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Abstract
Long Range Wide Area Network (LoRaWAN) emerges to connect devices that require long-range and low-cost (bandwidth
and power) communication services. In this context, the adoption of this technology brings new challenges due to the
densification of IoT devices, which causes signal interference and affects the QoS directly. On the other hand, the LoRaWAN
transmission configurations’ flexibility allows higher management to use end-device parameters, allowing better resource
utilization and improve network scalability. We evaluate an adaptive solution that defines the best LoRaWAN parameter
settings to reduce the channel utilization and, consequently, maximize the number of packets delivered. Additionally, to
validate the method, we used a mixed-integer linear programming solution and compared the results obtained with those
given by the heuristics. The results achieved by the heuristics were very close to those provided by the optimal result,
demonstrating the effectiveness of the heuristics.
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1 Introduction

Internet-of-Things (IoT) is expanding at a fast rate to
provide connections for billions of devices [31]. The IoT
technology has been changing social behavior through
disruptive technologies in new verticals and applications,
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such as Smart farms/agriculture, home/building automation,
and healthcare, to cite only a few examples of intelligent
environment IoT verticals [23, 40, 43]. In this context,
the everyday environment will soon have a large number
of IoT devices per square meter [4]. For instance, both
academia and industry estimate that the Internet would
have approximately 500 billion IoT devices connected
until 2030 [41]. Also, the number of 5G-connected IoT
devices will reach 4.1 billion by 2024 [13]. IoT applications
have different energy consumption requirements, coverage,
Quality of Service (QoS), and massive Machine-Type
Communication [9].

IoT applications could rely on different network tech-
nology for data dissemination. Specifically, short-range
network technologies (e.g., WiFi and Bluetooth) provide
coverage area limited to a few meters and are positively
affected by interferences. However, short-range networks
need highly-dense deployment to achieve an expanded cov-
erage area, increasing Capital expenditure (CAPEX) and
Operational expenditure (OPEX). On the other hand, tra-
ditional cellular networks operating on licensed frequency
bands can provide extended coverage from tens of hun-
dreds of meters, supporting thousands of devices with high
throughput. However, modulation complexity, along with
medium access schemes, are highly energy demanding char-
acteristics. To support the IoT growth, innovative long-range
technologies, such as Low Power Wide Area Network
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(LPWAN) [21], is attracting attention from both academic
and industry researchers. That is because of their promising
capabilities in broad area connectivity and their operations
on unlicensed frequency bands with the appropriate data
rate, power consumption, and throughput tailored for many
IoT applications [29].

Long-Range Wide-Area Network (LoRaWAN) technol-
ogy is considered the most adopted LPWAN technology,
promising ubiquitous connectivity for many IoT applica-
tions while keeping a simple network structure and man-
agement [26, 42]. In particular, LoRaWAN was developed
by LoRa Alliance[5], i.e., a non-profit association, which
defined the higher layers and network architecture on top of
the LoRa physical layer [14, 26]. The LoRa physical layer
is a proprietary spread spectrum modulation based on the
robust Chirp Spread Spectrum (CSS) by Semtech [24]. The
LoRaWAN Alliance has more than 500 associated mem-
bers, higher than 140 LoRaWAN deployments, and more
than 130 Network Operators in different countries [44].
LoRaWAN provides extended coverage to operate in unli-
censed and pure implementation frequency ranges with low
cost, low energy consumption, and flexible transmission
rate. Moreover, LoRaWAN must potentially support a large
and varying number of IoT devices sending data to the appli-
cation server through the same Gateway. This significant
demand causes a network overload and creates the called
hotspot problem, which results in signal interference and
affects QoS due to packet loss caused by collisions [34]. For
instance, a LoRaWAN gateway will be unable to correctly
decode simultaneous signals sent by IoT devices using the
same Spreading Factor (SF) on the same Carrier Frequency
(CF).

[An efficient adaptive resource allocation mechanism
must adjust on-the-fly the LoRaWAN radio-related param-
eters, such as SF and CF, to reduce the packet loss caused
by interference based on current network conditions.] How-
ever, resource allocation holds several possibilities for con-
figuring such parameters. In this way, a mathematical model
developed through Mixed Integer Linear Programming
(MILP) has great importance in formulating and present-
ing the optimal solution to maximize performance because
it can optimize parameter settings. [Therefore, an adaptive
resource allocation based on a heuristic method is required
to make computationally-efficient decisions in LoRaWAN
and to generate results close to an optimal solution.] State-
of-the-art solutions that have focused on resource allocation
have investigated the SF allocation [7], SF and Coding Rate
(CR) allocation [36], and increasing the data flow [37].
However, none of the previous works considers the device
requirements for an efficient resource allocation on-the-fly
adjusting the configuration of radio related parameters to
minimize channel utilization while minimizing collisions.

