
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11265-021-01730-7

The Impact of Cache and Dynamic Memory Management in Static
Dataflow Applications

Alemeh Ghasemi1  · Marcelo Ruaro1  · Rodrigo Cataldo1  · Jean‑Philippe Diguet2  · Kevin J. M. Martin1 

Received: 18 April 2021 / Revised: 28 September 2021 / Accepted: 30 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Dataflow is a parallel and generic model of computation that is agnostic of the underlying multi/many-core architecture
executing it. State-of-the-art frameworks allow fast development of dataflow applications providing memory, communicating,
and computing optimizations by design time exploration. However, the frameworks usually do not consider cache memory
behavior when generating code. A generally accepted idea is that bigger and multi-level caches improve the performance of
applications. This work evaluates such a hypothesis in a broad experiment campaign adopting different multi-core configu-
rations related to the number of cores and cache parameters (size, sharing, controllers). The results show that bigger is not
always better, and the foreseen future of more cores and bigger caches do not guarantee software-free better performance
for dataflow applications. Additionally, this work investigates the adoption of two memory management strategies for data-
flow applications: Copy-on-Write (CoW) and Non-Temporal Memory transfers (NTM). Experimental results addressing
state-of-the-art applications show that NTM and CoW can contribute to reduce the execution time to -5.3% and −15.8% ,
respectively. CoW, specifically, shows improvements up to -21.8% in energy consumption with -16.8% of average among
22 different cache configurations.

Keywords  Multi-core · Dataflow · Cache memory · Compilers

1  Introduction

The multi/many-core architecture is a widespread on-chip
design, providing high computing power in a small silicon
area. The computation power is achieved by supporting task-
level parallelism, splitting the application into parallel tasks
running in different cores. A generally accepted expectation

is that increasing the number of cores naturally leads to bet-
ter application performance. However, increasing the num-
ber of cores impacts other aspects, especially the memories
subsystem. Since memories are costly in terms of area and
power to be embedded on the chip, the memory hierarchy
(cache memories) generally has a reduced on-chip size, mak-
ing it suffer from the high pressure in systems with a high
number of cores. This phenomenon is known as memory
wall [1].

From a software aspect, several efforts have been made
to allow the efficient development of parallel applications
regarding memory footprint, communication overhead,
and computing parallelism. Existing for 40+ years, the
dataflow programming model may eventually stand as the
ideal approach to bridge the gap between application and
architecture resources. Figure 1a presents an overview of
the principles of a dataflow-based application. The applica-
tion is represented by a graph, where each node represents
an actor having a single computing function (as exemplified
by actor B1 code), and each edges representing the FIFO as
a data dependency between two actors. Actors communicate
via producing/consuming data tokens. An actor can start the

 *	 Marcelo Ruaro
	 marcelo.ruaro@univ-ubs.fr

	 Alemeh Ghasemi
	 alemeh.ghasemi@univ-ubs.fr

	 Rodrigo Cataldo
	 cadorecataldo@gmail.com

	 Jean‑Philippe Diguet
	 jean-philippe.diguet@cnrs.fr

	 Kevin J. M. Martin
	 kevin.martin@univ-ubs.fr

1	 Univ. Bretagne-Sud, UMR CNRS 6285, Lab‑STICC,
Lorient, France

2	 IRL 2010, CROSSING, Adelaide, Australia

/ Published online: 24 February 2022

Journal of Signal Processing Systems (2022) 94:721–738

https://orcid.org/0000-0001-7902-2437
https://orcid.org/0000-0001-5995-435X
https://orcid.org/0000-0003-4664-2909
https://orcid.org/0000-0003-0728-6040
https://orcid.org/0000-0002-8122-1192
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-021-01730-7&domain=pdf

1 3

execution only if required data tokens are available in the
input FIFOs and if enough space is available in the output
FIFOs.

Dataflow models can naturally make use of parallel
resources by means of actors that run in parallel while con-
suming and producing tokens. Several tokens can be pro-
duced and consumed at a time, but a token is produced and
consumed only once. This feature favors data spatial locality.
While the cache hierarchy also exploits temporal locality, a
dataflow program may benefit from the latter for instructions
and spatial locality for data as consecutive tokens are usu-
ally involved. Therefore, dataflow applications performance
should be improved with the increasing size of caches. How-
ever, this paper shows that such an assumption does not hold
in regard to multiple cache-based architecture designs.

Taking advantage of the generic principles of dataflow
applications, some rapid prototyping frameworks have been
proposed. Figure 1b addresses PREESM [2], a state-of-the-
art open-source framework for rapid prototyping of dataflow
applications in multi/many-cores. It provides a graphical user
interface for the designer to generate the application source
code. Based on inputs provided by the designer including
algorithm (graph of the application) and system constraints
(mapping, scheduling and etc.), the framework generates a
deadlock-free source code of the application (implemented
in C language) and the respective actor mapping on each
core, based on spatial and temporal requirements. Due to
the well-defined modeling of dataflow applications, it is
possible to reach design-time optimal scheduling for static
applications.

Although the state-of-the-art techniques can lead to
theoretical optimal schedules, this article demonstrates
that even optimally scheduled applications do not scale as

desired with the increasing number of cores, cache levels,
size, and cache sharing factor. As expected, the memory
contention is of utmost importance, and the CPU load-
based actor mapping used in the experiments does not lead
to the best execution time. Therefore, the first contribution
of this work is to study dataflow applications according
to different caches configurations, providing experimental
results that demonstrate their impact on the application’s
execution time performance and cache miss. For this, we
consider several configurations, including non-available
yet platforms or non-realistic cache configurations, and
use the Sniper simulator [3] to foresee the scalability of
the considered dataflow applications.

From such analysis, the second contribution of this paper
consists in the investigation of using two dynamic memory
management techniques for dataflow code generation: Copy-
on-Write (CoW) and Non-Temporal Memory (NTM) copy-
ing. Those techniques are not new since CoW is supported
by Linux OS [11] and NTM is supported by some proces-
sor designs, including Intel [12, 13]. The novelty here is
the study of the benefits and drawbacks of both approaches
when applied to the dataflow programming model, evaluat-
ing whether they can contribute to speedup application’s exe-
cution, reduce cache misses, and save energy. Additionally,
those techniques can be used as runtime memory optimiza-
tion approaches, complementary to static techniques [14].
Moreover, they are applied at the framework level and do not
require changes for the application specification and code.

In summary, this work has two contributions:

•	 The evaluation of the impact of different cache param-
eters and number of cores over the performance of static
dataflow applications;

Figure 1   (a) Overview of a dataflow application model with four actors. (b) Workflow of PREESM framework [2].

722 Journal of Signal Processing Systems (2022) 94:721–738

1 3

•	 The evaluation of two existing memory management
techniques (CoW and NTM) for three static dataflow
applications.

The next section addresses related works that investigate the
behaviors of dataflow applications running on systems with
caches. Next, in Section 3 the multi-core model assumed in
this work is presented. Section 4 presents the experiments
varying cache parameters and the number of core. Section 5
details CoW and NTM techniques, and Section 6 presents
the achieved results from those techniques. Finally, Section 7
concludes this work.

2 � Related Work

This section highlights studies that target the behavior of
dataflow applications running on systems with a memory
hierarchy. In Domagala et al. [7], researchers extended the
concept of tiling to the dataflow model to increase the data
locality of applications for better performance by splitting
iterations of nested loops. However, this type of optimiza-
tion does not address the coarse-grain inter-actor (i.e., inter-
tasks) relation.

