and kernel-space interaction so that 
Sniper can account OS overhead accurately. Specifically, 
in our implementation a buffer is mapped to CoW without 
the PROT_WRITE flag. Any future attempts to write in the 
buffer will trigger an exception (SIGSEGV signal1), which 
interrupts the causing thread. Then, an exception handler 
implemented at user space changes the offending memory 
page to use CoW. In regard to the code presented in Table 3, 
we change the capability of the memory regions to read-only 
(removing flag PROT_WRITE), and install a signal handler 
to re-enable the write capability for this mapping.

5.3  Non‑Temporal Memory (NTM) Copying

NTM copying is ideal for memory spaces known to be write-
mostly or rarely used (i.e., poor temporal locality). This 
approach uses either (i) instructions that bypass the cache 
hierarchy or (ii) userspace RAM-to-RAM DMA. For the 
x86 architecture, (i) is available using SSE extensions [12], 
and (ii) through the I/OAT DMA engine available in some 
processor designs [13]. In any case, the memcpy procedure 
is replaced by another procedure that uses either technique 
specialized for memory transfer and therefore, avoiding 
CPU to be executing instruction of data transfers. Another 

1 SIGSEGV is a synchronously-generated signal and is guaranteed to 
be delivered to the causing POSIX thread [22].
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benefit of employing the NTM mechanism is that cached 
data from other applications are not trashed due to the copy-
ing required by any given application.

Since these approaches avoid the cache hierarchy, their 
operation is slower compared to memcpy. Intel shows 
that RAM-to-RAM achieves approximately half the speed 
of memcpy for large transfers ( ≥ 8 MiB) and many times 
slower for smaller transfers on x86 [13]. Table 4 depicts the 
results obtained by using NTM instructions.

The core code change to support NTM is shown on the right 
side of Table 4 as a for-loop structure. Initialization and termi-
nation has been omitted from this table. The procedure _mm_
stream_si32 is provided by Intel to call the appropriate 
assembly instruction for NTM operations. It copies 32 bits from a 
value (src_buffer[i]) to a given pointer (dst_buffer[i]). 
After the end of the for-loop, the data is copied to the area pointed 
by dst_buffer. Thus, the result is the same as calling memcpy 
but the related data will not be present in the caches if they were 
not already there before _mm_stream_si32 is first called.

6  Results

This section presents the results about CoW and NTM using 
the three dataflow benchmarks and the 22 configurations.

6.1  Experimental Setup

All applications used in these experiments were generated using 
the PREESM framework (version 3.4), compiled using GCC 
v7.5.0 optimization -O2, and executed on Sniper simulator. 
The energy estimation is performed with McPAT [21], which 
is integrated into Sniper and provides reliable power and energy 
figures broadly used in state-of-the-art works [16, 17].

We develop an algorithm implemented in Python script 
language, which has as input the generated code of PREESM 
and has as output the new application code using the CoW or 
NTM technique. This algorithm detects in the code the mem-
cpy patterns, which are candidates to be replaced by CoW or 
NTM. The algorithm is fully automatized, in the sense that 

Figure 10  Principle of the Copy-on-Write (CoW) mechanism.

Table 3  Core change for supporting the CoW mechanism, assuming: (1) src_buffer is the source buffer, (2) dst_buffer is the destination 
buffer, (3) copy_length is the copy length, (4) shm_open_fd is a file descriptor created with the shm_open system call.

Original Code CoW mechanism

memcpy(dst_buffer, src_buffer, copy_length); void *dst_buffer = mmap(NULL, copy_length, PROT_READ | 
PROT_WRITE, MAP_PRIVATE, shm_open_fd, 0);
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it detects the memcpy patterns by looking for join-broadcast, 
and broadcast dataflow patterns [14]. The algorithm can also 
be tuned with a parameter � , which allows defining a mini-
mum threshold in the data size of a memcpy operation. By 
using � it is possible to eliminate small-size memcpy and 
only target the ones which transfer a large amount of data.

Algorithm 1 presents the method to detect the mem-
cpy patterns which are candidates to be used in CoW and 
NTM. As input, the algorithm has three parameters: src_o : 
the application source code generated by PREESM; t: a flag 
that selects between CoW or NTM; and � : the parameter 
that indicates the minimum memcpy data size. Line 1 and 
2 initialize two sets, called join_broad_set and broad_set , 
which will store the destination buffers’ names of memcpys 
related to join-broadcast and broadcast-only, respectively. 
In line 3, the function extract_memcpy extracts from src_o 
all memcpy instance generated by PREESM, achieving the 
following information from each memcpy: data transfer 
size, source buffer, destination buffer, and the type (JOIN, 
BROADCAST, FORK, and ROUNDBUFFER [2]). The type 
is easily extracted due to a PREESM’s characteristic in which 
it classifies the memcpy during its code generation, inserting 
its type as a comment in the line above each memcpy. All the 
memcpy instances are inserted in the list called memcpy_list.

