
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11265-021-01716-5

Superquantile‑Based Learning: A Direct Approach Using
Gradient‑Based Optimization

Yassine Laguel1  · Jérôme Malick1 · Zaid Harchaoui2

Received: 17 March 2021 / Revised: 4 October 2021 / Accepted: 28 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We consider a formulation of supervised learning that endows models with robustness to distributional shifts from training to
testing. The formulation hinges upon the superquantile risk measure, also known as the conditional value-at-risk, which has
shown promise in recent applications of machine learning and signal processing. We show that, thanks to a direct smoothing
of the superquantile function, a superquantile-based learning objective is amenable to gradient-based optimization, using
batch optimization algorithms such as gradient descent or quasi-Newton algorithms, or using stochastic optimization algo-
rithms such as stochastic gradient algorithms. A companion software SPQR implements in Python the algorithms described
and allows practitioners to experiment with superquantile-based supervised learning.

Keywords  Machine learning · Risk measure · Distributional robustness · Nonsmooth optimization

1 � Introduction: Superquantile Comes Into
Play

Classical supervised learning via empirical risk (or nega-
tive log-likelihood) minimization relies on the assumption
that the testing distribution coincides with the training dis-
tribution. This assumption can be challenged in domain
applications of machine learning such as visual systems or
dialog systems [2]. Learning machines may then operate at
prediction time with testing data whose distribution departs
from the one of the training data. Recent failures of learn-
ing systems when operating in unknown environments [3,
4] underscore the importance of reconsidering the learning

objective used to train learning machines in order to ensure
robust behavior in the face of prevalence of worst-case sce-
narios or unexpected distributions at prediction time.

The generalized regression framework presented in [5]
provides an attractive ground to design learning machines
displaying increased robustness. This framework hinges
upon modeling worst-case aversion with superquantile, also
known as Conditional Value-at-Risk, a statistical summary
of the tail of the distribution considered [6–8]. The super-
quantile stands out as one of prominent examples of risk
measures, well-studied in economics and finance [9, 10].
The superquantile has recently drawn an increasing attention
in machine learning; see e.g. fair learning [11], federated
learning [12], adversarial classification [13], submodular
optimization [14], and reinforcement learning [15] among
others.

The notion of robustness brought by the superquantile
is aligned with the one in distributionally robust optimiza-
tion [16] and empirical likelihood estimation [17]. It is, how-
ever, different, from notions of robustness commonly con-
sidered in robust statistics [11, Sec. 12.6]. The superquantile
provides an efficient and mathematical-grounded adaptive
re-weighting scheme of the training data, allowing one to
learn predictive models with better worst-case performances
that standard models obtained from empirical risk minimi-
zation. This has been corroborated empirically by a number
of recent papers; see e.g. [12, 16, 18–20]. Recent work [21]

A preliminary version of this work [1] was presented at the IEEE
MLSP conference in September 2020. This work is based on Y.
Laguel’s MSc. thesis defended in Summer 2018.

 *	 Yassine Laguel
	 yassine.laguel@univ-grenoble-alpes.fr

	 Jérôme Malick
	 jerome.malick@univ-grenoble-alpes.fr

	 Zaid Harchaoui
	 zaid@uw.edu

1	 Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK,
Grenoble 38000, France

2	 University of Washington, Seattle, USA

/ Published online: 11 January 2022

Journal of Signal Processing Systems (2022) 94:161–177

http://orcid.org/0000-0001-6289-9590
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-021-01716-5&domain=pdf

1 3

established learning-theoretic generalization bounds for sta-
tistical models trained through the minimization of related
objectives.

Despite attractive theoretical and practical properties,
superquantile-based learning may be less developed than it
could have been in machine learning and signal processing.
This may be due to the lack of (i) direct scalable algorithms
for superquantile-based optimization and (ii) easy-to-use
software packages to benchmark superquantile optimiza-
tion algorithms.

Contributions of this Work  In this paper, we present a publicly-
available and easy-to-use Python toolbox for superquantile-based
learning, building off the popular software library scikit-
learn. This paper is a follow-up of our IEEE MLSP 2020 con-
ference paper [1], incorporating recent work in an extended
literature review, providing additional features to the toolbox,
and presenting further empirical illustrations of the robustness
brought by superquantile.

More precisely, the contributions of this work are the
following:

–	 We provide a gentle introduction to superquantile-based
learning. We present the main notions; we review sev-
eral choices of optimization algorithms; we also discuss
the various numerical components used explicitly or
implicitly in recent papers. These components include
for instance various strategies to overcome the non-
smoothness inherent to the superquantile function.

–	 We provide elementary analyses as well as template rou-
tines within a companion software package. We primarily
focus on operational aspects and give pointers to recent
theoretical developments.

–	 We provide numerical experiments illustrating (i) the
interest of using batch quasi-Newton optimization algo-
rithms for minimizing superquantile-based objectives
and (ii) the robustness of superquantile-based models
compared to the standard models obtained from empiri-
cal risk minimization.

Outline of the Paper  The outline of the paper is as follows.
We set the stage by formalizing, in Section 2, the framework
of superquantile-based supervised learning, highlighting the
three classical formulations of superquantile-based objectives.
In Section 3, we study the differentiability of these objec-
tive functions, provide practical expressions of their (sub)
gradients, together with fast procedures to compute them.
In Section 4, we overview batch and mini-batch first-order
methods using these fast oracles. In Section 5, we provide
a short presentation of the toolbox SPQR for superquantile-
based learning. Finally, we illustrate in Section 6 the interests

of superquantile and SPQR for robustness in standard regres-
sion/classification tasks.

Most Important Related Work  The introduction has already
mentioned a variety of works related to superquantile,
robustness, and applications in machine learning and signal
processing. Finally, we highlight here the most important
articles, in view of the contributions of this work, regarding
the algorithms for superquantile optimization and the inter-
est of superquantile in learning.

Classical approaches for superquantile-based optimiza-
tion consider convex programming techniques, including
interior point algorithms; see the review of [22]. The use
of first-order algorithms in this context is quite recent and
seems to be driven by machine learning considerations.
A key reference for our work is [19] which introduces an
efficient approximated stochastic gradient algorithm for
superquantile-based learning. We have implemented this
algorithm within our toolbox and compared it with a simple
approach using batch quasi-Newton method (in Section 6.1).

The interest of using superquantile in learning has been
shown empirically in several recent papers, including [11,
12, 18–20]. In particular [11], studying fairness issues,
empirically demonstrates that superquantile trades predictive
accuracy for less fairness violation. In a context of federated
learning, [12] compares the performances of models learned
by superquantile-based learning to standard models: for het-
erogeneous data, significant improvements on worst cases
are reported for both error testing and accuracy on classifi-
cation tasks. In our numerical experiments, we use similar
representations to visualize the impact of the superquantile.
Our experimental results align with those of [18], where
the robustness of superquantile models on distributionally
shifted datasets is demonstrated.