In Maghazeh et al. [8], a method is proposed for GPU-
based applications by splitting both the GPU kernel into sub-
kernels and input data into tiles in size of GPU L2 cache.
Their work is intended to accelerate applications whose
performance is bound to memory latency. The method
increases data locality, as the sub-kernels are scheduled in a
way to have the least cache miss rate, for GPU applications
over various settings. However, the method requires source
code modification and does not target the dataflow model.
Research about the cache effect on the performance of multi-
ple application types is presented in Garcia et al. [6]. Garcia
et al. have evaluated the impact of Last Level Cache (LLC)
sharing in GPU-CPU co-design platform for heterogeneous
applications. According to their study, applications with low
data interaction between GPU and CPU are sped up slightly
by sharing the LLC. Data sharing of LLC minimizes mem-
ory access time and dynamic power, and accelerates syn-
chronization for fine-grained synchronization applications.

The cache behavior of multimedia workloads is evalu-
ated by Slingerland and Smith [4]. They appraised data
miss rate of applications considering data cache size, asso-
ciativity, and line size parameters. The authors observed
that multimedia applications benefit from longer data
cache lines and have more data than instruction miss rate
in comparison to other workloads. The experiment results
reveal that most of the multimedia applications just need
32 KB data cache size to have less than 1% cache miss
rate, while other types of applications (3D graphic, docu-
ment processing) do not reach the same behavior. As the

results of our work will show, sharing cache levels among
more cores with larger sizes, up to 256 MB for LLC, does
not help the performances of dataflow applications, but
also results in data access latency overhead.

The work of Alvez et al. [5] investigates the impact of
L2 sharing in order to find the best cache organization at
this level. Assuming the NAS Parallel Benchmark, with
heterogeneous workload set, and a 32-core SMP with two
levels of caches (private L1-I and L1-D) and an L2, the
work changes the sharing, size, associativity, and line size
in the L2. Among the mains results, it was observed an
execution time decrease when more cores share the L2
cache, even when 2 cores share the same L2. Increasing
line size (64 bytes to 128 bytes) contributed to -32% in
cache misses and +1.95% in speedup. The work does not
address 3-level caches either dataflow applications.

Stoutchinin et al. [9] present a novel framework, called
StreamDrive, for dynamic dataflow applications. Stream-
Drive proposes a new communication protocol, reserve-
push-pop-release, for dataflow model instead of the stand-
ard send-receive. This protocol allows their solution to
employ a zero-copy communication channel for actors. It
employs a blocking mechanism to access FIFOs directly
in shared memory; hence, no local copies are needed,
which are commonly used in software dataflow model.
This study is specific since it focuses on computer vision
applications running on a special embedded multi-core
platform (P2012) with dedicated hardware computer
vision engines. Meanwhile, we propose two solutions to
general-purpose architectures that do not require novel
hardware components.

Fraguela et al. [10] propose the concept of a software
cache with an autotuning method to configure its size accord-
ing to each application. The approach is built upon Unified
Parallel C++ (UPC++) library. It consists of an algorithm
called in periodic intervals, which dynamically re-allocates
the software cache size. Results show that the software cache
can reduce the communication among actors due to the effi-
cient cache sizing and allocation, presenting a hit rate just
0.27% lower than an optimal scenario. Similar to CoW and
NTM, that proposal also implements the algorithm as part of
a library, however, with a limited evaluation without varying
hardware parameters and adopting just one application.

Table 1 summarizes the main characteristics of the related
works addressing the cache impact in parallel applications
running in SMPs. The main novelties of this work regarding
the related works are twofold: (i) we evaluate a wide range
of cache configuration in a multi-core architecture, including
realistic and non-realistic configurations; and (ii) two exist-
ing memory management methods are proposed to be used
in dataflow application, which can reduce the memory cop-
ies penalties in numbers and latency, leading to an improved
application execution time and energy consumption.

723Journal of Signal Processing Systems (2022) 94:721–738

1 3

Regarding contribution (i), works of [4–6] are also evalu-
ation works. However, in [4] the benchmark is limited to
multimedia applications, in [6] the focus is the iteration
between the CPU and GPU by addressing a heterogene-
ous set of applications but not considering dataflow, and in
[5] the Authors did not consider a 3-level cache either the
dataflow application profile. Therefore, to the best of the
Author’s knowledge, the present research is the first to per-
form a comprehensive evaluation of the cache impact with
3-level and targeting dataflow applications.

Regarding contribution (ii), it fills different gaps from
related works focused on proposals [7–10]. Specifically, we
are interested in: (i) keeping the original dataflow modeling
granularity (differently from [7, 8]); (ii) not making modifi-
cation in the Linux-based kernel, or any part of the OS (con-
trary to [10]); and (iii), targeting generic SMP (differently
from [9]). We endorse that the techniques of CoW and NTM
are not new, and the goal of this study is to replace them in
memcpys procedures in order to observe the impact in the
cache and in the overall performance of dataflow applica-
tions, a study that is lacking in the literature.

3 � Multi‑Core Model

This section presents the multi-core architecture model
adopted in this work.

3.1 � Architecture Overview

Figure 2 presents the architecture overview. We focus on
detailing the memory hierarchy since it is the target of this
work. The architecture is based on the Intel Xeon X5500
chip. Each core implements the Nehalem Intel microarchi-
tecture [15], having a private L1 cache with 32KB, a pri-
vate L2 cache with 256KB, and a shared by four cores L3
cache with 8MB. The chip also includes a triple channel

DRAM memory controller to interface with off-chip DRAM
memories.

The interconnection is bus-based with 20-bits width, and
provides 12.8 GB/s per link in each direction (25.6 GB/s
total).

The architecture depicted in Fig. 2 is the reference multi-
core model. The actual goal is to exploit different core
counts and cache configurations by changing the following
parameters:

•	 C: the number of cores (e.g., 4, 8, 16, 32)
•	 L2 (xC): sharing of L2 cache, where C represents the

number of cores sharing one L2 cache. For instance, in
the baseline architecture, the L2 is (x1), since each core
has one L2 cache. An L2(x2) indicates that two cores are
sharing the L2. The size of L2 for each core is fixed in
256KB, therefore, in L2(x2), two cores are sharing an L2
with 512KB.

•	 L3 (xC): sharing of L3 cache, where C represents the
number of cores sharing one L3 cache. It adopts the same
rule used in L2. For instance, the baseline architecture
(assuming that there are 4 cores in total), adopts an L3
(x4) configuration.

•	 L2 size: the size of the L2 cache dedicated for each core.
When a core shares the L2 cache with another core, i.e,
L2 (x2 or more), the final size of the L2 cache will be
multiplied by the number of shared cores.

•	 L3 size: same rule than L2 size.

3.2 � Model Description

This work adopts the Sniper multi-core simulator [3]. Sniper
includes the description of the Nehalem cores as well as
cache, memory controller, and DRAM.

Sniper is a consolidated system simulator for multi-
core architectures, used in many state-of-the-art works
to evaluate application’s performance and, mainly, power

Table 1   Related works studying the cache impact in parallel applications.