Lines 5–14 identify join-broadcast patterns evaluating 
each element mj of memcpy_list . The condition of line 6 
checks if the mj is a JOIN, if its destination buffer is not 
already in join_broad_set , and if the memcpy data size 
meets � . Once this check is true, the algorithm advances 
to the phase (lines 7 and 8) to confirm that the destina-
tion buffer of JOIN operation is also involved in BROAD-
CAST. Once the buffer matches a join-broadcast pattern, 
it is inserted in the join_broad_set in line 9.

Lines 15-22 identify broadcast-only patterns evaluating 
each element mb of memcpy_list . Line 16 tests if mb’s type is 
BROADCAST. Another important verification is to check if 
the buffer is not in the join_broad_set , eliminating it if true. 
The same test of line 16 also seeks to eliminate the memcpys 
with a size lower than � . In case all conditions are meet, the 
destination buffer is added to the broad_set at line 18.

The last part of algorithm (lines 23–27) focused in veri-
fying the value of t, calling the respective function which 
will applies CoW (line 24) or NTM (line 26). These func-
tions evaluate all memcpys from memcpy_list , selecting 
those one containing the buffers name in join_broad_set 
and broad_set . The output of the algorithm is src_t , 

comprising the src_o with the matched memcpys replaced 
by the code presented in Table 3 and Table 4.

Table 5 details the values of � (2nd column) used for 
each application. The table also details the number of 
memcpy addressed in CoW and NTM (3rd column), and 
its respective total size (4th column).

Table 4  Core change for supporting the NTM mechanism, assuming: (1) src_buffer is the source buffer, dst_buffer is the destination 
buffer, copy_length is the copy length.

Original Code NTM mechanism

memcpy(dst_buffer, src_buffer, copy_length); for (i = 0; i < copy_length/4; i++) _mm_stream_si32(dst_
buffer[i], *(src_buffer[i]));
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Table 5 shows that SIFT has more available memcpy to 
be optimized. The � was defined as 400KB for SIFT and 
Stereo. Stabilization does not have such a large memcpy, 
therefore we reduce the value of � to allow the algorithm 
to consider the bigger memcpy size of the application. 
These values of � were achieved after a design-time analy-
sis and represent to the best execution times achieved for 
each application.

The next subsections present the results achieved by 
replacing the memcpy either using NTM or CoW for the 
three applications.

6.2  Non‑Temporal Memory Copying (NTM)

Figure 11a presents the iteration execution time for all 
benchmarks using NTM. It is noticeable that execution 
time is slightly reduced in most of the cases, reaching up 
to -5.3% for Stabilization in configuration 21. The average 

execution time reduction was -1.9% for Stabilization, -1% 
for SIFT, and -0.3% for Stereo.

NTM also provided a small energy reduction, in average 
-0.84% ( �=0.7) for Stabilization, -0.2% ( �=0.5) for Stereo, 
and -1.03 ( �=1.1) for SIFT, reaching up to -2.7% for SIFT 
at configuration 16.

Figure 11b focuses on SIFT (high memory footprint 
application) and presents a perspective between the bars: 
L3 miss rate, execution time, and energy, with the lines 
that show the absolute number of DRAM accesses with-
out NTM and with NTM. It is possible to observe that 
energy is reduced in most configurations, reaching up to 
-2,7% to configuration 16. The L3 cache miss was barely 
affected, presenting an average decrease of -0.13% with a 
slight DRAM increase compared to its respective version 
without NTM (+0.14%).

Figure 12 presents results for all applications on con-
figuration number 18 (private L2 and L3 shared by all 
cores), which was the cache configuration that, in general, 
presented the best results considering speed-up and L2/
L3 miss rate from previous cache analysis (see Section 4). 
NTM has presented improvements for all applications on 
this configuration, specifically for SIFT and Stabilization. 
Note that, despite Stabilization has a low memory foot-
print, the execution time reduction is higher than SIFT 
and Stereo, at cost of more L3 miss rate. On another side, 
SIFT presents a modest execution time reduction, but also 

Table 5  Memcpy profile addressed in CoW and NTM.