2 � Superquantile‑Based Learning Framework

We are interested in a supervised machine learning setting
with training data D = (xi, yi)1≤i≤n ∈ (ℝp ×ℝ

q)n , a predic-
tion function � ∶ ℝ

d ×ℝ
p
→ ℝ

q (such as an additive model
or a neural network) and a loss function � ∶ ℝ

q ×ℝ
q
→ ℝ

(such as the logistic loss or the least-squares loss). Denot-
ing w ∈ ℝ

d the parameter (“weights”) to be optimized, the
classical empirical risk minimization (ERM) problem reads

In the above expression as expectation, we identify, by
abuse of notation, the training data D with the empirical
measure of the training data. With this ERM problem, we

(1)min
w∈ℝd

1

n

n∑
i=1

�(yi,�(w, xi) = 𝔼(x,y)∼D(�(y,�(w, x))),

Journal of Signal Processing Systems (2022) 94:161–177162

1 3

aim at achieving a small loss with an equal weighting across
all training data-points. In the event that, at testing time,
some probability mass gets shifted from a fraction of them
onto another, large losses may then be incurred.

In order to be robust against such uncertainty in the way
probability mass will spread at testing time, we can consider,
instead, a training objective that involves a minimization
problems with respect to a pessimistic re-weighting of the
training datapoints. This boils down to replacing the expec-
tation in (1) by a tail-sensitive or risk-sensitive quantity.
Risk-sensitive measures play a crucial role in optimization
under uncertainty. Among popular convex risk measures,
the superquantile, also called Conditional Value at Risk, has
received particular attention because of its nice convexity
properties; we refer to the seminal work [10] and the classi-
cal textbook [23, Chap. 6].

We use here the notation and terminology of [24].
Consider a probability space Ω , with probability denoted
ℙ . For any p ∈ [0, 1] , the p-quantile of a random variable
U ∶ Ω → ℝ , denoted by Qp(U) , is the inverse of the cumula-
tive distribution function of U: for all t ∈ ℝ we have

The p-superquantile of U is then defined as the mean of
values of quantiles greater than a threshold p

The analogue to (2) for the superquantile is stronger:

The superquantile can be therefore interpreted as a meas-
ure of the upper tail of the distribution of U with the param-
eter p controlling the sensitivity to high losses (see Fig. 1).

In the case where the random variable U takes equi-prob-
able realizations u1,… , un , the integral (3) reduces to an
average of the ui that are greater or equal than the quantile.
This sum can be further split in two parts with the ui that

(2)Qp(U) ≤ t ⟺ ℙ(U ≤ t) ≥ p .

(3)Q̄p(U) =
1

1 − p ∫
1

s=p

Qs(U)ds .

Q̄p(U) ≤ t ⟺ U is lower than t on average in its p-tail.

are equal to the quantile and those are that strictly larger
(indexed by I> ). Mathematically, this writes

where 𝛿 = FU(Qp(U)) − p =
1

n
(n − |I>|) − p.

This expression involves the distance from p to the next
discontinuity point of the quantile function. Thus, (4) pro-
vides a direct way to compute the superquantile from the
computation of the quantile.

Going back to the context of learning described at the
beginning of this section, we consider the superquantile of
discrete distributions standing for the training data, that we
denote by [Q̄p](x,y)∼D . A risk-sensitive statistical learning
framework using the superquantile of losses rather than the
expected loss thus formally replaces in (1) the expectation
by the superquantile

This superquantile-based objective function has some spe-
cial properties. First is has a nice variational formulation
[10]:

This formulation opens the way to treating (5) as a joint
minimization over (w, �) ; this is discussed in Section 4. Note
here that the minimization with respect to � in (6) exactly
gives the p-quantile of the losses and can be done efficiently
in linear time.

Using standard duality, we can also write the min prob-
lem (6) as a max, which takes the form

where Δn denotes the probability simplex
Δn = {q ∈ (ℝ+)

n,
∑n

i=1
qi = 1} Interestingly, this third

formulation uncovers another interpretation of the super-
quantile objective. The set of admissible probability qi
in (7) acts as a so-called ambiguity set around the uni-
form probability distribution (1

n
,… ,

1

n
) , relating (5) to an

instance of distributionally robust optimization: (7) con-
siders the worst possible combination among possible re-
weightings of the individual losses, with the probability
distributions

The three above formulations (5) (6) and (7) of the
superquantile-based objective reveal an inherent non-
smoothness. We discuss in the next section how to obtain

(4)

Q̄p(U) =
1

n(1−p)

∑
i∈I>

ui +
𝛿

1−p
Qp(U) withI>= {i ∶ ui>Qp(U)}.

(5)min
w∈ℝd

f (w) = [Q̄p](x,y)∼D

(
�(y,𝜑(w, x))

)
.

(6)

f (w) = min
�∈ℝ

{
� +

1

n(1 − p)

n∑
i=1

max{�(yi,�(w, xi)) − �, 0}

}
.

(7)

f (w) = max
q∈Δn

{
n∑
i=1

qi �(yi,�(w, xi)) ∶ 0 ≤ qi ≤ 1

n(1 − p)

}

Figure 1   Illustration of the expectation �(U) , the p-quantile Qp(U) ,
and the (1−p)-superquantile Q̄p(U) of a random variable U. 

Journal of Signal Processing Systems (2022) 94:161–177 163

1 3

first-order information from a superquantile-based criterion.
Note, though, that training with such loss is not straightfor-
ward: replacing the expectation by the superquantile in (5)
completely changes the situation, making stochastic gra-
dient algorithms, popular methods for solving (1), which
are somewhat flexible to the smoothness properties of the
objective, not directly applicable; we will come back to this
in Section 4.

Let us finally mention that the probability threshold p should
be considered as an hyperparameter of the superquantile-based
learning problem (5). The standard way to set p is then to per-
form a cross validation over a grid of values and chose the best
one with respect to a risk sensitive metric, such as e.g. the 90th
percentile of the validation loss.

We finish this section by illustrating on a toy problem
that superquantile-based learning allows one, as expected,
to learn models with better worst-case performance.

Example 1  We consider a linear regression task on a syn-
thetic training dataset1 to provide a striking illustration of the
benefit of superquantile-based learning in terms of worst-
case performance. For a given model parameter w̄ , we gener-
ate the data according to

The noise �i is generated from a mixture of two distributions:
�N follows a standard normal distribution, �L follows a

Laplace distribution with location � = 10 and scale s = 1 ,
and � follows a Bernoulli distribution with parameter 0.8.

We solve the ordinary �2
2
-regularized least squares prob-

lem and its superquantile counterpart:

yi = x⊤
i
w̄ + 𝜀i with 𝜀i = 𝛽𝜀N + (1 − 𝛽)𝜀L.

min
w∈ℝd

𝔼(x,y)∼D

(
(y − w⊤x)2

)
vs. min

w∈ℝd
[Q̄p](x,y)∼D

(
(y − w⊤x)2

)
.

Figure 2 reports the distribution of losses obtained on
the training dataset and on a test dataset of 2000 data points
independently generated with the same procedure. Thanks to
the superquantile-based learning, the upper tail of the error
is shift to the left of the plot, which in other words means an
improved performance in extreme cases. 	� ◻

3 � First‑Order Oracles for Superquantile
Function

The expression (4) gives an efficient way to compute super-
quantiles. We have indeed a three step procedure: (i) com-
pute the p-quantile with the specialized algorithm (called
quickfind) of complexity O(n) (with n the number of
data points); (ii) select all values greater or equal than the
quantile; (iii) average values along (4). To minimize the
superquantile-based objective (5), we would also need, in
addition to an objective evaluation oracle, an oracle to obtain
first-order information.