Author (et al.) Proposal Contribution Benchmark

Slingerland [4] N.A. (Evaluation work) Cache profile of multimedia applications Multimedia applications
Alvez [5] N.A. (Evaluation work) Evaluation of L2 properties Heterogeneous applications
Garcia [6] N.A. (Evaluation work) Evaluation of impact of LLC sharing Heterogeneous applications
Domagala [7] Splitting nested loops Increased Data locality StreamIt
Maghazeh [8] Splitting GPU kernels to sub-kernel

and data input into L2 size
Increased Data locality + Decreased

cache miss rate
GPU-based applications

Stoutchinin and Benini
[9]

Novel framework (StreamDrive) New communication protocol (zero-copy
communication channel)

Dynamic Dataflow applications

Fraguela [10] Strategy to improve cache usage in
dataflow

Minimize communication among threads Cholesky decomposition

This work Use of two dynamic memory manag.
methods (CoW, NTM)

Cache configuration evaluation + Reduction
in memory copy penalties

Static Dataflow applications

724 Journal of Signal Processing Systems (2022) 94:721–738

1 3

and energy consumption [16, 17]. Sniper adopts an inter-
val-based core model simulation, which allows fast and
accurate simulation. The Nehalem cores are by default
provided within Sniper distribution. Sniper core model
and cache hierarchy are validated against actual Xeon pro-
cessor using Splash2 benchmarks. Sniper takes as input
configuration files that allow the user to set parameters
as cache sizes, cache sharing, number of cores, core fre-
quency, among many others.

Next, in the experimental setup subsection, we present
further details about the multi-core setup simulated on
Sniper.

4 � Experiments on Cache Configurations

This section addresses the first contribution of this work:
experiments evaluating the cache limits for dataflow applica-
tions. The first subsection describes the experimental setup.
The remaining subsections address the analyses of appli-
cation’s performance varying the following parameters: C,
L2(xC), L3(xC), L2 size, and L3 size.

4.1 � Experimental Setup

4.1.1 � Application Set

Table 2b (1st column) lists the applications benchmark
addressed in this work. We adopt three real applications
named Stabilization, Stereo, and scale-invariant feature
transform (SIFT), taken from PREESM repository [18].
Stabilization is used for video stabilization. Its principle is
to compensate for the movements of a video recorded with
a shaky camera. The main two steps of this process consist
of tracking the movement of the image using image process-
ing techniques and creating a new video where the tracked
motion is compensated. The input video adopted in experi-
ments comes from PREESM’s github repository [18] and
has 40.9 MB of size with a resolution of 360x202 pixels.

Stereo is a computer stereo vision application that extracts
3D information from images. Stereo matching algorithms
are used in many computer vision applications to process
a pair of images, taken by two separated cameras at a small
distance, and produce a disparity map that corresponds to
the 3rd dimension (the depth) of the captured scene. Stereo

Figure 2   Architecture overview of the baseline multi-core model.

725Journal of Signal Processing Systems (2022) 94:721–738

1 3

matching algorithms and their implementations are still heav-
ily studied as they raise important research problems [19].
The two input images [18] adopted in experiments have the
size of 506.3 KB with a resolution of 405x375 pixels.

SIFT is used to object recognition in cluttered real-world
3D scenes [20]. The extracted features are invariant to image
scaling, translation, and rotation, and partially invariant to
illumination changes and affine or 3D projection. The appli-
cation behavior shares a number of properties in common
with the responses of neurons in the inferior temporal cortex
in primate vision. The input image [18] used in SIFT has a
size of 512 KB with a resolution of 800x640 pixels, with 4
levels of parallelism and 1400 number of keypoints.

These three applications are specified through the
PREESM framework, which is responsible for the code gen-
eration, actors scheduling and mapping, as shown in Fig. 1b.

Table 2b highlights that the applications have heteroge-
neous memory requirements. Specifically, the 4th column
details the sum of PREESM FIFOs size, which can be under-
stood as the memory footprint of inter-actor communica-
tion. SIFT is memory bounded and has high synchroniza-
tion demands (high number of actors and FIFOs), Stereo is
computational and memory bounded, and Stabilization is
computational bounded but with low memory and synchro-
nization demands. The heterogeneous memory requirements
lead to different cache locality and memory footprints, mak-
ing such applications appropriated candidates for the evalu-
ation of cache impact intended in this work.

We use the optimal scheduling and mapping decision pro-
vided by PREESM [2], which is focused on workload balancing.
The memory allocation adopts advanced memory optimization
proposed in [14], which considerably reduces the applications’
memory overhead. The selected memory allocation uses the
FirstFit algorithm with MixedMerged distributions and none

data alignment. These features were selected because they have
presented the lowest memory footprint at the same time that they
are suitable to the target multi-core architecture used in this work.
After the generation of C code by PREESM, the applications
were compiled using GCC v7.5.0 optimization -O2 (default opti-
mization adopted by PREESM), and simulated on Sniper.

4.1.2 � Hardware Setup

The experimental setup adopts the multi-core model
described in Section 3, configured on Sniper. Table 2a pre-
sents the hardware setup. These parameters are based on the
real Xeon X5500 multi-core.

To evaluate the number of cores and cache sharing we cre-
ated 22 multi-core cache configurations, varying the param-
eters C, L2(xC), and L3(xC). Figure 3 express graphically the
reasoning behinds these configurations. Each configuration is a
black spot in the figure. The configurations can be divided into
4 groups (different background color on the figure) accord-
ing to the number of cores ( C = 4, 8, 16, 32 ) in which a given
configuration was simulated. Note that the 22 configurations
were not simulated for each C configuration. The minimal C
evaluated for each configuration is dictated according to the
sharing factor of the LLC. For instance, we do not evaluate a
system with 4 cores for config. 9 (which have L3(x8) as LLC),
since it is unfeasible because the L3 sharing (LLC sharing)
requires at least 8 cores to meet the sharing factors of L3(x8).

The L2 sharing comprises configurations from L2(x1) up
to L2(x32), with most of them (36%) addressing a private L2
cache (since this L2 design choice is found in real architectures
like Xeon Nehalem and AMD K10). Some configurations are
unrealistic, specially those that have a big L2, as the case of
configurations 8, 16, 21, where L2 = 2MB; configurations 12,
22, where L2 = 4MB; and configuration 17, where L2 = 8MB.

Table 2   Experimental setup
settings.

cyc = cycles
lat = latency
LRU = Least Recently Used
a  sum of all copied memory using the memcpy procedure

(a) Hardware model settings

Core Model centering Intel Xeon X5550 4/8/16/32 @ 2.66 GHz (base clock)
L1-I Cache 32KB 8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L1-D Cache 32KB 8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L2 Cache 256KB 8way 3 cyc. tag lat. 8 cyc. data lat. LRU
L3 Cache (LLC) 8MB 16way 10 cyc. tag lat. 30 cyc. data lat. LRU

(b) Dataflow applications benchmark profile

Application Actors PREESM # FIFOs PREESM FIFOs size Memory copyinga

PREESM Actors
Stabilization 30 607 0.92 MB 21 MB 0.2 MB
Stereo 36 811 29.09 MB 5 MB 13 MB
SIFT 77 2183 188.6 MB 12 MB 308.6 MB

726 Journal of Signal Processing Systems (2022) 94:721–738

1 3

However, our goal is to address the trend in multi-core proces-
sor design, which features always bigger L2 caches.

The L3 sharing also adopts a very heterogeneous configu-
ration set, including no L3 (e.g. configuration 1), one private
L3 cache (e.g. configuration 4), up to 32 cores sharing the
same L3 (configuration 18-22).

The number of memory controllers is equal to the number
of LLC. For instance, configuration 6 executed for 8 cores
has two L3 shared by 4 cores (L3(x4)). Therefore, this con-
figuration has two memory controllers (one for each L3).

