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Abstract
We consider a formulation of supervised learning that endows models with robustness to distributional shifts from training to 
testing. The formulation hinges upon the superquantile risk measure, also known as the conditional value-at-risk, which has 
shown promise in recent applications of machine learning and signal processing. We show that, thanks to a direct smoothing 
of the superquantile function, a superquantile-based learning objective is amenable to gradient-based optimization, using 
batch optimization algorithms such as gradient descent or quasi-Newton algorithms, or using stochastic optimization algo-
rithms such as stochastic gradient algorithms. A companion software SPQR implements in Python the algorithms described 
and allows practitioners to experiment with superquantile-based supervised learning.

Keywords Machine learning · Risk measure · Distributional robustness · Nonsmooth optimization

1  Introduction: Superquantile Comes Into 
Play

Classical supervised learning via empirical risk (or nega-
tive log-likelihood) minimization relies on the assumption 
that the testing distribution coincides with the training dis-
tribution. This assumption can be challenged in domain 
applications of machine learning such as visual systems or 
dialog systems [2]. Learning machines may then operate at 
prediction time with testing data whose distribution departs 
from the one of the training data. Recent failures of learn-
ing systems when operating in unknown environments [3, 
4] underscore the importance of reconsidering the learning 

objective used to train learning machines in order to ensure 
robust behavior in the face of prevalence of worst-case sce-
narios or unexpected distributions at prediction time.

The generalized regression framework presented in [5] 
provides an attractive ground to design learning machines 
displaying increased robustness. This framework hinges 
upon modeling worst-case aversion with superquantile, also 
known as Conditional Value-at-Risk, a statistical summary 
of the tail of the distribution considered [6–8]. The super-
quantile stands out as one of prominent examples of risk 
measures, well-studied in economics and finance [9, 10]. 
The superquantile has recently drawn an increasing attention 
in machine learning; see e.g. fair learning [11], federated 
learning [12], adversarial classification [13], submodular 
optimization [14], and reinforcement learning [15] among 
others.

The notion of robustness brought by the superquantile 
is aligned with the one in distributionally robust optimiza-
tion [16] and empirical likelihood estimation [17]. It is, how-
ever, different, from notions of robustness commonly con-
sidered in robust statistics [11, Sec. 12.6]. The superquantile 
provides an efficient and mathematical-grounded adaptive 
re-weighting scheme of the training data, allowing one to 
learn predictive models with better worst-case performances 
that standard models obtained from empirical risk minimi-
zation. This has been corroborated empirically by a number 
of recent papers; see e.g. [12, 16, 18–20]. Recent work [21] 
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established learning-theoretic generalization bounds for sta-
tistical models trained through the minimization of related 
objectives.

Despite attractive theoretical and practical properties, 
superquantile-based learning may be less developed than it 
could have been in machine learning and signal processing. 
This may be due to the lack of (i) direct scalable algorithms 
for superquantile-based optimization and (ii) easy-to-use 
software packages to benchmark superquantile optimiza-
tion algorithms.

Contributions of this Work In this paper, we present a publicly-
available and easy-to-use Python toolbox for superquantile-based 
learning, building off the popular software library scikit-
learn. This paper is a follow-up of our IEEE MLSP 2020 con-
ference paper [1], incorporating recent work in an extended 
literature review, providing additional features to the toolbox, 
and presenting further empirical illustrations of the robustness 
brought by superquantile.

More precisely, the contributions of this work are the 
following:

– We provide a gentle introduction to superquantile-based 
learning. We present the main notions; we review sev-
eral choices of optimization algorithms; we also discuss 
the various numerical components used explicitly or 
implicitly in recent papers. These components include 
for instance various strategies to overcome the non-
smoothness inherent to the superquantile function.

– We provide elementary analyses as well as template rou-
tines within a companion software package. We primarily 
focus on operational aspects and give pointers to recent 
theoretical developments.

– We provide numerical experiments illustrating (i) the 
interest of using batch quasi-Newton optimization algo-
rithms for minimizing superquantile-based objectives 
and (ii) the robustness of superquantile-based models 
compared to the standard models obtained from empiri-
cal risk minimization.

Outline of the Paper The outline of the paper is as follows. 
We set the stage by formalizing, in Section 2, the framework 
of superquantile-based supervised learning, highlighting the 
three classical formulations of superquantile-based objectives. 
In Section 3, we study the differentiability of these objec-
tive functions, provide practical expressions of their (sub)
gradients, together with fast procedures to compute them. 
In Section 4, we overview batch and mini-batch first-order 
methods using these fast oracles. In Section 5, we provide 
a short presentation of the toolbox SPQR for superquantile-
based learning. Finally, we illustrate in Section 6 the interests 

of superquantile and SPQR for robustness in standard regres-
sion/classification tasks.

Most Important Related Work The introduction has already 
mentioned a variety of works related to superquantile, 
robustness, and applications in machine learning and signal 
processing. Finally, we highlight here the most important 
articles, in view of the contributions of this work, regarding 
the algorithms for superquantile optimization and the inter-
est of superquantile in learning.

Classical approaches for superquantile-based optimiza-
tion consider convex programming techniques, including 
interior point algorithms; see the review of [22]. The use 
of first-order algorithms in this context is quite recent and 
seems to be driven by machine learning considerations. 
A key reference for our work is [19] which introduces an 
efficient approximated stochastic gradient algorithm for 
superquantile-based learning. We have implemented this 
algorithm within our toolbox and compared it with a simple 
approach using batch quasi-Newton method (in Section 6.1).

The interest of using superquantile in learning has been 
shown empirically in several recent papers, including [11, 
12, 18–20]. In particular [11], studying fairness issues, 
empirically demonstrates that superquantile trades predictive 
accuracy for less fairness violation. In a context of federated 
learning, [12] compares the performances of models learned 
by superquantile-based learning to standard models: for het-
erogeneous data, significant improvements on worst cases 
are reported for both error testing and accuracy on classifi-
cation tasks. In our numerical experiments, we use similar 
representations to visualize the impact of the superquantile. 
Our experimental results align with those of [18], where 
the robustness of superquantile models on distributionally 
shifted datasets is demonstrated.