In this section, we study the differentiability properties of
the superquantile objective and we describe how to obtain
subgradient or gradient information with the same complex-
ity O(n) as for computing a standard quantile. We denote by

the underlying data-dependent functions in (1) and (5). We
will distinguish two cases: (a) Li convex in Section 3.1 and
(b) Li smooth in Section 3.2.

3.1 � Subgradient Oracle

We assume here that the functions Li defined in (8) are con-
vex. This is the case when e.g. the model � is linear and the
loss � is convex with respect to its second variable, as for the
l2-squared or the cross-entropy loss. This encompasses several
situations including p-least-squares regression with p ≥ 1

(8)Li(w) = �(yi,�(w, xi))

Figure 2   Illustration of the reshap-
ing of the distribution of errors
resulting from superquantile-based
learning (model trained with
p = 0.9).

1  We take n = 10
4 points in ℝ40 ×ℝ . The design matrix X = (xi)1≤i≤n

is generated with the make_low_rank_matrix procedure of
scikit_learn [36] with a rank 30.

Journal of Signal Processing Systems (2022) 94:161–177164

1 3

or the logistic regression which can be written with
ŷi = 1∕(1 + e−w

⊤xi) as

In this case, the superquantile-based function f of (5) is con-
vex as well: we can see it on (7) which expresses f is a max,
over q, of convex functions in w. We give here the expression
of the entire subdifferential for the convex case. This result is
not new: it is mentioned in several recent papers including [18,
19]; it is part of the thorough study of [25] where gradients2
for general distributions are obtained from advanced tools. We
give here a short proof using elementary convex analysis [26].

Proposition 1  Assume that the Li are convex. Fix w ∈ ℝ
d ,

compute L(w) ∈ ℝ
n and Qp(L(w)) ∈ ℝ . Consider I> the set of

indices such that Li(w) > Qp(L(w)) and I= the set of indices
such that Li(w) = Qp(L(w)) . Then the subdifferential at w of
the convex function f reads as the Minkowski sum

with 𝛿 =
1

n
(n − |I>|) − p . In particular, when the Li is dif-

ferentiable at w , f is differentiable at w if and only if the set
I= is reduced to a singleton.

Proof  The proof simply consists in applying convex calculus
rules; the reader may find them in [26, Chap D]. First we apply
Theorems 4.1.1 and 4.4.2 to hi(w, �) = max{Li(w) − �, 0}) to
get

We apply Theorem 4.1.1 with h(w, �) = � +
1

(1−p)n

∑n

i=1
hi(w, �)

with 𝛿i(w, 𝛼) = (�Li(w)>Qp(L(w))
+ 𝛼i�Li(w)=Qp(L(w))

) . We finish
with writing f (w)=min�∈ℝ h(w, �) from (6).

We can thus apply Corollary 4.5.3 to get (9) after
simplification.

	� ◻

Li(w) = |yi − w⊤xi|p

Li(w) = −yi log(ŷi) − (1 − yi) log(1 − ŷi).

(9)

𝜕f (w) =
1

n(1 − p)

∑
i∈I>

𝜕Li(w) +
𝛿

1 − p
conv

{
𝜕Li(w) ∶ i ∈ I=

}
,

𝜕hi(x, 𝜂) = {(𝜕Li(w),−1)(�Li(w)>𝜂 + 𝛼�Li(w)=𝜂), 𝛼 ∈ [0, 1]}

�h(w, �) =

{(
1

(1 − p)n

n∑
i=1

�Li(w)�i(w, �),

1 −
1

(1 − p)n

n∑
i=1

�i(w, �)

)
, �i ∈ [0, 1],∀i

}
.

This proposition thus tells us that the computation of a
subgradient can be performed in linear time from the sub-
gradients gi ∈ �Li(w) for i ∈ I> ∪ I= : the computing cost
essentially stems from the computation of the p-quantile of
the losses Li(w) and the sum of vectors in ℝd.

3.2 � Gradient Oracle (For Smoothed Approximation)

We assume in this section that the functions Li defined by
(8) are smooth, which holds locally when both the model �
and the loss � are smooth. Unfortunately, the superquantile
breaks the smoothness (see e.g. Proposition 1 with smooth
convex functions Li ), so that superquantile-based function f
is usually nonsmooth.

We propose here to smooth f using infimal convolution as
in [27]. More precisely, we follow the methodology of [28]
and we propose to smooth only the superquantile Q̄p rather
than the whole function f. Given the formulation (7), we
consider the function f� for 𝜇 > 0 , as the composition of the
Li by the infimal convolution smoothing of Q̄p

where d ∶ ℝ
n
→ ℝ is a fixed non-negative strongly convex

function. As a direct application of [27, Th. 1], we have
the following proposition establishing that f� is a smooth
approximation of f.

Proposition 2  Assume that the Li are smooth for any i. Then,
the function f� of (10) provides a global approximation of
f, i.e. f�(w) ≤ f (w) ≤ f�(w) +

�

2
 for any w ∈ ℝ

d . If L is dif-
ferentiable, then f� is differentiable as well, with

where JL(w) is the Jacobian of L at w and q�(w) is the opti-
mal solution of (10), unique by strong convexity of d.

In practice, the previous result requires an efficient sub-
routine solving (10). Here, we consider the euclidean dis-
tance to the uniform probability measure

For this distance, Algorithm 1 provides an efficient pro-
cedure for solving (10). The procedure follows the one
in [29], where convex duality and one-dimensional search
ideas are fruitfully combined. Thanks to the particular
smoothing distance d, computing (10) by duality is equiv-
alent to finding the zero of a non-decreasing, piecewise

(10)f�(w) = max
q∈Δn,qi≤ 1

n(1−p)

n∑
i=1

qiL
i(w) − � d(q)

(11)∇f�(w) = JL(w)Tq�(w),

(12)d(q) =

n∑
i=1

(
qi −

1

n

)2
.

2  Interestingly, the nonsmoothness of superquantile-based functions
arises only with discrete distributions, as we consider here.

Journal of Signal Processing Systems (2022) 94:161–177 165

1 3

affine and continuous function (the derivative of the dual
function), which has an explicit expression after sorting
the kinky points. We formalize this in Algorithm 1 and the
proposition below.

Proposition 3  Algorithm 1 computes the optimal solution of
the problem (10) with d as (12) at a cost of O(n) operations.