Although the results achieved are based on Xeon architec-
ture, the presence of 22 different hardware configurations, var-
ying the core count and cache sharing and size, helps to project
the behavior of the benchmarks in architectures different from
Xeon, especially those that adopt similar cache organizations.

4.2 � Number of Cores – C

Figure 4 shows the application iteration time (time for the
application to complete the execution of one loop), for Stabili-
zation (a), Stereo (b), and SIFT (c). The x-axis contains groups

of bars, where each group represents one configuration (only
the ones that support C varying from 4 to 32 were shown), and
each bar represents a different C to that configuration.

The main evaluation to be extracted from these results is
related to scalability with the number of cores C. It is possi-
ble to observe that Stabilization presents a continuous reduc-
tion in the execution time according to a higher C, reducing
its execution time on average -46% from 4 to 8 cores, -43%
from 8 to 16 cores, and -39% from 16 to 32 cores. However,
the same does not occurs to Stereo and SIFT, which have a
moderate or even worst improvement in C ≥ 16 , with Stereo
presenting an execution time of -22%, -1.3%, +2.6%, for an
increase in C of 4 to 8, 8 to 16, and 16 to 32, respectively.

Observing Table 2b, it is possible to note that Stereo and
SIFT have a higher FIFOs size compared to Stabilization,
which puts more pressure on the cache subsystem and does
not allow the application to entirely benefit from a higher
core count (reaching a memory wall).

It is also possible to observe that there are different
performances among the configurations of the x-axis.
Such performance is impacted due to the different L2

Figure 3   Overview of the reasoning behind the 22 cache configuration adopted in the experiments. C = number of cores simulated for each con-
figuration.

727Journal of Signal Processing Systems (2022) 94:721–738

1 3

and L3 sharing configurations. The next two subsections
enter into details about the impact of L2 and L3 sharing.

4.3 � L2 Sharing

Figure 5 presents a comprehensive evaluation of the L2
sharing impact over the execution time, L2 miss rate, and
L2 miss rate for the three applications. The left y-axis of
each plot represents the application iteration time, the right

y-axis represents the miss rate, and the x-axis represents
the configurations.

Each application has 4 plots, one for each simulated C. As
the purpose is to evaluate the results only varying L2 shar-
ing, the plots have the L3 sharing fixed according to the max-
imum number of cores (as well as in the Xeon architecture).

The L2 miss rate decreases for all applications, more
sharply for Stabilization (-59%), and less significantly for
SIFT (-23%), and Stereo (-22%), considering the average

(a) (b) (c)

Figure 4   Application iteration time over different number of cores for three applications: (a) Stabilization, (b) Stereo, (c) SIFT.

Figure 5   L2 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c) SIFT.

728 Journal of Signal Processing Systems (2022) 94:721–738

1 3

between the leftmost configuration and the rightmost con-
figuration. This decrease in L2 miss rate happens because
a high L2 sharing increases the probability of an actor to
share a FIFO inside the same L2 that is being shared with
another actor (without the need to retrieve the data at the
L3 cache level). The decrease is less significant in high
memory demand applications – as SIFT and Stereo – since
they naturally require more memory than Stabilization.

The L3 miss rate increases for all applications accord-
ing to the higher L2 sharing. Such increase makes the L3
reach high miss rates of 84.3% for SIFT, 84% for Stereo,
and 66.32% for Stabilization in configuration 22. Again,
the memory demands of each application play an important
role to stress the cache. The number of L3 accesses helps
to justify this L3 miss rate increase. With a more shared
L2, the L3 accesses consequently decreases, reaching, on
average of -39.7% for Stabilization, -32.3% for Stereo, and
-17.6% for SIFT. This makes the L3 lose temporal and spa-
tial locality and increasing its miss rate, which transfers the
data access to DRAM level and delays the execution time.

The execution time remains constant for Stabilization
regardless of higher L2 sharing. For Stereo and SIFT, it
remains constant for C = 4, 8 , but for C ≥ 16 , the execution
time starts to increase from L2(x2), reaching up to +56%
of increase for Stereo and to +17% for SIFT L2(x32). This
increase in execution time is attributable to the significant
increase of the L3 miss rate compared to a not-so-high
decrease of the L2 miss rate, which generates miss penal-
ties from both sides (L2 and L3 caches).

In summary, increasing L2 cache sharing is not beneficial
to dataflow applications, specifically those that demand more
memory as in the case of Stereo and SIFT. This is in compli-
ance with the cache design choices of some processor archi-
tectures as Intel Nehalem and AMD K10, which use private
L2 caches. As can be observed from the results, assigning
to each core a private L2 reduces the execution time since
this allows a more balanced rate of L2 and L3 misses, which
reduces cache contention earlier avoiding data to be fetched
in a higher level of caches or even DRAM.

4.4 � L3 Sharing

Figure 6 presents a similar set of plots of L2 sharing analy-
sis, but now varying L3 sharing. The L2 sharing is fixed in
L2(x1) since the previous subsection has shown that this is
the best L2 sharing configuration.

The results show three trends: (i) L2 miss rate remains
constant; (ii) L3 miss rate decreases significantly according
to the increasing of L3 sharing; and (iii) the execution time
can benefit from a higher L3 sharing.

Regarding the L2 miss rate, it is expected that it remains
constant since the L2 was not changed. Regarding the L3
miss rate, it decreases significantly for all applications

according to higher L3 sharing, reaching a miss rate in the
L3(xC) of, on average, 9.3% for Stabilization (-87.34%),
8.4% for Stereo (-87%), and 37.8% for SIFT (-38%). This
result is expected since a higher L3 sharing allows all appli-
cation data to fit on the L3 cache (note that SIFT presented
the lowest improvement due to its higher memory demands).
Consequently, the execution time also benefits from this L3
miss rate decrease, specifically for the applications with
higher memory demands such as Stereo and SIFT.

In summary, increasing L3 cache sharing is beneficial to
dataflow applications, specifically those that demand more
memory. A single L3 cache is slower but larger, allowing it
to store all application data on it.

4.5 � Cache Size

In the previous L2 and L3 sharing analysis, it was possible
to conclude that an private L2 and an L3 shared by all cores
presents the best results related to application speedup and
L2/L3 miss rate. To the cache size evaluation, we keep this
sharing configuration, and changed only the size of L2 or L3
per core, creating 15 new cache configurations (3 varying
L2 size × 5 varying L3 sizes). Besides, the evaluation only
addresses configurations with 32 cores, since lower core
count have presented the same trend and are not interesting
in terms of a state-of-the-art analysis.

Figure 7 shows the results varying the L2 size (256KB,
512KB, and 1MB) at x-axis. The left y-axis represents the
application iteration time, and the right y-axis represents the
cache miss rate. Each plot represents one application, with each
one having 3 sets of results representing different L3 sizes.

It is possible to observe that the increase in L2 and L3
size has a low influence on the L2 and L3 miss rate for all
applications. The execution time has a small reduction
according to higher L2 sizes, however, this value is insig-
nificant, representing an average reduction from the lower
L2 size (256KB) to the higher L2 size (1MB), of -0,49% for
Stereo, -1.76% for SIFT, and -4.62% for Stabilization.

The results varying the L3 sizes follows the same trend
observed for L2. Figure 8 shows an example with the L2 size
fixed in 512KB (other L2 sizes present very similar behav-
ior). It is possible to see that both L2 and L3 cache misses
remains stable, and with an insignificant reduction in the
execution time (not better than -0.26% for all applications).