2  Superquantile‑Based Learning Framework

We are interested in a supervised machine learning setting 
with training data D = (xi, yi)1≤i≤n ∈ (ℝp ×ℝ

q)n , a predic-
tion function � ∶ ℝ

d ×ℝ
p
→ ℝ

q (such as an additive model 
or a neural network) and a loss function � ∶ ℝ

q ×ℝ
q
→ ℝ 

(such as the logistic loss or the least-squares loss). Denot-
ing w ∈ ℝ

d the parameter (“weights”) to be optimized, the 
classical empirical risk minimization (ERM) problem reads

In the above expression as expectation, we identify, by 
abuse of notation, the training data D with the empirical 
measure of the training data. With this ERM problem, we 

(1)min
w∈ℝd

1

n

n∑
i=1

�(yi,�(w, xi) = 𝔼(x,y)∼D(�(y,�(w, x))),
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aim at achieving a small loss with an equal weighting across 
all training data-points. In the event that, at testing time, 
some probability mass gets shifted from a fraction of them 
onto another, large losses may then be incurred.

In order to be robust against such uncertainty in the way 
probability mass will spread at testing time, we can consider, 
instead, a training objective that involves a minimization 
problems with respect to a pessimistic re-weighting of the 
training datapoints. This boils down to replacing the expec-
tation in (1) by a tail-sensitive or risk-sensitive quantity. 
Risk-sensitive measures play a crucial role in optimization 
under uncertainty. Among popular convex risk measures, 
the superquantile, also called Conditional Value at Risk, has 
received particular attention because of its nice convexity 
properties; we refer to the seminal work [10] and the classi-
cal textbook [23, Chap. 6].

We use here the notation and terminology of [24]. 
Consider a probability space Ω , with probability denoted 
ℙ . For any p ∈ [0, 1] , the p-quantile of a random variable 
U ∶ Ω → ℝ , denoted by Qp(U) , is the inverse of the cumula-
tive distribution function of U: for all t ∈ ℝ we have

The p-superquantile of U is then defined as the mean of 
values of quantiles greater than a threshold p

The analogue to (2) for the superquantile is stronger:

The superquantile can be therefore interpreted as a meas-
ure of the upper tail of the distribution of U with the param-
eter p controlling the sensitivity to high losses (see Fig. 1).

In the case where the random variable U takes equi-prob-
able realizations u1,… , un , the integral (3) reduces to an 
average of the ui that are greater or equal than the quantile. 
This sum can be further split in two parts with the ui that 

(2)Qp(U) ≤ t ⟺ ℙ(U ≤ t) ≥ p .

(3)Q̄p(U) =
1

1 − p ∫
1

s=p

Qs(U)ds .

Q̄p(U) ≤ t ⟺ U is lower than t on average in its p-tail.

are equal to the quantile and those are that strictly larger 
(indexed by I> ). Mathematically, this writes

where 𝛿 = FU(Qp(U)) − p =
1

n
(n − |I>|) − p.

This expression involves the distance from p to the next 
discontinuity point of the quantile function. Thus, (4) pro-
vides a direct way to compute the superquantile from the 
computation of the quantile.

Going back to the context of learning described at the 
beginning of this section, we consider the superquantile of 
discrete distributions standing for the training data, that we 
denote by [Q̄p](x,y)∼D . A risk-sensitive statistical learning 
framework using the superquantile of losses rather than the 
expected loss thus formally replaces in (1) the expectation 
by the superquantile

This superquantile-based objective function has some spe-
cial properties. First is has a nice variational formulation 
[10]:

This formulation opens the way to treating (5) as a joint 
minimization over (w, �) ; this is discussed in Section 4. Note 
here that the minimization with respect to � in (6) exactly 
gives the p-quantile of the losses and can be done efficiently 
in linear time.

Using standard duality, we can also write the min prob-
lem (6) as a max, which takes the form

where Δn denotes the probability simplex
Δn = {q ∈ (ℝ+)

n,
∑n

i=1
qi = 1} Interestingly, this third 

formulation uncovers another interpretation of the super-
quantile objective. The set of admissible probability qi 
in (7) acts as a so-called ambiguity set around the uni-
form probability distribution ( 1

n
,… ,

1

n
) , relating (5) to an 

instance of distributionally robust optimization: (7) con-
siders the worst possible combination among possible re-
weightings of the individual losses, with the probability 
distributions

The three above formulations (5) (6) and (7) of the 
superquantile-based objective reveal an inherent non-
smoothness. We discuss in the next section how to obtain 

(4)

Q̄p(U) =
1

n(1−p)

∑
i∈I>

ui +
𝛿

1−p
Qp(U) withI>= {i ∶ ui>Qp(U)}.

(5)min
w∈ℝd

f (w) = [Q̄p](x,y)∼D

(
�(y,𝜑(w, x))

)
.

(6)

f (w) = min
�∈ℝ

{
� +

1

n(1 − p)

n∑
i=1

max{�(yi,�(w, xi)) − �, 0}

}
.

(7)

f (w) = max
q∈Δn

{
n∑
i=1

qi �(yi,�(w, xi)) ∶ 0 ≤ qi ≤ 1

n(1 − p)

}

Figure  1  Illustration of the expectation �(U) , the p-quantile Qp(U) , 
and the (1−p)-superquantile Q̄p(U) of a random variable U. 
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first-order information from a superquantile-based criterion. 
Note, though, that training with such loss is not straightfor-
ward: replacing the expectation by the superquantile in (5) 
completely changes the situation, making stochastic gra-
dient algorithms, popular methods for solving (1), which 
are somewhat flexible to the smoothness properties of the 
objective, not directly applicable; we will come back to this 
in Section 4.

Let us finally mention that the probability threshold p should 
be considered as an hyperparameter of the superquantile-based 
learning problem (5). The standard way to set p is then to per-
form a cross validation over a grid of values and chose the best 
one with respect to a risk sensitive metric, such as e.g. the 90th 
percentile of the validation loss.