Proof  We dualize the constraint
∑n

i=1
qi − 1 = 0 to get the

Lagrangian

With � and u introduced in the algorithm, the dual func-
tion writes:

For � ∈ ℝ and i ∈ {1,… , n} fixed, let us introduce the
function hi(qi) = (ui − �)qi −

�

2
q2
i
 . Then, we get

As a result, we get the explicit expression of �(�) . Observ-
ing that it is differentiable, we get

Observe that lim�→+∞ ��(�) = 1 and since n� =
1

1−p
> 1 ,

lim𝜆→−∞ 𝜃�(𝜆) < 0 . Therefore, �′ is a non-decreasing and
continuous (piecewise affine) function that takes negative
and positive values: by the intermediate value theorem, there
exists a solution 𝜆⋆ ∈ ℝ such that 𝜃�(𝜆⋆) = 0 . By duality
theory, the associated q⋆ (the optimal solution of (13) for

L(q, �) =

n∑
i=1

qiL
i(w) −

�

2

n∑
i=1

(
qi −

1

n

)2

+ �

(
1 −

n∑
i=1

qi

)
.

�(�) = max
q ∈ ℝ

n

0 ≤ qi ≤ l

L(q, �) = � −
�

2n
+

n∑
i=1

max
0≤qi≤l

(ui − �)qi −
�

2
q2
i

(13)argmax0≤qi≤lhi(qi) =

⎧⎪⎨⎪⎩

0 if � ≥ ui
ui−�

�
if ui ≥ � ≥ ui − ��

� if � ≤ ui − ��

𝜃�(𝜆) = 1 −

n∑
i=1

(
ui − 𝜆

𝜇
�ui≥𝜆≥ui−𝜇� + ��ui−𝜇�>𝜆

)
.

𝜆 = 𝜆⋆ ) is the solution of the primal problem (10). Finally,
we compute 𝜆⋆ zeroing �′ . Since �′ is piecewise affine, we
just need to evaluate �′ at points belonging to the set P and
at a and b as defined in Algorithm 1.

Thus we have �∗ = a −
��(a)(b−a)

��(b)−��(a)
 . Regarding computa-

tional costs, this algorithm boils down to the search of a and
b, and the assignment of the coordinates of q� . This also
sums up to a O(n) cost. 	� ◻

Combining Propositions 2 and 3 provides a gradient ora-
cle for the smoothed approximation f� . For a given w ∈ ℝ

d ,
we run Algorithm 1 to get q�(w) ; we select the indexes i of
non-zeros entries of q�(w) ; and from the oracles of Li we get

We finish this section by a short discussion on the two
extreme cases for the smoothing parameters : � close to 0
and � very large. Small � ∼ 0 imply exploding entries of
q�(w) (see line 8 in Algorithm 1) and then instability of
∇f�(w) . Large � ∼ +∞ imply q�(w) = (1∕n,… , 1∕n) con-
stant (see line 6 in Algorithm 1) and therefore the smoothed
function f�(w) and its gradient ∇f�(w) coincide with the
function and gradient of the corresponding ERM objective.
We illustrate these two extreme cases in Section 6.

4 � First‑Order Optimization
for Superquantile‑Based Learning

Minimization of superquantile-based objectives comes
with a number of technical challenges on the structure of
the problem tackled, the size of the dataset or the non-
smoothness of the objective. Standard works on mini-
mizing superquantiles considered linear programming
or convex programming techniques, including interior
point algorithms; see the review of [22]. Perhaps sur-
prisingly, the use of first-order algorithms for super-
quantile-based optimization is quite recent and seems
to have been driven by domain applications of machine
learning.

In this section, we provide an overview of the range of
first-order methods to minimize superquantile-based objec-
tive functions expressed as (5), (6), or (7). Our discussion
focuses on practical considerations; we give pointers to ref-
erences presenting more details and theoretical analysis (in
particular, convergence results and convergence rates if any).

4.1 � Batch Algorithms

As explained in Section 3, computing the function values
and (sub)gradients of the superquantile-based function f in

f�(w) =
∑

i∶q�(w)i≠0
(
q�(w)

)
i
Li(w) and ∇f�(w) =

∑
i∶q�(w)i≠0

(
q�(w)

)
i
∇Li(w).

Journal of Signal Processing Systems (2022) 94:161–177166

1 3

(5) (or its smoothed counterpart f� ) requires sorting loss
values on the whole data set, which is not directly amena-
ble to classical stochastic gradient algorithms. This reha-
bilitates batch optimization algorithms, at least for small to
medium datasets. Thus the first approach for minimizing the
superquantile-based objective functions is to use standard
subgradient-based methods (subgradient and dual averaging)
or gradient-based methods (gradient, accelerated gradient,
Quasi-Newton). This is essentially what we described in [1],
and it is the first set of methods available in our toolbox.
More precisely, we have two cases:

•	 Convex case. If w ↦ �(yi,�(w, xi)) are convex, then
f is convex and we have a subgradient oracle (from
Proposition 1) enjoying the same complexity as the
one for computing a quantile. We can use standard
convex nonsmooth optimization methods, such as
subgradient methods and dual averaging. We imple-
ment in particular the “weighted” version of the latter
with a Euclidean prox-function [30, Eq. 2.22]. These
algorithms satisfy ergodic convergence guarantees in
objective values [31].

•	 Smooth case. If w ↦ �(yi,�(w, xi)) are differentiable,
then we have a gradient oracle of the smooth approxima-
tion f� (from Proposition 3), again with a O(n) complex-
ity. We can use standard methods for smooth optimiza-
tion: gradient method, accelerated gradient method, and
quasi-Newton (L-BFGS). If furthermore we have convex-
ity, these algorithms satisfy convergence guarantees in
objective values [31, 32].

For small to medium-size dataset, such batch methods are
shown to be simple and efficient; see forthcoming Sec-
tion 6.1. For large-scale problems though, the oracles
become too costly as they require sorting loss values on the
whole data set. We turn to the other formulations to intro-
duce stochastic and mini-batch algorithms, that usually are
the methods of choice for the case of standard learning using
empirical risk minimization.

4.2 � Mini‑Batch Algorithms

From the perspective of the formulation (6) of the objective,
the superquantile-based learning problem writes

When the loss is assumed to be smooth, one may again
smooth the inner max{⋅, 0} term to get a smooth approxi-
mation of this joint objective. One can then perform a joint
minimization3 with respect to the model w and the dual

(14)

min
w∈ℝd

min
�∈ℝ

{
1

n(1 − p)

n∑
i=1

max{�(yi,�(w, xi)) − �, 0} + �

}
.

variable � . In other words, superquantile learning reduces
to a standard empirical risk minimization with a modified
loss function truncated by the max-term. In practice, batch
methods may not be interesting here, since they would not
leverage the fact that the minimization over � can be per-
formed explicitly. Thus [12] proposes, in a context of feder-
ated learning, to rather perform independent minimization
over w and � alternatively. In general, this min-min approach
(14) paves the way to stochastic and mini-batch algorithms.

Several works, including [20] and [11] (as well as [33]
without mentioning superquantile), use successfully stand-
ard stochastic optimization algorithms on this modified
objective. Observe though that, if a mini-batch of data is
sampled uniformly at random from the data, only a fraction
(1 − p) carry (sub)gradient information. Furthermore, the
(sub)gradients of these examples are scaled by 1

1−p
 , leading

to exploding directions. Thus mini-batch estimates of (sub)
gradients of superquantile-based objectives may suffer from
high variance. A solution proposed by [18] is to perform an
adaptive sampling rather than a uniform one. This algorithm
gradually adjusts its sampling distribution to increasingly
sample tail events, until it eventually minimizes the super-
quantile. This approach has a nice two-player interpretation
related to the third formulation, recalled below.