In summary, increasing the L2 and L3 sizes does not guar-
antee an automatic improvement for dataflow applications.
In such a case, when a higher amount of hardware resources
cannot provide speedup to the application, other aspects
must be taken into consideration, specifically at the software
level, by allowing the mapping and scheduling algorithms to
make better use of such availability of resources and improv-
ing the parallel workload of the application.

729Journal of Signal Processing Systems (2022) 94:721–738

1 3

4.6 � Summary of Findings

Bigger is not always better with dataflow; increasing the
number of cores, cache levels, size, does not guarantee
a faster application execution. This finding is especially
significant for working sets that demand more than the
total cache size.

The next items summarize the finding for each analysis:

•	 Number of cores: increasing the number of cores does not
guarantee automatic improvement in the execution time,
since the overhead of cache protocols and required synchro-
nization does not allow applications to increasingly speed-
up, specifically the ones with more memory demands.

•	 Cache sharing: reducing L2 sharing and increasing L3
sharing was the most beneficial configuration for the
addressed dataflow applications.

Figure 6   L3 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c) SIFT.

(a) (b) (c)

Figure 7   L2 cache size comparison varying L2 size over multiples L3 sizes. (a) Stabilization, (b) Stereo, (c) SIFT.

730 Journal of Signal Processing Systems (2022) 94:721–738

1 3

•	 Cache size: increasing the L2 and L3 sizes have an insig-
nificant effect on the adopted dataflow benchmarks.

One interesting finding is that private L2 and L3 shared by
all cores was the configuration that presented the best results
related to application speedup and L2/L3 miss rate. While this
conclusion can sound similar as Intel had reached some years
ago, justifying its current cache organization with L3 shared by
all cores, it was not so apparent from our point of view. First,
our focus was to evaluate the impact specifically for dataflow
applications, research that, to the best of our knowledge, was
not addressed yet. Secondly, our initial hypothesis was that
when two actors – sharing the same FIFO – are mapped on dif-
ferent processors that share an L2 cache (increased sharing fac-
tor), this will improve performance due to the reduction in the
coherence traffic and the L2 miss rate reduction. This behavior
is supported by the results (Fig. 5). However, this leads to a
higher miss rate for L3, which has higher penalties than L2,
and consequently, has a higher influence on the execution time,
as shown in the case of the three applications studied (Fig. 6).

Table 2b shows that PREESM uses memory copying
mechanisms extensively for FIFO handling. Some memory
copying is expected in a dataflow design; however, memory
copying is done to the degree that negates the cache hierarchy
benefits. Therefore, alternative approaches must be investi-
gated to allow reducing memory copies penalties at runtime.
The next sections detail the research made in this sense.

5 � Dynamic Memory Management
Techniques

This section presents the second contribution of this work:
the evaluation of two dynamic memory management tech-
niques and its impact when used in the context of static
dataflow applications. These techniques are Copy-on-
Write (CoW) and Non-Temporal Memory (NTM) copy-
ing. They are not novel in their principle, CoW is a well-
known approach supported by Linux OS by the mmap()
syscall [11], and NTM is essentially a direct RAM-to-RAM

copy, supported in some Intel processors [12]. The novelty
here is to exploit opportunities of using such techniques
in dataflow frameworks, and quantify how much they can
improve the applications execution time and system energy
by saving memory transfers.

First, Subsection 5.1 presents the motivation to employ these
techniques in dataflow applications. In sequence, the Subsec-
tion 5.2 presents CoW, and Subsection 5.3 presents NTM.

5.1 � Motivation

Figure 9 shows a fork-join actor graph implemented as a
dataflow application. Actor A produces data tokens t1 and
t2 to actors B1 and B2, which access those data, process,
and generate a token to actor C, which merges the data and
generates the application output.

Figure 8   L3 cache size comparison varying L3 size with an private L2 of 512KB. (a) Stabilization, (b) Stereo, (c) SIFT.

(a)

(b) 14

Figure 9   Communication overview among actors of a dataflow-based
fork-join application.

731Journal of Signal Processing Systems (2022) 94:721–738

1 3

A memcpy is used to transfer a data token between actors.
A non-overlapping memory space (dedicated buffer), is
required for each actor, since producer actors (for instance,
actor A), can, during its processing, modify the data pro-
duced but not consumed yet in its output buffer. And the
other way round, a consumer actor can use the input buffer
for temporary values. Besides this fork and join pattern,
dataflow applications can also have broadcast and round-
buffer actors which also assumes non-overlapping memory
spaces between actors [14].

Taking advantage of this high waste of memory and time by
applying memory copies, Desnos et al. [14] proposed memory
reuse techniques over those dataflow applications. In summary,
the designer can inform the framework which buffers can be
merged in the same memory space, resulting in the graph pre-
sented by Fig. 9b. Thus, the memcpy are avoided, helping to
significantly save memory footprint and execution time.

However, such design-time approach only works assuming
two conditions: (i) the designer must know the framework and
the application very well in order to extract applications behav-
ior and to model into the framework the desired memory reuse;
(ii) it only works for buffers that are known to be read-only
over all the actor lifetime, as the case of buffer t1 of actor B1
of Fig. 9a. If the actor – due to a branch in its algorithm flow
– chooses to write in t1 buffer space, these memory reuses can-
not be adopted. Even if the actor has a probability of less than
1% to write in this buffer, the memory reuse cannot be applied
since it is fundamentally a design-time exploration technique.

Thinking about how to fulfill this lack, our idea is to inves-
tigate two dynamic memory management techniques which
are CoW and NTM. Differently from static memory manage-
ment, they were designed to be used at runtime, and have the
potential to avoid unnecessary memory copies (CoW), and
cache trashing (NTM). In the next subsections, we present
the details of each one and how they were implemented in our
multi-core model, as well as, the evaluation of its drawbacks
and benefits.

5.2 � Copy‑On‑Write (CoW)

Figure 10 details the CoW concept. The principle of CoW
is simple. It consists in allowing two or more threads (actors
in our case) to share to the same memory space. When one
thread attempts to write in that space a new memory space
is dynamically created, bringing the data with it (a copy on
write). It thus prevents the writing thread from overwriting
the data in the first memory space [11]. Figure 10 depicts at
time t1 thread A and thread B pointing to the same memory
space 1. At the time t2, thread B writes in the memory space
1. At the time t3, the OS detects this write and makes a copy
of the memory space, creating the memory space 2 and mak-
ing thread B point to it. Now, any data written/read by thread
B will be placed/accessed in memory space 2.

This functionality can be implemented in a dataflow
application by making the buffers involved in a given oper-
ation (like a fork, join, and broadcast) point to the same
memory space after the producer actor writes data in this
space. If the destination buffer receives a write attempt by
any actor, a CoW happens, preserving the original values of
the buffer to the consumer actor.

The core code change to support CoW is shown on the
right side of Table 3 as a single line. Initialization and termi-
nation has been omitted for this example. The CoW mecha-
nism is achieved by mapping all destination buffers (named
dst_buffer) into the same physical address, which is refer-
enced by file descriptor shm_open_fd. This latter address
was initialized by the shm_open procedure. Besides, we
map the region as private (MAP_PRIVATE) with read and
write permissions (PROT_READ | PROT_WRITE). The
combination of these two flags will create a new copy of the
physical address when a write has been made to the memory
area (in other words, a copy-on-write). Finally, we allow the
OS to decide the virtual address of this new buffer by pass-
ing nil (NULL) as the first parameter to mmap.