We finish this section by illustrating on a toy problem 
that superquantile-based learning allows one, as expected, 
to learn models with better worst-case performance.

Example 1 We consider a linear regression task on a syn-
thetic training dataset1 to provide a striking illustration of the 
benefit of superquantile-based learning in terms of worst-
case performance. For a given model parameter w̄ , we gener-
ate the data according to

The noise �i is generated from a mixture of two distributions:
�N  follows a standard normal distribution, �L follows a 

Laplace distribution with location � = 10 and scale s = 1 , 
and � follows a Bernoulli distribution with parameter 0.8.

We solve the ordinary �2
2
-regularized least squares prob-

lem and its superquantile counterpart:

yi = x⊤
i
w̄ + 𝜀i with 𝜀i = 𝛽𝜀N + (1 − 𝛽)𝜀L.

min
w∈ℝd

𝔼(x,y)∼D

(
(y − w⊤x)2

)
vs. min

w∈ℝd
[Q̄p](x,y)∼D

(
(y − w⊤x)2

)
.

Figure 2 reports the distribution of losses obtained on 
the training dataset and on a test dataset of 2000 data points 
independently generated with the same procedure. Thanks to 
the superquantile-based learning, the upper tail of the error 
is shift to the left of the plot, which in other words means an 
improved performance in extreme cases.   ◻

3  First‑Order Oracles for Superquantile 
Function

The expression (4) gives an efficient way to compute super-
quantiles. We have indeed a three step procedure: (i) com-
pute the p-quantile with the specialized algorithm (called 
quickfind) of complexity O(n) (with n the number of 
data points); (ii) select all values greater or equal than the 
quantile; (iii) average values along (4). To minimize the 
superquantile-based objective (5), we would also need, in 
addition to an objective evaluation oracle, an oracle to obtain 
first-order information.

In this section, we study the differentiability properties of 
the superquantile objective and we describe how to obtain 
subgradient or gradient information with the same complex-
ity O(n) as for computing a standard quantile. We denote by

the underlying data-dependent functions in (1) and (5). We 
will distinguish two cases: (a) Li convex in Section 3.1 and 
(b) Li smooth in Section 3.2.

3.1  Subgradient Oracle

We assume here that the functions Li defined in (8) are con-
vex. This is the case when e.g. the model � is linear and the 
loss � is convex with respect to its second variable, as for the 
l2-squared or the cross-entropy loss. This encompasses several 
situations including p-least-squares regression with p ≥ 1

(8)Li(w) = �(yi,�(w, xi))

Figure 2  Illustration of the reshap-
ing of the distribution of errors 
resulting from superquantile-based 
learning (model trained with 
p = 0.9).

1 We take n = 10
4 points in ℝ40 ×ℝ . The design matrix X = (xi)1≤i≤n 

is generated with the make_low_rank_matrix procedure of 
scikit_learn [36] with a rank 30.
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or the logistic regression which can be written with 
ŷi = 1∕(1 + e−w

⊤xi) as

In this case, the superquantile-based function f of (5) is con-
vex as well: we can see it on (7) which expresses f is a max, 
over q, of convex functions in w. We give here the expression 
of the entire subdifferential for the convex case. This result is 
not new: it is mentioned in several recent papers including [18, 
19]; it is part of the thorough study of [25] where gradients2 
for general distributions are obtained from advanced tools. We 
give here a short proof using elementary convex analysis [26].

Proposition 1 Assume that the Li are convex. Fix w ∈ ℝ
d , 

compute L(w) ∈ ℝ
n and Qp(L(w)) ∈ ℝ . Consider I> the set of 

indices such that Li(w) > Qp(L(w)) and I= the set of indices 
such that Li(w) = Qp(L(w)) . Then the subdifferential at w of 
the convex function f reads as the Minkowski sum

with 𝛿 =
1

n
(n − |I>|) − p . In particular, when the Li is dif-

ferentiable at w , f is differentiable at w if and only if the set 
I= is reduced to a singleton.

Proof The proof simply consists in applying convex calculus 
rules; the reader may find them in [26, Chap D]. First we apply 
Theorems 4.1.1 and 4.4.2 to hi(w, �) = max{Li(w) − �, 0}) to 
get

We apply Theorem 4.1.1 with h(w, �) = � +
1

(1−p)n

∑n

i=1
hi(w, �)

with 𝛿i(w, 𝛼) = (�Li(w)>Qp(L(w))
+ 𝛼i�Li(w)=Qp(L(w))

) . We finish 
with writing f (w)=min�∈ℝ h(w, �) from (6).

We can thus apply Corollary 4.5.3 to get (9) after 
simplification.

  ◻

Li(w) = |yi − w⊤xi|p

Li(w) = −yi log(ŷi) − (1 − yi) log(1 − ŷi).

(9)

𝜕f (w) =
1

n(1 − p)

∑
i∈I>

𝜕Li(w) +
𝛿

1 − p
conv

{
𝜕Li(w) ∶ i ∈ I=

}
,

𝜕hi(x, 𝜂) = {(𝜕Li(w),−1)(�Li(w)>𝜂 + 𝛼�Li(w)=𝜂), 𝛼 ∈ [0, 1]}

�h(w, �) =

{(
1

(1 − p)n

n∑
i=1

�Li(w)�i(w, �),

1 −
1

(1 − p)n

n∑
i=1

�i(w, �)

)
, �i ∈ [0, 1],∀i

}
.

This proposition thus tells us that the computation of a 
subgradient can be performed in linear time from the sub-
gradients gi ∈ �Li(w) for i ∈ I> ∪ I= : the computing cost 
essentially stems from the computation of the p-quantile of 
the losses Li(w) and the sum of vectors in ℝd.

3.2  Gradient Oracle (For Smoothed Approximation)

We assume in this section that the functions Li defined by 
(8) are smooth, which holds locally when both the model � 
and the loss � are smooth. Unfortunately, the superquantile 
breaks the smoothness (see e.g. Proposition 1 with smooth 
convex functions Li ), so that superquantile-based function f 
is usually nonsmooth.