The third expression (7) of f leads to the following for-
mulation (or, as previously, its smoothed counterpart with a
quadratic term on q as in (10))

This min-max formulation offers several ways to solve
the superquantile-based learning. A first approach would
consist in considering it as a generic saddle point problem
and using standard (extra-)gradient algorithms or recent
extensions exploiting some aspects of the problem (see
e.g. [34] for a variance-reduced min-max with strongly
concave max). In our specific case, computing the max
can be done systematically by a greedy algorithm with
linear time complexity (see Section 3). This key feature is
exploited by the stochastic algorithm of [6], and also by
the one of [35] without relating it to superquantile. This
algorithm uses a biased sampling approximation to f or
f� which has nice guarantees. We briefly describe below
this approach.

We sample a mini-batch of S uniformly in D and we con-
sider the restriction

(15)

min
w∈ℝd

max
q∈Δn

{
n∑
i=1

qi �(yi,�(w, xi)) ∶ 0 ≤ qi ≤ 1

n(1 − p)

}
.

3  Such approach is well-suited to problems with a particular decom-
posable structure such as non-anticipativity constraints in multi-stage
programming problems; see [40].

Journal of Signal Processing Systems (2022) 94:161–177 167

1 3

We can now use the (sub)gradient oracles of Section 3
on f̃ and apply gradient-based algorithms with biased
mini-batch estimator. Indeed, even if �[̃f (w)] ≠ f (w) and
�[∇f̃ (w)] ≠ ∇f (w) , under standard assumptions, the bias
is controlled by uniform bounds and variance bounds,
which gives in turn complexity guarantees when using
gradient-based algorithms; see [19, Sec. 3]. The algo-
rithm requires a number of gradient evaluations inde-
pendent of training set size and number of parameters,
making it suitable for large-scale applications. This
algorithm is implemented in our toolbox and tested in
Section 6.

5 � SPQR: Python Toolbox
for Superquantile‑Based Learning

We provide a Python software package for superquan-
tile-based learning; it is named SPQR for SuPer Quantile
Risk optimization. The software package includes mod-
eling tools and optimization algorithms to solve prob-
lems of the form (5) with just a few lines of code. The
implementation builds off basic structures of scikit-
learn [36] the popular python machine learning
library. SPQR routines rely on just-in-time compila-
tion [37] to ensure efficient running times. The soft-
ware package is publicly available at https://​github.​com/​
yassi​ne-​laguel/​spqr. We now walk the reader through the
toolbox SPQR.

5.1 � Basic Usage: Input Format and Execution

The user provides a dataset modeled as a couple
(X, Y) ∈ ℝ

n×p ×ℝ
p and a first-order oracle for the function

Li . The dataset is stored into two numpy arrays X and Y; for
instance, for realizations of random variables:

The two python functions L and L_prime are
assumed to be functions of the triplet (w,x,y) where
w is the variable and (x,y) a datapoint. For instance,
the oracle for superquantile linear regression are the fol-
lowing one.

�f (w) =[Q̄p](x,y)∼S

(
�(y,𝜑(w, x)

)

=max
q∈Δn

{∑
i∈S

qi �(yi,𝜑(w, xi)) ∶ 0 ≤ qi ≤ 1

n(1 − p)

}
.

Before solving (5), we instantiate the RiskOptimizer
object with the oracles, following the standard usage of
scikit-learn. The basic instantiation is:

RiskOptimizer inherits from scikit-learn’s
estimators: we use the fit method to run the optimization
algorithm on the provided data, to get a solution of (5).

5.2 � Advanced Use: Parameters and SPQR Objects

Options and Parameters  The customizable parameters are
stored in a python dictionary params which is designed as
an attribute of the RiskOptimizer class. The main param-
eters to tune are: the choice of the oracle, the choice of the
algorithm, the safety probability level p, the starting point of
the algorithm w_start, the maximum number of iterations
max_iter. The user can specify some of these parameters
as an input and the others will be filled with defaults values
when instantiating a RiskOptimizer. For example:

Some important parameters (such as the safety probabil-
ity level, the algorithm chosen, or the smoothing param-
eter � ) can be given directly to the constructor of the class
RiskOptimizer when instantiating the object. For
example:

Oracle Classes  The selection of the oracle is automatically done
when the user instantiate the RiskOptimizer object. Four
different oracles are implemented as python objects: two oracles

Journal of Signal Processing Systems (2022) 94:161–177168

https://github.com/yassine-laguel/spqr
https://github.com/yassine-laguel/spqr

1 3

for batch methods (OracleSubgradient to be used when
the chosen algorithm is ’subgradient’ or ’dual_aver-
aging and OracleSmoothGradient when the chosen
algorithm is ’gradient’, ’nesterov’ or ’bfgs’) and
two mini-batch oracles (OracleStochasticSubgradi-
ent and OracleStochasticGradient).

To avoid the treatment of optional parameters when
instantiating an oracle, we advise to go through the instan-
tiation of a RiskOptimizer first.

Algorithms Class  The algorithm chosen is a parameter for the
instantiation of the RiskOptimizer class. This parameter
can either be given in the input dictionary params or directly
to the constructor of RiskOptimizer. The user has the
choice among ’subgradient’, ’dual_averaging,
’gradient’, ’nesterov’, ’bfgs’ and ’sgd’.

Each algorithm is implemented as a python class that
stores the oracle, together with relevant parameters for
the optimization process. The main method of this class is
run, which is run when RiskOptimizer.fit is called.
The parameters of the algorithm selected are stored in the
dictionary params that is an input of the class RiskOp-
timizer. Hence, in a standard usage, there is no need to
interact with the algorithm python object.

6 � Numerical Experiments

In this section, we report two types of numerical experiments:

•	 “Optimization” experiments in Section 6.1. There are
many algorithmic options within the toolbox SPQR;
we provide a comparison of batch vs. mini-batch algo-
rithms and a discussion on tuning the smoothness
parameter.

•	 “Learning” experiments in Section 6.2. The interest of
using superquantile in learning has been shown empiri-
cally in several recent papers, including [11, 12, 18–20].

We provide here complementary experiments highlight-
ing the robustness of superquantile-learnt models.

All experiments are run using SPQR. The optimization
algorithms are initialized at w = 0 ∈ ℝ

d . For these experi-
ments, we use a bunch of standard datasets from the UCI
repository, which scale from 352 to 94644 datapoints. For
each dataset, categorical features were one-hot encoded
so that the total number of features ranges from 3 to 287.

For the experiment of Table 1, we report the agreggated
results for all the datasets. For the other experiments, we
report, in the main text, the detailed results obtained with
one representative dataset, and we provide, in appendix,
complementary results for others datasets.

6.1 � Solving Superquantile‑Based Learning

In this section, we illustrate two different aspects of
the optimization methods available in SPQR. First, we
compare the two families of algorithms available (batch
vs. mini-batch) showing the interest of using batch
algorithms for superquantile-based learning within
scikitlearn/SPQR. Second, we experiment with
all the range of the smoothing parameter, advocating to
avoid extreme values.