The CoW procedure is typically handled by the OS
kernel. Unfortunately, the Sniper simulator has limited
operating system modeling capabilities to evaluate kernel-
based strategies [3]. Thus, for our experiments, we used a
combination of user- and kernel-space interaction so that
Sniper can account OS overhead accurately. Specifically,
in our implementation a buffer is mapped to CoW without
the PROT_WRITE flag. Any future attempts to write in the
buffer will trigger an exception (SIGSEGV signal1), which
interrupts the causing thread. Then, an exception handler
implemented at user space changes the offending memory
page to use CoW. In regard to the code presented in Table 3,
we change the capability of the memory regions to read-only
(removing flag PROT_WRITE), and install a signal handler
to re-enable the write capability for this mapping.

5.3 � Non‑Temporal Memory (NTM) Copying

NTM copying is ideal for memory spaces known to be write-
mostly or rarely used (i.e., poor temporal locality). This
approach uses either (i) instructions that bypass the cache
hierarchy or (ii) userspace RAM-to-RAM DMA. For the
x86 architecture, (i) is available using SSE extensions [12],
and (ii) through the I/OAT DMA engine available in some
processor designs [13]. In any case, the memcpy procedure
is replaced by another procedure that uses either technique
specialized for memory transfer and therefore, avoiding
CPU to be executing instruction of data transfers. Another

1  SIGSEGV is a synchronously-generated signal and is guaranteed to
be delivered to the causing POSIX thread [22].

732 Journal of Signal Processing Systems (2022) 94:721–738

1 3

benefit of employing the NTM mechanism is that cached
data from other applications are not trashed due to the copy-
ing required by any given application.

Since these approaches avoid the cache hierarchy, their
operation is slower compared to memcpy. Intel shows
that RAM-to-RAM achieves approximately half the speed
of memcpy for large transfers ( ≥ 8 MiB) and many times
slower for smaller transfers on x86 [13]. Table 4 depicts the
results obtained by using NTM instructions.

The core code change to support NTM is shown on the right
side of Table 4 as a for-loop structure. Initialization and termi-
nation has been omitted from this table. The procedure _mm_
stream_si32 is provided by Intel to call the appropriate
assembly instruction for NTM operations. It copies 32 bits from a
value (src_buffer[i]) to a given pointer (dst_buffer[i]).
After the end of the for-loop, the data is copied to the area pointed
by dst_buffer. Thus, the result is the same as calling memcpy
but the related data will not be present in the caches if they were
not already there before _mm_stream_si32 is first called.

6 � Results

This section presents the results about CoW and NTM using
the three dataflow benchmarks and the 22 configurations.

6.1 � Experimental Setup

All applications used in these experiments were generated using
the PREESM framework (version 3.4), compiled using GCC
v7.5.0 optimization -O2, and executed on Sniper simulator.
The energy estimation is performed with McPAT [21], which
is integrated into Sniper and provides reliable power and energy
figures broadly used in state-of-the-art works [16, 17].

We develop an algorithm implemented in Python script
language, which has as input the generated code of PREESM
and has as output the new application code using the CoW or
NTM technique. This algorithm detects in the code the mem-
cpy patterns, which are candidates to be replaced by CoW or
NTM. The algorithm is fully automatized, in the sense that

Figure 10   Principle of the Copy-on-Write (CoW) mechanism.

Table 3   Core change for supporting the CoW mechanism, assuming: (1) src_buffer is the source buffer, (2) dst_buffer is the destination
buffer, (3) copy_length is the copy length, (4) shm_open_fd is a file descriptor created with the shm_open system call.

Original Code CoW mechanism

memcpy(dst_buffer, src_buffer, copy_length); void *dst_buffer = mmap(NULL, copy_length, PROT_READ |
PROT_WRITE, MAP_PRIVATE, shm_open_fd, 0);

733Journal of Signal Processing Systems (2022) 94:721–738

1 3

it detects the memcpy patterns by looking for join-broadcast,
and broadcast dataflow patterns [14]. The algorithm can also
be tuned with a parameter � , which allows defining a mini-
mum threshold in the data size of a memcpy operation. By
using � it is possible to eliminate small-size memcpy and
only target the ones which transfer a large amount of data.

Algorithm 1 presents the method to detect the mem-
cpy patterns which are candidates to be used in CoW and
NTM. As input, the algorithm has three parameters: src_o :
the application source code generated by PREESM; t: a flag
that selects between CoW or NTM; and � : the parameter
that indicates the minimum memcpy data size. Line 1 and
2 initialize two sets, called join_broad_set and broad_set ,
which will store the destination buffers’ names of memcpys
related to join-broadcast and broadcast-only, respectively.
In line 3, the function extract_memcpy extracts from src_o
all memcpy instance generated by PREESM, achieving the
following information from each memcpy: data transfer
size, source buffer, destination buffer, and the type (JOIN,
BROADCAST, FORK, and ROUNDBUFFER [2]). The type
is easily extracted due to a PREESM’s characteristic in which
it classifies the memcpy during its code generation, inserting
its type as a comment in the line above each memcpy. All the
memcpy instances are inserted in the list called memcpy_list.

Lines 5–14 identify join-broadcast patterns evaluating
each element mj of memcpy_list . The condition of line 6
checks if the mj is a JOIN, if its destination buffer is not
already in join_broad_set , and if the memcpy data size
meets � . Once this check is true, the algorithm advances
to the phase (lines 7 and 8) to confirm that the destina-
tion buffer of JOIN operation is also involved in BROAD-
CAST. Once the buffer matches a join-broadcast pattern,
it is inserted in the join_broad_set in line 9.

Lines 15-22 identify broadcast-only patterns evaluating
each element mb of memcpy_list . Line 16 tests if mb’s type is
BROADCAST. Another important verification is to check if
the buffer is not in the join_broad_set , eliminating it if true.
The same test of line 16 also seeks to eliminate the memcpys
with a size lower than � . In case all conditions are meet, the
destination buffer is added to the broad_set at line 18.

The last part of algorithm (lines 23–27) focused in veri-
fying the value of t, calling the respective function which
will applies CoW (line 24) or NTM (line 26). These func-
tions evaluate all memcpys from memcpy_list , selecting
those one containing the buffers name in join_broad_set
and broad_set . The output of the algorithm is src_t ,

comprising the src_o with the matched memcpys replaced
by the code presented in Table 3 and Table 4.

Table 5 details the values of � (2nd column) used for
each application. The table also details the number of
memcpy addressed in CoW and NTM (3rd column), and
its respective total size (4th column).

Table 4   Core change for supporting the NTM mechanism, assuming: (1) src_buffer is the source buffer, dst_buffer is the destination
buffer, copy_length is the copy length.

Original Code NTM mechanism

memcpy(dst_buffer, src_buffer, copy_length); for (i = 0; i < copy_length/4; i++) _mm_stream_si32(dst_
buffer[i], *(src_buffer[i]));

734 Journal of Signal Processing Systems (2022) 94:721–738

1 3

Table 5 shows that SIFT has more available memcpy to
be optimized. The � was defined as 400KB for SIFT and
Stereo. Stabilization does not have such a large memcpy,
therefore we reduce the value of � to allow the algorithm
to consider the bigger memcpy size of the application.
These values of � were achieved after a design-time analy-
sis and represent to the best execution times achieved for
each application.

The next subsections present the results achieved by
replacing the memcpy either using NTM or CoW for the
three applications.