We propose here to smooth f using infimal convolution as 
in [27]. More precisely, we follow the methodology of [28] 
and we propose to smooth only the superquantile Q̄p rather 
than the whole function f. Given the formulation (7), we 
consider the function f� for 𝜇 > 0 , as the composition of the 
Li by the infimal convolution smoothing of Q̄p

where d ∶ ℝ
n
→ ℝ is a fixed non-negative strongly convex 

function. As a direct application of [27, Th. 1], we have 
the following proposition establishing that f� is a smooth 
approximation of f.

Proposition 2 Assume that the Li are smooth for any i. Then, 
the function f� of (10) provides a global approximation of 
f, i.e. f�(w) ≤ f (w) ≤ f�(w) +

�

2
 for any w ∈ ℝ

d . If L is dif-
ferentiable, then f� is differentiable as well, with

where JL(w) is the Jacobian of L at w and q�(w) is the opti-
mal solution of (10), unique by strong convexity of d.

In practice, the previous result requires an efficient sub-
routine solving (10). Here, we consider the euclidean dis-
tance to the uniform probability measure

For this distance, Algorithm 1 provides an efficient pro-
cedure for solving (10). The procedure follows the one 
in [29], where convex duality and one-dimensional search 
ideas are fruitfully combined. Thanks to the particular 
smoothing distance d, computing (10) by duality is equiv-
alent to finding the zero of a non-decreasing, piecewise 

(10)f�(w) = max
q∈Δn,qi≤ 1

n(1−p)

n∑
i=1

qiL
i(w) − � d(q)

(11)∇f�(w) = JL(w)Tq�(w),

(12)d(q) =

n∑
i=1

(
qi −

1

n

)2
.

2 Interestingly, the nonsmoothness of superquantile-based functions 
arises only with discrete distributions, as we consider here.
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affine and continuous function (the derivative of the dual 
function), which has an explicit expression after sorting 
the kinky points. We formalize this in Algorithm 1 and the 
proposition below.

Proposition 3 Algorithm 1 computes the optimal solution of 
the problem (10) with d as (12) at a cost of O(n) operations.

Proof We dualize the constraint 
∑n

i=1
qi − 1 = 0 to get the 

Lagrangian

With � and u introduced in the algorithm, the dual func-
tion writes:

For � ∈ ℝ and i ∈ {1,… , n} fixed, let us introduce the 
function hi(qi) = (ui − �)qi −

�

2
q2
i
 . Then, we get

As a result, we get the explicit expression of �(�) . Observ-
ing that it is differentiable, we get

Observe that lim�→+∞ ��(�) = 1 and since n� =
1

1−p
> 1 , 

lim𝜆→−∞ 𝜃�(𝜆) < 0 . Therefore, �′ is a non-decreasing and 
continuous (piecewise affine) function that takes negative 
and positive values: by the intermediate value theorem, there 
exists a solution 𝜆⋆ ∈ ℝ such that 𝜃�(𝜆⋆) = 0 . By duality 
theory, the associated q⋆ (the optimal solution of (13) for 

L(q, �) =

n∑
i=1

qiL
i(w) −

�

2

n∑
i=1

(
qi −

1

n

)2

+ �

(
1 −

n∑
i=1

qi

)
.

�(�) = max
q ∈ ℝ

n

0 ≤ qi ≤ l

L(q, �) = � −
�

2n
+

n∑
i=1

max
0≤qi≤l

(ui − �)qi −
�

2
q2
i

(13)argmax0≤qi≤lhi(qi) =

⎧⎪⎨⎪⎩

0 if � ≥ ui
ui−�

�
if ui ≥ � ≥ ui − ��

� if � ≤ ui − ��

𝜃�(𝜆) = 1 −

n∑
i=1

(
ui − 𝜆

𝜇
�ui≥𝜆≥ui−𝜇� + ��ui−𝜇�>𝜆

)
.

𝜆 = 𝜆⋆ ) is the solution of the primal problem (10). Finally, 
we compute 𝜆⋆ zeroing �′ . Since �′ is piecewise affine, we 
just need to evaluate �′ at points belonging to the set P and 
at a and b as defined in Algorithm 1.

Thus we have �∗ = a −
��(a)(b−a)

��(b)−��(a)
 . Regarding computa-

tional costs, this algorithm boils down to the search of a and 
b, and the assignment of the coordinates of q� . This also 
sums up to a O(n) cost.   ◻

Combining Propositions 2 and 3 provides a gradient ora-
cle for the smoothed approximation f� . For a given w ∈ ℝ

d , 
we run Algorithm 1 to get q�(w) ; we select the indexes i of 
non-zeros entries of q�(w) ; and from the oracles of Li we get

We finish this section by a short discussion on the two 
extreme cases for the smoothing parameters : � close to 0 
and � very large. Small � ∼ 0 imply exploding entries of 
q�(w) (see line 8 in Algorithm 1) and then instability of 
∇f�(w) . Large � ∼ +∞ imply q�(w) = (1∕n,… , 1∕n) con-
stant (see line 6 in Algorithm 1) and therefore the smoothed 
function f�(w) and its gradient ∇f�(w) coincide with the 
function and gradient of the corresponding ERM objective. 
We illustrate these two extreme cases in Section 6.

4  First‑Order Optimization 
for Superquantile‑Based Learning

Minimization of superquantile-based objectives comes 
with a number of technical challenges on the structure of 
the problem tackled, the size of the dataset or the non-
smoothness of the objective. Standard works on mini-
mizing superquantiles considered linear programming 
or convex programming techniques, including interior 
point algorithms; see the review of [22]. Perhaps sur-
prisingly, the use of first-order algorithms for super-
quantile-based optimization is quite recent and seems 
to have been driven by domain applications of machine 
learning.

In this section, we provide an overview of the range of 
first-order methods to minimize superquantile-based objec-
tive functions expressed as (5), (6), or (7). Our discussion 
focuses on practical considerations; we give pointers to ref-
erences presenting more details and theoretical analysis (in 
particular, convergence results and convergence rates if any).