In this article, we introduce an extensive analysis of
our proposed heuristiC fOr adaptive REsource alloCaTion
on LoRaWAN for IoT applications (CORRECT) [30] to
evaluate the impact of the radio configuration parameters
in massive IoT scenarios in terms of QoS. We describe
the CORRECT mechanism’s operation, which dynamically
adjusts the LoRaWAN parameters to reduce interference
and packet collision, minimize the channel utilization, and
increase the number of delivered packets. The heuristic
chooses the settings based on the signal strength and
distance between the device and the gateway to provide
the tradeoff between increasing the transmission range and
reducing the delay, energy, and interference. Furthermore,
we describe a MILP called Optimization Model for
LoRaWAN Resource AlloCation for IoT ApplicatiOns
(MARCO) to compare the proposed heuristic with an
optimal resource allocation solution. This article extends
the previous work described in [30]. Its main research
contributions include an extensive review of related works,
a more detailed description of the mechanism, and an
extensive evaluation of the impact of a resource allocation
mechanism for LoRaWAN under a different network
scenario. Specifically, using the CORRECT heuristic
instead of the ADR heuristic, we obtained an improvement
of up to 18% in PDR. For other heuristics, this difference is
even more significant. The heuristic CORRECT yields up
18.70% higher throughput than Explora-AT; this difference
increases even more than other heuristics.

The rest of the paper is organized as follows. Section 2
presents the state-of-the-art results which have explored
resource allocation in LoRaWAN. Section 3 introduces the
proposed heuristic model, called CORRECT. Section 4
explores the simulation model developed to evaluate
CORRECT and present the results obtained. Finally,
Section 5 concludes the work and introduces future research
directions.

2 RelatedWorks

This section presents the most recent works which focus
on resource allocation for LoRaWAN. In each work, we
discuss their advantages and disadvantages. Amichi et
al. [7] formulated a nonlinear optimization of mixed integers
considering the harmful effects of interference between SFs.
The focus of the authors is to obtain a fair throughput
and reduce energy consumption. Nevertheless, this model
does not consider optimizing the choice of CFs and reduces
energy consumption according to the SF choice.

El-Aasser et al. [18] proposed two SF allocation
heuristics, which adjust the SF service radius, i.e., the
maximum distance that an SF can be assigned to an End-
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Device (ED), ensuring the correct demodulation by the
gateway. However, setting SF based only on distance is
not recommended because it depends on the device’s signal
strength. In the same approach, Caillouet et al. [11] designed
an optimization model for LoRaWAN that optimizes
SF allocation to minimize collisions and maximize the
number of served nodes. The optimization is modeled
as an Integer Linear Programming (ILP) that considers
a Rayleigh channel. Nevertheless, this model does not
consider channel allocation and the choice of SF to reduce
energy consumption. Analytical models have made progress
in the last few years, e.g., Sandovalet al. [37] presented two
Markov chains to model the Transmission Cycle (TC) and
energy consumption. Based on these models, the optimal
solution finds TC that increases throughput while keeping
power consumption below a threshold. Moreover, the
authors present a solution for calculating a global network
configuration that maximizes the throughput obtained
analytically [36]. Such a proposal formulates a Markov
Decision Process (MDP), in which the optimal update
policy allows the system to maximize the accumulated
network throughput in a short time interval.