6.2 � Non‑Temporal Memory Copying (NTM)

Figure 11a presents the iteration execution time for all
benchmarks using NTM. It is noticeable that execution
time is slightly reduced in most of the cases, reaching up
to -5.3% for Stabilization in configuration 21. The average

execution time reduction was -1.9% for Stabilization, -1%
for SIFT, and -0.3% for Stereo.

NTM also provided a small energy reduction, in average
-0.84% ( �=0.7) for Stabilization, -0.2% ( �=0.5) for Stereo,
and -1.03 ( �=1.1) for SIFT, reaching up to -2.7% for SIFT
at configuration 16.

Figure 11b focuses on SIFT (high memory footprint
application) and presents a perspective between the bars:
L3 miss rate, execution time, and energy, with the lines
that show the absolute number of DRAM accesses with-
out NTM and with NTM. It is possible to observe that
energy is reduced in most configurations, reaching up to
-2,7% to configuration 16. The L3 cache miss was barely
affected, presenting an average decrease of -0.13% with a
slight DRAM increase compared to its respective version
without NTM (+0.14%).

Figure 12 presents results for all applications on con-
figuration number 18 (private L2 and L3 shared by all
cores), which was the cache configuration that, in general,
presented the best results considering speed-up and L2/
L3 miss rate from previous cache analysis (see Section 4).
NTM has presented improvements for all applications on
this configuration, specifically for SIFT and Stabilization.
Note that, despite Stabilization has a low memory foot-
print, the execution time reduction is higher than SIFT
and Stereo, at cost of more L3 miss rate. On another side,
SIFT presents a modest execution time reduction, but also

Table 5   Memcpy profile addressed in CoW and NTM.

Application � # memcpy Total memcpy size

Stabilization 200KB 1 0.21 MB
Stereo 400KB 5 2.4 MB
SIFT 400KB 8 24.4 MB

(a)

(b)

Figure 11   Results using NTM. (a) Evaluation of execution time. (b) Detailed evaluation for SIFT application.

735Journal of Signal Processing Systems (2022) 94:721–738

1 3

achieves reduction in all cache hierarchy, and specifically,
in L1-D and L1-I access.

In summary of all results, it was possible to observe that
NTM can improve the execution time and reduce energy,
however, the gains were modest, not better than -1.9% in
execution time and -2,7% in energy consumption consider-
ing all results.

6.3 � Copy‑On‑Write (CoW)

Figure 13(a) presents the iteration execution time for all
benchmarks using CoW. An average execution time reduc-
tion can be observed for Stabilization (-2%) and, most
importantly, to SIFT (-10%), which reaches up to -15.8% for
configuration 10. It is expected that SIFT benefits more from
CoW since it has a large number of buffers used in memcpy
compared to the other applications. On the other side, Stereo
presents an average execution time increase of 1.3%. Stereo
is known to be computation-intensive, and, therefore, the

access to buffer mapped as CoW is less frequent than in
Stabilization and SIFT, which makes the overheads of CoW
(create shared memory and call of mmap()) overcome its
benefits.

An energy reduction was achieved for all applications
(-7.6% on average), with an average reduction of -2% for
Stabilization, and -1.3% for Stereo. Again, SIFT is the
application that benefits the most from CoW regarding
energy. Figure 13b shows an overview of energy con-
sumption for SIFT (bar graph) to the 22 configurations.
On average, the energy reduction was -16.8%, reaching
the best result of -21.8% to configuration 8. Again, SIFT
benefits greatly from the CoW which allows data to be
used without having to wait for the memcpy to complete.
This behavior significantly affects the use of the CPU,
which saves instructions in memcpy. This result can be
observed following the dotted line of Figure 13b, which
shows a significant reduction of L1-I (instruction cache)
accesses of, on average, -62.3% ( �=3.4).

(a) (b) (c)

Figure 12   Results for configuration 18 using NTM. (a) Stabilization. (b) Stereo. (c) SIFT.

Figure 13   Results using CoW. (a) Execution time evaluation. (b) Energy evaluation.

(a)

(b)

736 Journal of Signal Processing Systems (2022) 94:721–738

1 3

Figure 14 presents results for all applications in con-
figuration 18. As expected, all applications have a reduc-
tion in the number of instruction access from the L1-I
cache, which is justified by the saved memcpy instruc-
tions by using CoW. The instruction access gains pro-
gresses accordingly with the size of application’s memcpy
(as depicted in Table 5 (4th column)), with Stabilization
presenting -0.41% less L1-I access, Stereo -29.8%, and
SIFT -46.5%. This effect impacts the energy consumption
and execution time, especially for SIFT, which benefits
more from CoW due to its larger memory transfer profile.

7 � Conclusion

This work presents a broad analysis of the impact of cache
hierarchy configuration over static dataflow applications.
In total, 37 different cache configurations (resulting in
213 simulations with 3 real applications) were adopted
to evaluate variations in core count, L2/L3 sharing, and
L2/L3 sizes. From this analysis, it is possible to conclude
that bigger is not always better in terms of core count, L2
sharing, and L2/L3 size, since other aspects as efficient
parallel workload division and computation/communica-
tion profile can prevent the application to benefit from
more cache memory resources. This analysis shows that
private L2 and L3 shared among all cores provide the
best results in terms of application speed-up and L2/L3
cache miss for the adopted dataflow applications. As the
second contribution, this work investigates the benefits
of using copy-on-write (CoW) and non-temporal memory
transfer copies (NTM) in dataflow applications. Results
have shown that both techniques can contribute to improve
execution time and save energy. NTM presents a modest
reduction in execution time (up to -5.3%) and energy (up
to -2.7%). CoW – specifically when used in applications
with bigger memcpy transfers ( ≥ 400KB) – shows impor-
tant reductions, achieving up to -15.8% in execution time
and -21.8% in energy consumption. These techniques are

complementary to static state-of-the-art memory optimi-
zation approaches like [14], acting at runtime to reduce
cache thrashing (NTM) and unnecessary data movements
(CoW) among dataflow actors.

Future works include applying such evaluation in a dif-
ferent cache memory architecture, like distributed shared-
memory systems. On the software side, some research can
be conducted about source code generation from dataflow
specification optimized to the cache hierarchy of the target
SMP.

Funding Information  This work is supported by the Agence Nationale
de la Recherche under Grant No.: ANR-17-CE24-0018 We would like
to give special thanks to the PREESM and Sniper communities for
actively participating in the development of the tools which offer solid
basements to this work.

Availability of Data and Material  Not applicable.

Code Availability  Not applicable.

Declarations 

Conflicts of Interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Furtunato, A. F. A., Georgiou, K., Eder, K., & Xavier-De-Souza,
S. (2020). When parallel speedups hit the memory wall. IEEE
Access, 8, 79225–79238. https://​doi.​org/​10.​1109/​ACCESS.​2020.​
29904​18

	 2.	 Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J., Aridhi, S.
(2014). Preesm: A dataflow-based rapid prototyping framework
for simplifying multicore dsp programming. In: European Embed-
ded Design in Education and Research Conference (EDERC), pp.
36–40. https://​doi.​org/​10.​1109/​EDERC.​2014.​69243​54

	 3.	 Carlson, T. E., Heirman, W., & Eeckhout, L. (2011). Sniper:
Exploring the level of abstraction for scalable and accurate paral-
lel multi-core simulation. In: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC),
pp. 1–12. https://​doi.​org/​10.​1145/​20633​84.​20634​54

(a) (b) (c)

Figure 14   Results for configuration 18 using CoW. (a) Stabilization. (b) Stereo. (c) SIFT.