Batch vs. Mini‑Batch  We compare, on a standard problem, a sto-
chastic gradient algorithm (more precisely, SGD with momen-
tum, denoted SGD) and a batch quasi-Newton algorithm (more
precisely, low-memory BFGS [38], denoted BFGS).

For this experiment, the set-up is similar to the one
of [19]. We consider a supervised multi-class classification

Table 1   Comparison of performances between a superquantile model
and a risk-neutral model for a logistic regression on a distributionally
shifted dataset.

Superquantile Expectation

Dataset Accuracy Loss Accuracy Loss

Adult 53.2 ± 0.67 0.693 ± 0.00 55.4± 0.48 1.072 ± 0.01

Monks 64.4± 2.65 0.714 ± 0.05 54.0 ± 1.57 1.207 ± 0.08

Splice 82.7± 0.62 0.681 ± 0.05 81.7 ± 0.78 0.557 ± 0.04

Diabetes 42.5 ± 4.72 0.694 ± 0.00 45.1± 4.51 1.325 ± 0.12

Spambase 78.4± 1.23 0.761 ± 0.15 77.1 ± 0.87 0.635 ± 0.07

Mammogra-
phy

39.1± 7.59 0.730 ± 0.01 39.1± 6.90 1.293 ± 0.09

Electricity 42.8 ± 0.40 0.693 ± 0.00 47.5± 0.63 1.060 ± 0.01

Phoneme 37.3 ± 5.38 0.737 ± 0.01 50.5± 3.10 1.292 ± 0.04

Nomao 87.5± 0.22 0.413 ± 0.03 87.4± 0.23 0.394 ± 0.02

Skin-segmen-
tation

92.1± 0.11 0.420 ± 0.00 91.9± 0.05 0.537 ± 0.01

Journal of Signal Processing Systems (2022) 94:161–177 169

1 3

task with the superquantile multinomial logistic loss on
the MNIST dataset. We perform feature extraction from
the images using a pre-trained convolutional network
similarly to [19]. For a fixed probability threshold set to
p = 0.8 , we then train a linear multi-class classifier on top
of the transformed data. For SGD, we use a momentum
term of 0.9 and we use a step decay scheme �t = �0d

−⌊t∕t0⌋ ,
where �0 is tuned with respect to the size of the mini-
batch m, and where d = 0.5 and t0 = 10 epochs are fixed
throughout all the experiments. For each mini-batch size
m ∈ {10, 100, 1000} , we tune �0 via a grid-search and take
the highest initial value yielding a non-diverging sequence
of iterates. In constrast with SGD, the quasi-Newton algo-
rithm does not require specific tuning as it automatically
calibrates stepsizes by line-searches at each iteration.

On the left part of Fig. 3, we compare the performance
of SGD for the different mini-batch sizes. Each color cor-
responds to a mini batch size m ∈ {10, 100, 1000} . Along
iterates, the bold line represents the mean value over the
five seeds of the functions and the shaded region represent
the difference between the min and max values across the
seeds. We observe that there is no substantial difference
among the sizes of the mini-batches: all curves show a
noisy behaviour (caused by the stochastic approximation
of the gradient at each step) and eventually converge to
a suboptimal value. Unlike SGD, L-BFGS (right part of
Fig. 3) presents a stable convergence. We observe also that
a large number of epochs is necessary for SGD to catch
up with BFGS for superquantile-based training. This is
to be contrasted with the usually small number of epochs
necessary for SGD to catch with BFGS for expectation-
based training or ERM. Note that a final bias remains vis-
ible between the stochastic methods and the deterministic
BFGS, as expected by the theory laid down in [19].

Impact of the Smoothing Parameter  We consider a logis-
tic regression on the Australian Credit dataset. For
a sequence of smoothing parameters � evenly spread on a

log scale, we train w⋆
𝜈
 by solving the superquantile learning

objective with L-BFGS and p = .99.

On Fig. 4, we report both the value of the smoothed
.99-superquantile (purple) and the non-smoothed
.99-superquantile (dashed green) at the w⋆

𝜈
 . We also train

the standard empirical risk minimizer w⋆ and we report
both the average loss (solid black line) and the non-
smoothed .99-superquantile loss (dashed black line) at w⋆.

For very small values of 𝜈 (< 10−3) , we observe unsuc-
cessful termination of the L-BFGS algorithm, due to the
failure of the line-search. For medium values of 𝜈 (< 1) , the
value of smooth superquantile-based function at w⋆

𝜈
 roughly

coincides the non-smooth one. Finally for high values of
𝜈 (> 103) , we observe that the smooth superquantile tends to
the same optimal function value of the empirical risk mini-
mizer w⋆ , as expected from Section 3.2.

6.2 � Superquantile Brings Robustness Against
Distributional Shift

In the second part of the numerical experiments, we show the
benefits of the superquantile by comparing superquantile-based
minimization vs. empirical risk minimization, when a distribu-
tional shift occurs, similarly to [18]. For the three next standard
regression or classification tasks, we proceed as follows. For
each dataset, we first perform a 80%-20% train-test split. Second,
we minimize with respect to the train set a regularized objective,
both in expectation and with respect to the superquantile:

We set the regularization parameter � to be the inverse
of the number of training data-points: � = 1∕ntrain . The
above problems are solved with SPQR using L-BGFS.
Then we perform three different types of distributional
shifts on the testing set and we compare the behaviour of

(16)
minw∈ℝd 𝔼(x,y)∼Dtrain

�(y,w⊤x) +
𝜆

2
‖w‖2

2

minw∈ℝd [Q̄p](x,y)∼Dtrain
�(y,w⊤x) +

𝜆

2
‖w‖2

2

Figure 3   A comparison
between batch/mini-batch algo-
rithms in SPQR on a superquan-
tile logistic regression problem
with MNIST. Left: comparison
of the runs of SGD with differ-
ent batch sizes. Right: best SGD
vs. batch quasi-Newton.

Journal of Signal Processing Systems (2022) 94:161–177170

1 3

the superquantile-based models and the ERM models. We
develop this approach in the next three settings.

Superquantile Ridge Regression  We consider a ridge regres-
sion problem, that is (16) with �(y,w⊤x) = (y − w⊤x)2 , on
the dataset Cpu-small. We minimize the two prob-
lems, first, in expectation and, second, with respect
to the superquantile with several safety thresholds
p ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99}.

We report in Fig. 5 the histogram of losses on the test set
and compare each trained superquantile model (in red) with
the ERM model (in blue). We observe that as the probability
threshold p grows, the right tail distribution of losses on the test
set gets shifted to the left. In particular, a dramatic decrease of
the 90th quantile of the losses can be observed. Thus superquan-
tile learning allows us to reduce worst-case losses. This comes
with the price of lower performances on the left tail distribu-
tion. This trade-off between gain on extreme cases and loss on
average is typical of the impact of superquantiles. We observe
a similar trade-off for other datasets; see Fig. 7 in appendix.