4.1  Batch Algorithms

As explained in Section 3, computing the function values 
and (sub)gradients of the superquantile-based function f in 

f�(w) =
∑

i∶q�(w)i≠0
(
q�(w)

)
i
Li(w) and ∇f�(w) =

∑
i∶q�(w)i≠0

(
q�(w)

)
i
∇Li(w).

Journal of Signal Processing Systems (2022) 94:161–177166



1 3

(5) (or its smoothed counterpart f� ) requires sorting loss 
values on the whole data set, which is not directly amena-
ble to classical stochastic gradient algorithms. This reha-
bilitates batch optimization algorithms, at least for small to 
medium datasets. Thus the first approach for minimizing the 
superquantile-based objective functions is to use standard 
subgradient-based methods (subgradient and dual averaging) 
or gradient-based methods (gradient, accelerated gradient, 
Quasi-Newton). This is essentially what we described in [1], 
and it is the first set of methods available in our toolbox. 
More precisely, we have two cases:

• Convex case. If w ↦ �(yi,�(w, xi)) are convex, then 
f is convex and we have a subgradient oracle (from 
Proposition 1) enjoying the same complexity as the 
one for computing a quantile. We can use standard 
convex nonsmooth optimization methods, such as 
subgradient methods and dual averaging. We imple-
ment in particular the “weighted” version of the latter 
with a Euclidean prox-function [30, Eq. 2.22]. These 
algorithms satisfy ergodic convergence guarantees in 
objective values [31].

• Smooth case. If w ↦ �(yi,�(w, xi)) are differentiable, 
then we have a gradient oracle of the smooth approxima-
tion f� (from Proposition 3), again with a O(n) complex-
ity. We can use standard methods for smooth optimiza-
tion: gradient method, accelerated gradient method, and 
quasi-Newton (L-BFGS). If furthermore we have convex-
ity, these algorithms satisfy convergence guarantees in 
objective values [31, 32].

For small to medium-size dataset, such batch methods are 
shown to be simple and efficient; see forthcoming Sec-
tion  6.1. For large-scale problems though, the oracles 
become too costly as they require sorting loss values on the 
whole data set. We turn to the other formulations to intro-
duce stochastic and mini-batch algorithms, that usually are 
the methods of choice for the case of standard learning using 
empirical risk minimization.

4.2  Mini‑Batch Algorithms

From the perspective of the formulation (6) of the objective, 
the superquantile-based learning problem writes

When the loss is assumed to be smooth, one may again 
smooth the inner max{⋅, 0} term to get a smooth approxi-
mation of this joint objective. One can then perform a joint 
minimization3 with respect to the model w and the dual 

(14)

min
w∈ℝd

min
�∈ℝ

{
1

n(1 − p)

n∑
i=1

max{�(yi,�(w, xi)) − �, 0} + �

}
.

variable � . In other words, superquantile learning reduces 
to a standard empirical risk minimization with a modified 
loss function truncated by the max-term. In practice, batch 
methods may not be interesting here, since they would not 
leverage the fact that the minimization over � can be per-
formed explicitly. Thus [12] proposes, in a context of feder-
ated learning, to rather perform independent minimization 
over w and � alternatively. In general, this min-min approach 
(14) paves the way to stochastic and mini-batch algorithms.

Several works, including [20] and [11] (as well as [33] 
without mentioning superquantile), use successfully stand-
ard stochastic optimization algorithms on this modified 
objective. Observe though that, if a mini-batch of data is 
sampled uniformly at random from the data, only a fraction 
(1 − p) carry (sub)gradient information. Furthermore, the 
(sub)gradients of these examples are scaled by 1

1−p
 , leading 

to exploding directions. Thus mini-batch estimates of (sub)
gradients of superquantile-based objectives may suffer from 
high variance. A solution proposed by [18] is to perform an 
adaptive sampling rather than a uniform one. This algorithm 
gradually adjusts its sampling distribution to increasingly 
sample tail events, until it eventually minimizes the super-
quantile. This approach has a nice two-player interpretation 
related to the third formulation, recalled below.

The third expression (7) of f leads to the following for-
mulation (or, as previously, its smoothed counterpart with a 
quadratic term on q as in (10))

This min-max formulation offers several ways to solve 
the superquantile-based learning. A first approach would 
consist in considering it as a generic saddle point problem 
and using standard (extra-)gradient algorithms or recent 
extensions exploiting some aspects of the problem (see 
e.g. [34] for a variance-reduced min-max with strongly 
concave max). In our specific case, computing the max 
can be done systematically by a greedy algorithm with 
linear time complexity (see Section 3). This key feature is 
exploited by the stochastic algorithm of [6], and also by 
the one of [35] without relating it to superquantile. This 
algorithm uses a biased sampling approximation to f or 
f� which has nice guarantees. We briefly describe below 
this approach.

We sample a mini-batch of S uniformly in D and we con-
sider the restriction

(15)

min
w∈ℝd

max
q∈Δn

{
n∑
i=1

qi �(yi,�(w, xi)) ∶ 0 ≤ qi ≤ 1

n(1 − p)

}
.

3 Such approach is well-suited to problems with a particular decom-
posable structure such as non-anticipativity constraints in multi-stage 
programming problems; see [40].
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We can now use the (sub)gradient oracles of Section 3 
on f̃  and apply gradient-based algorithms with biased 
mini-batch estimator. Indeed, even if �[̃f (w)] ≠ f (w) and 
�[∇f̃ (w)] ≠ ∇f (w) , under standard assumptions, the bias 
is controlled by uniform bounds and variance bounds, 
which gives in turn complexity guarantees when using 
gradient-based algorithms; see [19, Sec. 3]. The algo-
rithm requires a number of gradient evaluations inde-
pendent of training set size and number of parameters, 
making it suitable for large-scale applications. This 
algorithm is implemented in our toolbox and tested in 
Section 6.