The literature presents some strategies for resource
allocation. Farhad et al. [20] proposed two resource
allocation schemes to enhance the packet success ratio by
lowering the impact of interference. The first scheme, called
the channel-adaptive SF recovery algorithm, increments
or decrements the SF based on the ED packets’ re-
transmission, indicating the network’s channel status. The
second approach allocates SF to EDs based on ED
sensitivity during the initial deployment. However, this
work does not perform an intelligent configuration of CF,
where, based on the presented interference model, it would
cause significant losses due to the packet collisions on
the same channel. Moreover, Khaled et al. [2] proposed
a heuristic for data rate fairness among nodes within a
LoRaWAN. In the first phase, it derives a fair data rate
distribution along with all the devices in the LoRaWAN,
which aims to address the unfair LoRaWAN characteristic
when EDs are very close to the gateway or use lower SFs.
The second phase performs transmission power allocation
that seeks to mitigate the effect that harms the network. The
second phase performs transmission power allocation that
aims to mitigate the effect that harms the network. However,
although the approach shows improvements in the Packet
Delivery Ratio (PDR), this algorithm does not consider the
CF allocation, which presents promising results in solving
the problem of capture effect in network packets.

Zorbas et al. [46] proposed a resource allocation mech-
anism to improve the LoRaWAN potential by employing
multiple communication parameters. They modeled the
average success probability per set as a density function,
analyzing intra-SF and inter-SF collisions. Each ED has

different communication settings based on such a model
in terms of Bandwidth (BW) and SF. In this sense, this
work tries to assign most EDs on a given BW and SF to
increase the packet delivery probability for each BW and
the distance between the ED and a given gateway. However,
the authors considered only the SF collisions without con-
sidering the interference when two packets have the same
CF and SF. The algorithm does not cover all the packet
loss possibilities. In a similar context, Babaki et al. [8]
presented a solution to enhance the default resource alloca-
tion algorithm, i.e., ADR, by dynamically designating the
radio-related parameters, SF and TP, by applying the Order-
ing Weight Average (OWA) operator. This work aims to
increase the network noise resilience and PDR in dense IoT
scenarios recognizing the OWA decision-make nature and
the Packet Loss Ratio (PLR) metric. However, this approach
does not consider the packet collision as a fundamental
problem affecting the network packet loss and achieving an
optimal CF configuration on the devices.

Cuomo et al. [15] proposed two resource allocation
solutions named ExploraSF and Explora-AT, which aim
to optimize LoRaWAN execution by configuring the SF
values for each ED based on the signal strength. Explora-
SF attempts to equally allocate ED in the Gateway’s (GW)
radio area to all SF, limited by their Received Signal
Strength Indicator (RSSI) values and appropriate thresholds.
On the other hand, Explora-AT propagates impartial
allotments of the ToA among the end nodes in the network,
prioritizing the lower SFs to reduce collision probability. In
this way, a higher signal strength leads to lower SF for a
given ED, where it considers a limited number of ED in
each SF based on ToA. Nevertheless, both Explora-SF and
Explora-AT do not consider the CF allocation to further
reduce packet loss when the packets have the same SF
and CF configuration. From another perspective, Dawaliby
et al. [16] presented a Software-defined Network-based
solution for network slicing to optimize and manage a
LoRaWAN. Each Gateway has multiple virtual slices, which
must find the correct configurations of SF and transmission
power that simultaneously increase the QoS and minimize
cost energy consumption and package loss rate. However,
this work adds a processing overhead to perform slicing
over LoRaWAN, which reduces the network resources
available and does not consider the CF (i.e., channels) in
decision making. Moreover, the authors did not analyze
the computational cost of applying the proposed solution.
Additionally, they did not evaluate important evaluation
metrics for IoT applications.

Table 1 summarizes the main characteristics of the
resource allocation mechanisms analyzed based on opti-
mization goal, energy-efficiency, RSSI-awareness, and
LoRaWAN radio parameters considered. Such characteris-
tics significantly improve the system performance in terms

67J Sign Process Syst (2022) 94:65–79



Table 1 Summary of analyzed resource allocation mechanisms for LoRaWAN

Resource allocation Year Optimization goal Optimal Energy RSSI Param.

mechanisms solution SF CF

Amichi et al. [7] 2019 Fair throughput and reduces energy � � �
El-Asser et al. [18] 2018 PDR and throughpu �
Caillouet et al. [11] 2019 Minimizes collisions and maxi-

mizes number of served nodes
� �

Sandoval et al. [36] 2019 Maximizes the throughput obtained analytically �
Sandoval et al. [37] 2019 Increase throughput and reduces

power consumption
� �

Farhad et al. [20] 2020 Enhances the packet success ratio
by lowering the impact of inter-
ference