Superquantile Logistic Regression  We consider a regular-
ized logistic regression problem, that is (16) with
�(y,w⊤x) = −y𝜎(w⊤x) − (1 − y)𝜎(w⊤x) (where �(z) ∶= 1

1+e−z

denotes the sigmoid function). We use 10 classification
datasets from the UCI repository library and we perform
a distributional shift on the train sets: we subsample the
majority class so that it accounts for only 10% of the
minority class. Then we train a ERM and superquantile
models. The safety parameter p is tuned via a cross valida-
tion procedure on the shifted train set. We finally compute,
for the best parameter obtained, the test accuracy and the
test loss.

We report our results in Table 1. For most datasets, we
note a significant decrease of the test loss with the super-
quantile model, when compared to ERM model. In terms of
accuracy, the superquantile model offers better performance
for this particular distributional shift.

Figure 4   Impact of the smoothing parameter � on the results obtained
by the quasi-Newton algorithm solving a superquantile logistic
regression on the Australian Credit dataset. Medium values
are preferable: small values compromise convergence and large val-
ues give solutions close to the standard ERM.

Figure 5   Reshaping of the histogram of testing losses for superquantile regression models (in red) as p grows. We observe a shift to the left of
the 90th quantile of losses, at the price of degrading the average value.

Journal of Signal Processing Systems (2022) 94:161–177 171

1 3

Robustness to All Possible Distributional Shifts  We take the
same setting as before, focusing on the splice dataset,
and now we perform a sequence of distributional shifts on
the training set by rebalancing all the proportions of the two
classes. More precisely, for a fixed � ∈ (0, 1) , we compute the
number nmin of samples from the minority class; we randomly
select ⌈�nmin⌉ points from the majority class and ⌈(1 − �)nmin⌉
from the minority class. We train on the shifted train set the
two logistic regression models of (16). We repeat this experi-
ment for 5 different seeds and we compute the average test
losses and test accuracies of both models. The experiment is
conducted for 100 values of � evenly spread on (0, 1).

The histograms of Fig. 6 depicts the performances, as �
varies, of ERM against the superquantile (for a fixed prob-
ability threshold p). In terms of losses, the superquantile
model brings better performances for almost all values
of p. In particular, the 90th quantile of the losses over all
considered shifts gets notably decreased for p. In terms of
accuracy, the superquantile models brings better perfor-
mance with respect to distributional shifts for all values of
p. Such behaviours are also observed with other datasets,
as those depicted in Figs. 8 and 9 in Appendix.

Figure 6   Reshaping of histograms of test losses (top) and test accuracies (bottom) over all class imbalances (for a classification task with logistic
regression and the splice dataset).

Journal of Signal Processing Systems (2022) 94:161–177172

1 3

Figure 7   Ridge regression: comparison of performances between a superquantile model and a ERM model for Abalone and Boston Hous-
ing. 

Journal of Signal Processing Systems (2022) 94:161–177 173

1 3

Figure 8   Histogram of test losses over all distributional shifts for the datasets monks-problem-1, australian-credit, and skin-
segmentation. 

Journal of Signal Processing Systems (2022) 94:161–177174

1 3

Figure 9   Histogram of test accuracy over all distributional shifts for the datasets monks-problem-1, australian-credit, and skin-
segmentation. 

Journal of Signal Processing Systems (2022) 94:161–177 175

1 3

7 � Conclusion, Perspectives

Risk-sensitive optimization can play an important role in the
design of safer machine learning models involved in automated
decision making. We provide here a software package to tackle
superquantile-based learning problems using standard first-
order optimization algorithms. The software package is pub-
licly available on the authors’ websites. We have described the
main components of the optimization algorithms and how they
can be made to tackle superquantile-based learning problems
using smoothing techniques in particular. We would tend to
recommend the use of a combination of smoothed oracles and
batch gradient algorithms to experiment with superquantile-
based objectives.

This work can be included in the more general research
stream on developing operational tools for distributionally
robust learning, which has recently gained interest and focus
in the machine learning community; see e.g. the recent text-
book [39]. Recent work on related topics developing opti-
mization algorithms with improved complexity bounds [18,
19], exploring fairness challenges [11], tackling data het-
erogeneity problems [12], shows the burst of activity in this
general area and suggests a number of venues for future
investigation.

Additional Numerical Results

In this Appendix section, we collect additional results com-
paring classical supervised learning and superquantile-
based supervised learning using the optimization algo-
rithms described in the main text. The experimental setting
is exactly the one of Section 6.2, yet we consider here other
datasets from UCI repository. The results obtained are
essentially the same as the ones presented in Section 6.2,
suggesting a greater control of extreme losses and a greater
robustness to distributional shift of superquantile-based
supervised learning. We refer to the main text for the dis-
cussions on these main observations, and we give here addi-
tional observations.

Figure 7 shows the same behaviour as in Fig. 5: as the
probability threshold p grows, the right tail distribution of
losses on the test set gets shifted to the left. We can indeed
see, on the subfigures, the reshaping of the histogram and
the translation of the 90th quantile to the left. Two excep-
tions should be noticed though: for the dataset boston
housing with p = 0.95 and 0.99, the superquantile
approach was not able decrease the 90th quantile (see the
last two subplots at the bottom). This would suggests to
avoid in general using too large values of p that would
restrict the computational effort to a too small fraction of
extreme scenarios only.

Figures 8 and 9 show results similar to the ones pre-
sented in Fig. 6 about the resistance to distributional shifts.
The three datasets considered here provide a variety of
histograms shapes. We see on Fig. 8 that the superquantile
brings better performances on the worst-case test losses for
all values of p (except for the skin-segmentation
with p ≥ 0.9 ). Similarly, on Fig. 9, we see, in most cases,
improvements of the worst-case test accuracy: sometimes
the improvement is important (e.g. Australian with
p = 0.9 ), sometimes it is more marginal or even negative
(e.g. monks-problem1 with p = 0.9).

Interestingly, one observes that, for each dataset, there
is a particular value of p (depending on the dataset) for
which the histogram of losses gets shifted to the left uni-
formly ( p = 0.8 for monks-problem-1 and p = 0.3 for
the skin-segmentation dataset). This highlights the
importance of a careful tuning of p to address the worst-
case outcomes.

Acknowledgements  We acknowledge support from ANR-19-
P3IA-0003 (MIAI – Grenoble Alpes), as well as NSF DMS 2023166,
DMS 1839371, CCF 2019844, CIFAR LMB, and faculty research
awards.

References

	 1.	 Laguel, Y., Malick, J., & Harchaoui, Z. (2020). First-order opti-
mization for superquantile-based supervised learning. In: 2020
IEEE 30th International Workshop on Machine Learning for
Signal Processing (MLSP), pp. 1–6. IEEE.

	 2.	 Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2019). Do
imagenet classifiers generalize to imagenet? https://​arxiv.​org/​
abs/​1902.​10811

	 3.	 Knight, W. (2018). A self-driving Uber has killed a pedestrian
in Arizona. Ethical Tech.

	 4.	 Metz, R. (2018). Microsoft’s neo-Nazi sexbot was a great lesson
for makers of AI assistants. Artificial Intelligence.

	 5.	 Rockafellar, R., Uryasev, S., Zabarankin, M. (2008). Risk tuning
with generalized linear regression. Mathematics of Operations
Research.