5  SPQR: Python Toolbox 
for Superquantile‑Based Learning

We provide a Python software package for superquan-
tile-based learning; it is named SPQR for SuPer Quantile 
Risk optimization. The software package includes mod-
eling tools and optimization algorithms to solve prob-
lems of the form (5) with just a few lines of code. The 
implementation builds off basic structures of scikit-
learn  [36] the popular python machine learning 
library. SPQR  routines rely on just-in-time compila-
tion [37] to ensure efficient running times. The soft-
ware package is publicly available at https:// github. com/ 
yassi ne- laguel/ spqr. We now walk the reader through the 
toolbox SPQR.

5.1  Basic Usage: Input Format and Execution

The user provides a dataset modeled as a couple 
(X, Y) ∈ ℝ

n×p ×ℝ
p and a first-order oracle for the function 

Li . The dataset is stored into two numpy arrays X and Y; for 
instance, for realizations of random variables:

The two python functions L  and L_prime  are 
assumed to be functions of the triplet (w,x,y) where 
w is the variable and (x,y) a datapoint. For instance, 
the oracle for superquantile linear regression are the fol-
lowing one.

�f (w) =[Q̄p](x,y)∼S

(
�(y,𝜑(w, x)

)

=max
q∈Δn

{∑
i∈S

qi �(yi,𝜑(w, xi)) ∶ 0 ≤ qi ≤ 1

n(1 − p)

}
.

Before solving (5), we instantiate the RiskOptimizer 
object with the oracles, following the standard usage of 
scikit-learn. The basic instantiation is:

RiskOptimizer inherits from scikit-learn’s 
estimators: we use the fit method to run the optimization 
algorithm on the provided data, to get a solution of (5).

5.2  Advanced Use: Parameters and SPQR Objects

Options and Parameters The customizable parameters are 
stored in a python dictionary params which is designed as 
an attribute of the RiskOptimizer class. The main param-
eters to tune are: the choice of the oracle, the choice of the 
algorithm, the safety probability level p, the starting point of 
the algorithm w_start, the maximum number of iterations 
max_iter. The user can specify some of these parameters 
as an input and the others will be filled with defaults values 
when instantiating a RiskOptimizer. For example:

Some important parameters (such as the safety probabil-
ity level, the algorithm chosen, or the smoothing param-
eter � ) can be given directly to the constructor of the class 
RiskOptimizer when instantiating the object. For 
example:

Oracle Classes The selection of the oracle is automatically done 
when the user instantiate the RiskOptimizer object. Four 
different oracles are implemented as python objects: two oracles 
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for batch methods (OracleSubgradient to be used when 
the chosen algorithm is ’subgradient’ or ’dual_aver-
aging and OracleSmoothGradient when the chosen 
algorithm is ’gradient’, ’nesterov’ or ’bfgs’) and 
two mini-batch oracles (OracleStochasticSubgradi-
ent and OracleStochasticGradient).

To avoid the treatment of optional parameters when 
instantiating an oracle, we advise to go through the instan-
tiation of a RiskOptimizer first.

Algorithms Class The algorithm chosen is a parameter for the 
instantiation of the RiskOptimizer class. This parameter 
can either be given in the input dictionary params or directly 
to the constructor of RiskOptimizer. The user has the 
choice among ’subgradient’, ’dual_averaging, 
’gradient’, ’nesterov’, ’bfgs’ and ’sgd’.

Each algorithm is implemented as a python class that 
stores the oracle, together with relevant parameters for 
the optimization process. The main method of this class is 
run, which is run when RiskOptimizer.fit is called. 
The parameters of the algorithm selected are stored in the 
dictionary params that is an input of the class RiskOp-
timizer. Hence, in a standard usage, there is no need to 
interact with the algorithm python object.

6  Numerical Experiments

In this section, we report two types of numerical experiments:

• “Optimization” experiments in Section 6.1. There are 
many algorithmic options within the toolbox SPQR; 
we provide a comparison of batch vs. mini-batch algo-
rithms and a discussion on tuning the smoothness 
parameter.

• “Learning” experiments in Section 6.2. The interest of 
using superquantile in learning has been shown empiri-
cally in several recent papers, including [11, 12, 18–20]. 

We provide here complementary experiments highlight-
ing the robustness of superquantile-learnt models.

All experiments are run using SPQR. The optimization 
algorithms are initialized at w = 0 ∈ ℝ

d . For these experi-
ments, we use a bunch of standard datasets from the UCI 
repository, which scale from 352 to 94644 datapoints. For 
each dataset, categorical features were one-hot encoded 
so that the total number of features ranges from 3 to 287.

For the experiment of Table 1, we report the agreggated 
results for all the datasets. For the other experiments, we 
report, in the main text, the detailed results obtained with 
one representative dataset, and we provide, in appendix, 
complementary results for others datasets.

6.1  Solving Superquantile‑Based Learning

In this section, we illustrate two different aspects of 
the optimization methods available in SPQR. First, we 
compare the two families of algorithms available (batch 
vs. mini-batch) showing the interest of using batch 
algorithms for superquantile-based learning within 
scikitlearn/SPQR. Second, we experiment with 
all the range of the smoothing parameter, advocating to 
avoid extreme values.

Batch vs. Mini‑Batch We compare, on a standard problem, a sto-
chastic gradient algorithm (more precisely, SGD with momen-
tum, denoted SGD) and a batch quasi-Newton algorithm (more 
precisely, low-memory BFGS [38], denoted BFGS).

For this experiment, the set-up is similar to the one 
of [19]. We consider a supervised multi-class classification 

Table 1  Comparison of performances between a superquantile model 
and a risk-neutral model for a logistic regression on a distributionally 
shifted dataset.