737Journal of Signal Processing Systems (2022) 94:721–738

https://doi.org/10.1109/ACCESS.2020.2990418
https://doi.org/10.1109/ACCESS.2020.2990418
https://doi.org/10.1109/EDERC.2014.6924354
https://doi.org/10.1145/2063384.2063454

1 3

	 4.	 Slingerland, N., & Smith, A. (2001). Cache Performance for Mul-
timedia Applications. In: International Conference on Supercom-
puting (ICS), ICS ’01, pp. 204–217. ACM, New York. https://​doi.​
org/​10.​1145/​377792.​377833

	 5.	 Alves, M. A. Z., Freitas, H. C., & Navaux, P. O. A. (2009).
Investigation of shared l2 cache on many-core processors. In:
International Conference on Architecture of Computing Sys-
tems, pp. 1–10

	 6.	 Garcia, V., Gomez-Luna, J., Grass, T., Rico, A., Ayguade, E.,
& Pena, A. (2016). Evaluating the effect of last-level cache
sharing on integrated GPU-CPU systems with heterogeneous
applications. In: IEEE International Symposium on Workload
Characterization (IISWC), pp. 1–10. IEEE, New York (2016).
https://​doi.​org/​10.​1109/​IISWC.​2016.​75812​77

	 7.	 Domagala, L., van Amstel, D., & Rastello, F. (2016). Gen-
eralized Cache Tiling for Dataflow Programs. In: SIGPLAN/
SIGBED, LCTES, pp. 52–61. ACM, New York. https://​doi.​org/​
10.​1145/​29079​50.​29079​60

	 8.	 Maghazeh, A., Chattopadhyay, S., Eles, P., & Peng, Z. (2019).
Cache-Aware Kernel Tiling: An Approach for System-Level
Performance Optimization of GPU-Based Applications. In:
Design, Automation, and Test in Europe (DATE), pp. 570–575.
IEEE, Florence. https://​doi.​org/​10.​23919/​DATE.​2019.​87148​61

	 9.	 Stoutchinin, A., & Benini, L. (2019). Streamdrive: A dynamic
dataflow framework for clustered embedded architectures. Jour-
nal of Signal Processing System, 91(3–4), 275–301. https://​doi.​
org/​10.​1007/​s11265-​018-​1351-1

	10.	 Basilio, B. (2021). Fraguela and Diego Andrade: A software
cache autotuning strategy for dataflow computing with upc++
depspawn. Computational and Mathematical Methods 1(1),
1–14. https://​doi.​org/​10.​1002/​cmm4.​1148

	11.	 Bovet, D. P., & Cesati, M. (2006). Understanding the Linux
kernel, 3rd edn., chap. 10, p. 295. O’Reilly

	12.	 Intel Corporation. (2020). Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual Combined Volumes. Intel Corporation

	13.	 Le, Q. T., Stern, J., & Brenner, S. (2020). Fast memcpy with SPDK
and Intel® I/OAT DMA Engine. Retrieved March 15, 2021. https://​
softw​are.​intel.​com/​conte​nt/​www/​us/​en/​devel​op/​artic​les/​fast-​memcpy-​
using-​spdk-​and-​ioat-​dma-​engine.​html

	14.	 Desnos, K., Pelcat, M., Nezan, J. F., & Aridhi, S. (2016). On memory
reuse between inputs and outputs of dataflow actors. ACM Transactions

on Embedded Computing Systems 15(2). https://​doi.​org/​10.​1145/​
28717​44

	15.	 Kurd, N., Mosalikanti, P., Neidengard, M., Douglas, J., & Kumar,
R. (2009). Next generation intel core micro-architecture (nehalem)
clocking. IEEE Journal of Solid-State Circuits, 44(4), 1121–1129.
https://​doi.​org/​10.​1109/​JSSC.​2009.​20140​23

	16.	 Kim, T., Sun, Z., Chen, H., Wang, H., & Tan, S. X. (2017).
Energy and lifetime optimizations for dark silicon manycore
microprocessor considering both hard and soft errors. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 25(9),
2561–2574. https://​doi.​org/​10.​1109/​TVLSI.​2017.​27074​01

	17.	 Rathore, V., Chaturvedi, V., Singh, A., Srikanthan, T., &
Shafique, M. (2020). Longevity framework: Leveraging online
integrated aging-aware hierarchical mapping and vf-selection for
lifetime reliability optimization in manycore processors. IEEE
Transactions on Computers pp. 1–1. https://​doi.​org/​10.​1109/​TC.​
2020.​30065​71

	18.	 PREESM. (2021). PREESM Applications Repository (https://​
github.​com/​preesm/​preesm-​apps).

	19.	 Hamzah, R., & Ibrahim, H. (2015). Literature Survey on Stereo
Vision Disparity Map Algorithms. Journal of Sensors, 16(1),
1–23. https://​doi.​org/​10.​1155/​2016/​87429​20

	20.	 Lowe, D. G. (1999). Object recognition from local scale-invariant
features. In: IEEE International Conference on Computer Vision
(ICCV), vol. 2, pp. 1150–1157 vol.2. https://​doi.​org/​10.​1109/​
ICCV.​1999.​790410

	21.	 Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D.
M., & Jouppi, N. P. (2009). Mcpat: An integrated power, area,
and timing modeling framework for multicore and manycore
architectures. In: International Symposium on Microarchitecture
(MICRO), pp. 469–480. IEEE, New York, NY, USA.

	22.	 IEEE. (2017). IEEE Standard for Information Technology–
Portable Operating System Interface (POSIX(R)) Base Speci-
fications, Issue 7. IEEE Std 1003.1-2017 1(1), 1–3951. https://​
doi.​org/​10.​1109/​IEEES​TD.​2018.​82771​53

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

738 Journal of Signal Processing Systems (2022) 94:721–738

https://doi.org/10.1145/377792.377833
https://doi.org/10.1145/377792.377833
https://doi.org/10.1109/IISWC.2016.7581277
https://doi.org/10.1145/2907950.2907960
https://doi.org/10.1145/2907950.2907960
https://doi.org/10.23919/DATE.2019.8714861
https://doi.org/10.1007/s11265-018-1351-1
https://doi.org/10.1007/s11265-018-1351-1
https://doi.org/10.1002/cmm4.1148
https://software.intel.com/content/www/us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://software.intel.com/content/www/us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://software.intel.com/content/www/us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://doi.org/10.1145/2871744
https://doi.org/10.1145/2871744
https://doi.org/10.1109/JSSC.2009.2014023
https://doi.org/10.1109/TVLSI.2017.2707401
https://doi.org/10.1109/TC.2020.3006571
https://doi.org/10.1109/TC.2020.3006571
https://github.com/preesm/preesm-apps
https://github.com/preesm/preesm-apps
https://doi.org/10.1155/2016/8742920
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/IEEESTD.2018.8277153

	The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Multi-Core Model
	3.1 Architecture Overview
	3.2 Model Description

	4 Experiments on Cache Configurations
	4.1 Experimental Setup
	4.1.1 Application Set
	4.1.2 Hardware Setup

	4.2 Number of Cores – C
	4.3 L2 Sharing
	4.4 L3 Sharing
	4.5 Cache Size
	4.6 Summary of Findings

	5 Dynamic Memory Management Techniques
	5.1 Motivation
	5.2 Copy-On-Write (CoW)
	5.3 Non-Temporal Memory (NTM) Copying

	6 Results
	6.1 Experimental Setup
	6.2 Non-Temporal Memory Copying (NTM)
	6.3 Copy-On-Write (CoW)

	7 Conclusion
	References