	 6.	 Duchi, J. C., & Namkoong, H. (2019). Variance-based Regulari-
zation with Convex Objectives. Journal of Machine Learning
Research.

	 7.	 Kuhn, D., Esfahani, P., Nguyen, V. A., & Shafieezadeh-Abadeh, S.
(2019). Wasserstein distributionally robust optimization: Theory
and applications in machine learning. In: Operations Research &
Management Science in the Age of Analytics. INFORMS.

	 8.	 Lee, J., Raginsky, M. (2018). Minimax statistical learning with
Wasserstein distances. In: Advances in Neural Information Pro-
cessing Systems.

	 9.	 Ben-Tal, A., & Teboulle, M. (2007). An old-new concept of con-
vex risk measures: The optimized certainty equivalent. Math-
ematical Finance.

	10.	 Rockafellar, T., Uryasev, S. (2000). Optimization of Conditional
Value-at-Risk. Journal of Risk.

	11.	 Williamson, R. C., & Menon, A. K. (2019). Fairness Risk Meas-
ures. In: International Conference on Machine Learning.

Journal of Signal Processing Systems (2022) 94:161–177176

https://arxiv.org/abs/1902.10811
https://arxiv.org/abs/1902.10811

1 3

	12.	 Laguel, Y., Pillutla, K., Malick, J., & Harchaoui, Z. (2021). A
superquantile approach to federated learningwith heterogeneous
devices. In: 55th Annual Conference on Information Sciences and
Systems, CISS. IEEE.

	13.	 Ho-Nguyen, N., & Wright, S. J. (2020). Adversarial classification
via distributional robustness with wasserstein ambiguity. preprint
https://​arxiv.​org/​abs/​2005.​13815

	14.	 Wilder, B. (2018). Risk-sensitive submodular optimization. In:
Proceedings of the AAAI Conference on Artificial Intelligence, 32.

	15.	 Chow, Y., Tamar, A., Mannor, S., & Pavone, M. (2015). Risk-sensitive
and robust decision-making: a cvar optimization approach. In: Pro-
ceedings of the 28th International Conference on Neural Information
Processing Systems-Volume 1, pp. 1522–1530.

	16.	 Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust opti-
mization. Princeton University Press.

	17.	 Owen, A. (2001). Empirical Likelihood. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability: CRC Press.

	18.	 Curi, S., Levy, K. Y., Jegelka, S., & Krause, A. (2020). Adaptive
sampling for stochastic risk-averse learning. Advances in Neural
Information Processing Systems 33.

	19.	 Levy, D., Carmon, Y., Duchi, J. C., & Sidford, A. (2020). Large-
scale methods for distributionally robust optimization. Advances
in Neural Information Processing Systems 33.

	20.	 Soma, T., & Yoshida, Y. (2020). Statistical learning with con-
ditional value at risk. arXiv preprint https://​arxiv.​org/​abs/​2002.​
05826

	21.	 Duchi, J., & Namkoong, H. (2018). Learning models with uniform
performance via distributionally robust optimization. arXiv pre-
print https://​arxiv.​org/​abs/​1810.​08750

	22.	 Rockafellar, R., Royset, J., Miranda, S. (2014). Superquantile
regression with applications to buffered reliability, uncertainty
quantification, and conditional value-at-risk. European Journal
of Operational Research.

	23.	 Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2014). Lectures
on stochastic programming: modeling and theory. SIAM.

	24.	 Rockafellar, R. T., & Royset, J. O. (2013). Superquantiles and their
applications to risk, random variables, and regression. In: Theory
Driven by Influential Applications. INFORMS.

	25.	 Ruszczyński, A., Shapiro, A. (2006). Optimization of convex risk
functions. Mathematics of operations research.

	26.	 Hiriart-Urruty, J. B., & Lemaréchal, C. (2013). Convex analysis
and minimization algorithms I: Fundamentals. Springer science
& business media.

	27.	 Nesterov, Y. (2005). Smooth minimization of non-smooth func-
tions. Mathematical programming.

	28.	 Beck, A., & Teboulle, M. (2012). Smoothing and first order meth-
ods: A unified framework. SIAM Journal on Optimization. https://​
doi.​org/​10.​1137/​10081​8327

	29.	 Condat, L. (2016). Fast projection onto the simplex and the l1 ball.
Mathematical Programming.

	30.	 Nesterov, Y. (2009). Primal-dual subgradient methods for convex
problems. Mathematical programming.

	31.	 Bertsekas, D. (2015). Convex Optimization Algorithms. Athena
Scientific.

	32.	 Bertsekas, D. (2016). Nonlinear Programming. Athena Scientific.
	33.	 Fan, Y., Lyu, S., Ying, Y., & Hu, B.G. (2017). Learning with aver-

age top-k loss. In: NIPS.
	34.	 Luo, L., Ye, H., Huang, Z., Zhang, T. (2020). Stochastic recursive

gradient descent ascent for stochastic nonconvex-strongly-concave
minimax problems. Advances in Neural Information Processing
Systems 33.

	35.	 Kawaguchi, K., & Lu, H. (2020). Ordered sgd: A new stochas-
tic optimization framework for empirical risk minimization. In:
International Conference on Artificial Intelligence and Statistics,
pp. 669–679. PMLR.

	36.	 Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research.

	37.	 Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A llvm-based
python jit compiler. In: Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC, LLVM ’15. Associa-
tion for Computing Machinery, New York, NY, USA.

	38.	 Nocedal, J., & Wright, S. (2006). Numerical optimization.
Springer Science & Business Media.

	39.	 Chen, R., Paschalidis, I. C., et al. (2020). Distributionally robust
learning. Foundations and Trends® in Optimization, 4(1-2),
1–243.

	40.	 Rockafellar, R. T. (2018). Solving stochastic programming prob-
lems with risk measures by progressive hedging. Set-Valued and
Variational Analysis, 26(4), 759–768.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Journal of Signal Processing Systems (2022) 94:161–177 177

https://arxiv.org/abs/2005.13815
https://arxiv.org/abs/2002.05826
https://arxiv.org/abs/2002.05826
https://arxiv.org/abs/1810.08750
https://doi.org/10.1137/100818327
https://doi.org/10.1137/100818327

	Superquantile-Based Learning: A Direct Approach Using Gradient-Based Optimization
	Abstract
	1 Introduction: Superquantile Comes Into Play
	2 Superquantile-Based Learning Framework
	3 First-Order Oracles for Superquantile Function
	3.1 Subgradient Oracle
	3.2 Gradient Oracle (For Smoothed Approximation)

	4 First-Order Optimization for Superquantile-Based Learning
	4.1 Batch Algorithms
	4.2 Mini-Batch Algorithms

	5 SPQR: Python Toolbox for Superquantile-Based Learning
	5.1 Basic Usage: Input Format and Execution
	5.2 Advanced Use: Parameters and SPQR Objects

	6 Numerical Experiments
	6.1 Solving Superquantile-Based Learning
	6.2 Superquantile Brings Robustness Against Distributional Shift

	7 Conclusion, Perspectives
	Acknowledgements
	References