Superquantile Expectation

Dataset Accuracy Loss Accuracy Loss

Adult 53.2 ± 0.67 0.693 ± 0.00 55.4± 0.48 1.072 ± 0.01

Monks 64.4± 2.65 0.714 ± 0.05 54.0 ± 1.57 1.207 ± 0.08

Splice 82.7± 0.62 0.681 ± 0.05 81.7 ± 0.78 0.557 ± 0.04

Diabetes 42.5 ± 4.72 0.694 ± 0.00 45.1± 4.51 1.325 ± 0.12

Spambase 78.4± 1.23 0.761 ± 0.15 77.1 ± 0.87 0.635 ± 0.07

Mammogra-
phy

39.1± 7.59 0.730 ± 0.01 39.1± 6.90 1.293 ± 0.09

Electricity 42.8 ± 0.40 0.693 ± 0.00 47.5± 0.63 1.060 ± 0.01

Phoneme 37.3 ± 5.38 0.737 ± 0.01 50.5± 3.10 1.292 ± 0.04

Nomao 87.5± 0.22 0.413 ± 0.03 87.4± 0.23 0.394 ± 0.02

Skin-segmen-
tation

92.1± 0.11 0.420 ± 0.00 91.9± 0.05 0.537 ± 0.01
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task with the superquantile multinomial logistic loss on 
the MNIST dataset. We perform feature extraction from 
the images using a pre-trained convolutional network 
similarly to [19]. For a fixed probability threshold set to 
p = 0.8 , we then train a linear multi-class classifier on top 
of the transformed data. For SGD, we use a momentum 
term of 0.9 and we use a step decay scheme �t = �0d

−⌊t∕t0⌋ , 
where �0 is tuned with respect to the size of the mini-
batch m, and where d = 0.5 and t0 = 10 epochs are fixed 
throughout all the experiments. For each mini-batch size 
m ∈ {10, 100, 1000} , we tune �0 via a grid-search and take 
the highest initial value yielding a non-diverging sequence 
of iterates. In constrast with SGD, the quasi-Newton algo-
rithm does not require specific tuning as it automatically 
calibrates stepsizes by line-searches at each iteration.

On the left part of Fig. 3, we compare the performance 
of SGD for the different mini-batch sizes. Each color cor-
responds to a mini batch size m ∈ {10, 100, 1000} . Along 
iterates, the bold line represents the mean value over the 
five seeds of the functions and the shaded region represent 
the difference between the min and max values across the 
seeds. We observe that there is no substantial difference 
among the sizes of the mini-batches: all curves show a 
noisy behaviour (caused by the stochastic approximation 
of the gradient at each step) and eventually converge to 
a suboptimal value. Unlike SGD, L-BFGS (right part of 
Fig. 3) presents a stable convergence. We observe also that 
a large number of epochs is necessary for SGD to catch 
up with BFGS for superquantile-based training. This is 
to be contrasted with the usually small number of epochs 
necessary for SGD to catch with BFGS for expectation-
based training or ERM. Note that a final bias remains vis-
ible between the stochastic methods and the deterministic 
BFGS, as expected by the theory laid down in [19].

Impact of the Smoothing Parameter We consider a logis-
tic regression on the Australian Credit dataset. For 
a sequence of smoothing parameters � evenly spread on a 

log scale, we train w⋆
𝜈
 by solving the superquantile learning 

objective with L-BFGS and p = .99.

On Fig. 4, we report both the value of the smoothed 
.99-superquantile (purple) and the non-smoothed 
.99-superquantile (dashed green) at the w⋆

𝜈
 . We also train 

the standard empirical risk minimizer w⋆ and we report 
both the average loss (solid black line) and the non-
smoothed .99-superquantile loss (dashed black line) at w⋆.

For very small values of 𝜈 (< 10−3) , we observe unsuc-
cessful termination of the L-BFGS algorithm, due to the 
failure of the line-search. For medium values of 𝜈 (< 1) , the 
value of smooth superquantile-based function at w⋆

𝜈
 roughly 

coincides the non-smooth one. Finally for high values of 
𝜈 (> 103) , we observe that the smooth superquantile tends to 
the same optimal function value of the empirical risk mini-
mizer w⋆ , as expected from Section 3.2.

6.2  Superquantile Brings Robustness Against 
Distributional Shift

In the second part of the numerical experiments, we show the 
benefits of the superquantile by comparing superquantile-based 
minimization vs. empirical risk minimization, when a distribu-
tional shift occurs, similarly to [18]. For the three next standard 
regression or classification tasks, we proceed as follows. For 
each dataset, we first perform a 80%-20% train-test split. Second, 
we minimize with respect to the train set a regularized objective, 
both in expectation and with respect to the superquantile:

We set the regularization parameter � to be the inverse 
of the number of training data-points: � = 1∕ntrain . The 
above problems are solved with SPQR using L-BGFS. 
Then we perform three different types of distributional 
shifts on the testing set and we compare the behaviour of 

(16)
minw∈ℝd 𝔼(x,y)∼Dtrain

�(y,w⊤x) +
𝜆

2
‖w‖2

2

minw∈ℝd [Q̄p](x,y)∼Dtrain
�(y,w⊤x) +

𝜆

2
‖w‖2

2

Figure 3  A comparison 
between batch/mini-batch algo-
rithms in SPQR on a superquan-
tile logistic regression problem 
with MNIST. Left: comparison 
of the runs of SGD with differ-
ent batch sizes. Right: best SGD 
vs. batch quasi-Newton.
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the superquantile-based models and the ERM models. We 
develop this approach in the next three settings.

Superquantile Ridge Regression We consider a ridge regres-
sion problem, that is (16) with �(y,w⊤x) = (y − w⊤x)2 , on 
the dataset Cpu-small. We minimize the two prob-
lems, first, in expectation and, second, with respect 
to the superquantile with several safety thresholds 
p ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99}.

We report in Fig. 5 the histogram of losses on the test set 
and compare each trained superquantile model (in red) with 
the ERM model (in blue). We observe that as the probability 
threshold p grows, the right tail distribution of losses on the test 
set gets shifted to the left. In particular, a dramatic decrease of 
the 90th quantile of the losses can be observed. Thus superquan-
tile learning allows us to reduce worst-case losses. This comes 
with the price of lower performances on the left tail distribu-
tion. This trade-off between gain on extreme cases and loss on 
average is typical of the impact of superquantiles. We observe 
a similar trade-off for other datasets; see Fig. 7 in appendix.