� � �

Khaled et al. [2] 2018 Addresses the unfair LoRaWAN characteristic � � �
Zorbas et al. [46] 2018 Improves LoRaWAN capacity

and reduces collisions
� �

Babaki et al.[8] 2020 Improves the noise resilience and PDR � �
Cuomo et al. [15] 2017 Reduce collisions � � �
Dawaliby et al. [16] 2019 Increases throughput reduce power consumption � �
Moraes et al. [30] 2020 Improve scalability; channel

optimization; MILP; heuristic
� � � � �

of maximizing the QoS level by minimizing collisions.
Based on our state-of-the-art analysis, we conclude that
a resource allocation mechanism’s adjustment of radio-
related parameters shows promise for configuring such
parameters. In this way, an optimization model is essential
in formulating and achieving the optimal solution to max-
imize performance, whereas only a few works [7, 11, 36,
37] introduced an optimization model. Some studies [2, 7,
8, 15, 16, 20, 37] considered energy-efficiency by adjust-
ing the radio-related parameters. Moreover, it is essential to
estimate the signal strength based on the distance between
the ED and the gateway to provide the tradeoff between
increasing the transmission range and reducing the delay,
energy, and interference. However, only a few works [2,
15, 20, 46] estimate the RSSI to adjust the radio-related
parameters. Finally, none of the existing works efficiently
combines SF and CF adjustment to improve the scalability,
reliability, and energy-efficiency. To the best of our knowl-
edge, only one study [30] has considered a heuristic and an
optimization model for resource allocation that configures
radio-related parameters to minimize channel utilization,
minimizing collisions while considering RSSI based on the
ED’s position.

2.1 Research Contributions of this Work

We summarize the main research contributions of this work
as follows:

– A MILP model optimally allocates the SF and
CF LoRaWAN radio parameters through a MARCO
channel optimization.

– A heuristic to efficiently on-the-fly configure the SF
and CF parameters named CORRECT.

– An extensive evaluation of the impact of a resource
allocation mechanism for LoRaWAN under a dense IoT
scenario.

3 Adaptive Resource Allocation
for LoRaWAN

In this section, we propose the optimal solution for resource
allocation based on MILP, called MARCO. First, we
describe a global view of network modeling. Next, we
present the MARCO model to use as a benchmark resource
allocation. Finally, we propose a heuristic to adaptively
choose radio parameters based on the signal strength
and distance between the device and the gateway, called
CORRECT.

3.1 Network and SystemModel

For LoRaWAN modeling purposes, we consider two device
types: ed ∈ ED = {1, 2, ..., n} and gw ∈ GW =
{1, 2, ..., m}. Each ED has an identification i ∈ [1, n], and
a tuple edi = (xi, yi, zi, txi) to represent its geographical
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coordinates and the transmission power txi . In contrast,
the tuple gwj = (xj , yj , zj ) represents the geographical
coordinates of a given gateway with an identification
j ∈ [1, m]. In this context, we consider a set of gwj

deployed in the monitored area, which is deployed based
on a positioning algorithm to improve the application
performance and reduce the deployed and maintained
costs [28]. Each gwj has a circular coverage area A with a
radio range Rj , where there is a set of edi deployed around
the gwj .

[LoRaWAN defines three classes of EDs at upper-
layer protocols, namely A, B, and C [12].] These classes
allow bidirectional communication to support different
application requirements. In this article, we considered only
Class A devices, which behave by opening a window to wait
for messages (downlink) only at the end of its transmission
(uplink) because it is the highest energy-efficient class.

In the LoRaWAN architecture, there is a single-hop
communication between the edi and gwj over several
channels, forming a star network topology [27]. Each edi

broadcasts messages for neighbor gwj , which forwards
the message to the application server through an existing
IP network. LoRaWAN communication is bi-directional,
although the uplink communication from edi to the network
server is strongly favored as expected in many IoT
applications. The network server implements the resource
allocation mechanism, such as CORRECT, to return the
configuration of radio-related parameters, i.e., SF and CF,
to each edi through the downlink communication, Figure 1
shows. Based on this architecture, LoRaWAN provides
connectivity to edi deployed over a vast area by employing
a control access mechanism with less complexity at the cost
of low throughput [33].

We consider that each gwj could simultaneously decode
signals in all SF and CF because LoRaWAN offers

different possibilities to orthogonalize the transmissions,
i.e., multiple edi use the same channel over other SF
simultaneously without interference. However, an efficient
resource allocation for the uplink transmission is still
challenging due to a higher probability of having multiple
edi transmitting on the same SF and CF on dense
LoRaWAN, as expected in future IoT scenarios. In this way,
a dense LoRaWAN suffers higher packet loss caused by
interference.