Application � # memcpy Total memcpy size

Stabilization 200KB 1 0.21 MB
Stereo 400KB 5 2.4 MB
SIFT 400KB 8 24.4 MB

(a)

(b)

Figure 11  Results using NTM. (a) Evaluation of execution time. (b) Detailed evaluation for SIFT application.
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achieves reduction in all cache hierarchy, and specifically, 
in L1-D and L1-I access.

In summary of all results, it was possible to observe that 
NTM can improve the execution time and reduce energy, 
however, the gains were modest, not better than -1.9% in 
execution time and -2,7% in energy consumption consider-
ing all results.

6.3  Copy‑On‑Write (CoW)

Figure 13(a) presents the iteration execution time for all 
benchmarks using CoW. An average execution time reduc-
tion can be observed for Stabilization (-2%) and, most 
importantly, to SIFT (-10%), which reaches up to -15.8% for 
configuration 10. It is expected that SIFT benefits more from 
CoW since it has a large number of buffers used in memcpy 
compared to the other applications. On the other side, Stereo 
presents an average execution time increase of 1.3%. Stereo 
is known to be computation-intensive, and, therefore, the 

access to buffer mapped as CoW is less frequent than in 
Stabilization and SIFT, which makes the overheads of CoW 
(create shared memory and call of mmap()) overcome its 
benefits.

An energy reduction was achieved for all applications 
(-7.6% on average), with an average reduction of -2% for 
Stabilization, and -1.3% for Stereo. Again, SIFT is the 
application that benefits the most from CoW regarding 
energy. Figure 13b shows an overview of energy con-
sumption for SIFT (bar graph) to the 22 configurations. 
On average, the energy reduction was -16.8%, reaching 
the best result of -21.8% to configuration 8. Again, SIFT 
benefits greatly from the CoW which allows data to be 
used without having to wait for the memcpy to complete. 
This behavior significantly affects the use of the CPU, 
which saves instructions in memcpy. This result can be 
observed following the dotted line of Figure 13b, which 
shows a significant reduction of L1-I (instruction cache) 
accesses of, on average, -62.3% ( �=3.4).

(a) (b) (c)

Figure 12  Results for configuration 18 using NTM. (a) Stabilization. (b) Stereo. (c) SIFT.

Figure 13  Results using CoW. (a) Execution time evaluation. (b) Energy evaluation.

(a)

(b)
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Figure 14 presents results for all applications in con-
figuration 18. As expected, all applications have a reduc-
tion in the number of instruction access from the L1-I 
cache, which is justified by the saved memcpy instruc-
tions by using CoW. The instruction access gains pro-
gresses accordingly with the size of application’s memcpy 
(as depicted in Table 5 (4th column)), with Stabilization 
presenting -0.41% less L1-I access, Stereo -29.8%, and 
SIFT -46.5%. This effect impacts the energy consumption 
and execution time, especially for SIFT, which benefits 
more from CoW due to its larger memory transfer profile.

7  Conclusion

This work presents a broad analysis of the impact of cache 
hierarchy configuration over static dataflow applications. 
In total, 37 different cache configurations (resulting in 
213 simulations with 3 real applications) were adopted 
to evaluate variations in core count, L2/L3 sharing, and 
L2/L3 sizes. From this analysis, it is possible to conclude 
that bigger is not always better in terms of core count, L2 
sharing, and L2/L3 size, since other aspects as efficient 
parallel workload division and computation/communica-
tion profile can prevent the application to benefit from 
more cache memory resources. This analysis shows that 
private L2 and L3 shared among all cores provide the 
best results in terms of application speed-up and L2/L3 
cache miss for the adopted dataflow applications. As the 
second contribution, this work investigates the benefits 
of using copy-on-write (CoW) and non-temporal memory 
transfer copies (NTM) in dataflow applications. Results 
have shown that both techniques can contribute to improve 
execution time and save energy. NTM presents a modest 
reduction in execution time (up to -5.3%) and energy (up 
to -2.7%). CoW – specifically when used in applications 
with bigger memcpy transfers ( ≥ 400KB) – shows impor-
tant reductions, achieving up to -15.8% in execution time 
and -21.8% in energy consumption. These techniques are 

complementary to static state-of-the-art memory optimi-
zation approaches like [14], acting at runtime to reduce 
cache thrashing (NTM) and unnecessary data movements 
(CoW) among dataflow actors.

Future works include applying such evaluation in a dif-
ferent cache memory architecture, like distributed shared-
memory systems. On the software side, some research can 
be conducted about source code generation from dataflow 
specification optimized to the cache hierarchy of the target 
SMP.
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