Superquantile Logistic Regression We consider a regular-
ized logistic regression problem, that is (16) with 
�(y,w⊤x) = −y𝜎(w⊤x) − (1 − y)𝜎(w⊤x) (where �(z) ∶= 1

1+e−z
 

denotes the sigmoid function). We use 10 classification 
datasets from the UCI repository library and we perform 
a distributional shift on the train sets: we subsample the 
majority class so that it accounts for only 10% of the 
minority class. Then we train a ERM and superquantile 
models. The safety parameter p is tuned via a cross valida-
tion procedure on the shifted train set. We finally compute, 
for the best parameter obtained, the test accuracy and the 
test loss.

We report our results in Table 1. For most datasets, we 
note a significant decrease of the test loss with the super-
quantile model, when compared to ERM model. In terms of 
accuracy, the superquantile model offers better performance 
for this particular distributional shift.

Figure 4  Impact of the smoothing parameter � on the results obtained 
by the quasi-Newton algorithm solving a superquantile logistic 
regression on the Australian Credit dataset. Medium values 
are preferable: small values compromise convergence and large val-
ues give solutions close to the standard ERM.

Figure 5  Reshaping of the histogram of testing losses for superquantile regression models (in red) as p grows. We observe a shift to the left of 
the 90th quantile of losses, at the price of degrading the average value.
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Robustness to All Possible Distributional Shifts We take the 
same setting as before, focusing on the splice dataset, 
and now we perform a sequence of distributional shifts on 
the training set by rebalancing all the proportions of the two 
classes. More precisely, for a fixed � ∈ (0, 1) , we compute the 
number nmin of samples from the minority class; we randomly 
select ⌈�nmin⌉ points from the majority class and ⌈(1 − �)nmin⌉ 
from the minority class. We train on the shifted train set the 
two logistic regression models of (16). We repeat this experi-
ment for 5 different seeds and we compute the average test 
losses and test accuracies of both models. The experiment is 
conducted for 100 values of � evenly spread on (0, 1).

The histograms of Fig. 6 depicts the performances, as � 
varies, of ERM against the superquantile (for a fixed prob-
ability threshold p). In terms of losses, the superquantile 
model brings better performances for almost all values 
of p. In particular, the 90th quantile of the losses over all 
considered shifts gets notably decreased for p. In terms of 
accuracy, the superquantile models brings better perfor-
mance with respect to distributional shifts for all values of 
p. Such behaviours are also observed with other datasets, 
as those depicted in Figs. 8 and 9 in Appendix.

Figure 6  Reshaping of histograms of test losses (top) and test accuracies (bottom) over all class imbalances (for a classification task with logistic 
regression and the splice dataset).
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Figure 7  Ridge regression: comparison of performances between a superquantile model and a ERM model for Abalone and Boston Hous-
ing. 
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Figure  8  Histogram of test losses over all distributional shifts for the datasets monks-problem-1, australian-credit, and skin-
segmentation. 
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Figure 9  Histogram of test accuracy over all distributional shifts for the datasets monks-problem-1, australian-credit, and skin-
segmentation. 
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7  Conclusion, Perspectives

Risk-sensitive optimization can play an important role in the 
design of safer machine learning models involved in automated 
decision making. We provide here a software package to tackle 
superquantile-based learning problems using standard first-
order optimization algorithms. The software package is pub-
licly available on the authors’ websites. We have described the 
main components of the optimization algorithms and how they 
can be made to tackle superquantile-based learning problems 
using smoothing techniques in particular. We would tend to 
recommend the use of a combination of smoothed oracles and 
batch gradient algorithms to experiment with superquantile-
based objectives.

This work can be included in the more general research 
stream on developing operational tools for distributionally 
robust learning, which has recently gained interest and focus 
in the machine learning community; see e.g. the recent text-
book [39]. Recent work on related topics developing opti-
mization algorithms with improved complexity bounds [18, 
19], exploring fairness challenges [11], tackling data het-
erogeneity problems [12], shows the burst of activity in this 
general area and suggests a number of venues for future 
investigation.

Additional Numerical Results

In this Appendix section, we collect additional results com-
paring classical supervised learning and superquantile-
based supervised learning using the optimization algo-
rithms described in the main text. The experimental setting 
is exactly the one of Section 6.2, yet we consider here other 
datasets from UCI repository. The results obtained are 
essentially the same as the ones presented in Section 6.2, 
suggesting a greater control of extreme losses and a greater 
robustness to distributional shift of superquantile-based 
supervised learning. We refer to the main text for the dis-
cussions on these main observations, and we give here addi-
tional observations.

Figure 7 shows the same behaviour as in Fig. 5: as the 
probability threshold p grows, the right tail distribution of 
losses on the test set gets shifted to the left. We can indeed 
see, on the subfigures, the reshaping of the histogram and 
the translation of the 90th quantile to the left. Two excep-
tions should be noticed though: for the dataset boston 
housing  with p = 0.95 and 0.99, the superquantile 
approach was not able decrease the 90th quantile (see the 
last two subplots at the bottom). This would suggests to 
avoid in general using too large values of p that would 
restrict the computational effort to a too small fraction of 
extreme scenarios only.

Figures 8 and 9 show results similar to the ones pre-
sented in Fig. 6 about the resistance to distributional shifts. 
The three datasets considered here provide a variety of 
histograms shapes. We see on Fig. 8 that the superquantile 
brings better performances on the worst-case test losses for 
all values of p (except for the skin-segmentation 
with p ≥ 0.9 ). Similarly, on Fig. 9, we see, in most cases, 
improvements of the worst-case test accuracy: sometimes 
the improvement is important (e.g. Australian with 
p = 0.9 ), sometimes it is more marginal or even negative 
(e.g. monks-problem1 with p = 0.9).

Interestingly, one observes that, for each dataset, there 
is a particular value of p (depending on the dataset) for 
which the histogram of losses gets shifted to the left uni-
formly ( p = 0.8 for monks-problem-1 and p = 0.3 for 
the skin-segmentation dataset). This highlights the 
importance of a careful tuning of p to address the worst-
case outcomes.
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