Efficient resource allocation for LoRaWAN provides
flexibility to adjust a set of radio parameters. In this
context, LoRaWAN supports different configurable radio-
related parameters to provide a tradeoff between increasing
the transmission range and reducing delay, energy, and
interference. For instance, each packet can be transmitted
with a different SF value (SF = {sfk|(k ∈ N) ∧ (7 �
k � 12)}), which defines how many chirps are sent per
second by the data carrier. Higher sfk values increase the
sensitivity and radio range at the cost of growing Time on
Air (ToA) and energy consumption to transmit a packet.
In comparison, packet transmission with higher sfk values
takes much longer to send packets at lower rates, resulting
in more collisions.

SF is a crucial parameter to increase QoS. For instance,
ToA increases from 659ms to 1318ms for the packet
transmitted with a payload of 20 bytes sent with sf12

instead of sf11, respectively, which increases the collisions
by keeping the channel busy during a more extended time.
[Furthermore, the packet transmitted using sf11 consumes
ten times more energy compared with using sf7 [17].]
Besides, SF’s have a semi-orthogonal design, enabling
them to separated into the receptor and avoiding collisions
whether they conform to the interference model. Therefore,
simultaneous transmissions must select different SFs and
channels to avoid collisions.

Figure 1 LoRaWAN
architecture overview.
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CF = {cff |(f ∈ F) ∧ (1 � f � 8)} is the
center frequency for LoRaWAN communication, spread
out on different frequency channels by implementing
pseudo-random channel hopping [18]. The cff values
depend on local frequency regulations, where LoRaWAN
gateways typically support eight channels, while the ED
usually supports at least 16 channels [18, 35]. It is worth
pointing out that the number of channels could be designed
to minimize the collision probability. We consider the
European frequency plan with eight available channels for
the uplink transmission. Furthermore, regional authorities
regulate the maximum duty-cycle parameter defined as the
maximum percentage of time an end-device can occupy a
channel. For instance, if an end-device has a duty-cycle of
1% in the European band, the devices must remain for 100-
times the last transmission duration before transmitting it
again in the same channel [6]. We consider the European
frequency plan with eight available channels for the uplink
transmission and a duty-cycle of 1% for this article.

We consider the Long-distance propagation model
LPl(d), as shown in Eq. 1, which has good representation
in a large number of indoor and outdoor LoRaWAN
environments [19]. The LPl(d0) means the path loss at the
reference distance d0, γ denotes the loss exponent, and d

denotes the Euclidean distance between a given edi and
gwj , which is subjected to d ≤ Rj . The model parameters
are derived from a regression or fitting curve over the
measured data and depend on the environment. In this
article, we consider γ as 2.32 and LPl(d0) as 128.95, which
are based on the measures done in Oulu’s city (Finland)
[32].

LPl(d)[dB] = 10γ log10 (d/d0) + LPl(d0) (1)

[The total received power (Prx,j,i) is used to measure the
signal strength of a packet received by a gwj from the edi . ]
It is computed based on the sum of the device transmission
power Di · tx with the antenna gain GL, subtracting the
propagation loss PL(d), as shown in Eq. 2.

Prx,j,i = Di · tx + GL − LPl(d) (2)

[We define the tuple M = (xi, yi, zi, d, Prx,j ) to
have the ED coordinates (xi, yi, zi), Euclidean distance d

between a given edi and gwj , and power received Prx,j .
Specifically, the device power Prx,j,i is used to decide the
minimal sfk value to allow the communication between a
given edi and gwj , because gwj needs to receive a packet
with receiver power Prx,j,i higher than the sensibility value
for a given SF value [39]. Table 2 shows the sensitivity Ssfk

value for each sfk for a bandwidth of 125 kHz. Therefore,
we assign an ED for each sfk value by guaranteeing that the
selected sfk value provides the packet reception at gwj with
enough power Prx,j,i .]

Table 2 Sensitivity value for each sfk for bandwidth 125 kHz

SF sf7 sf8 sf9 sf10 sf11 sf12

Ssfk
(dBm) –125 –128 –131 –134 –136 –137

A LoRaWAN packet consists of a combination of
non-modulated and modulated chirps. The non-modulated
defines the preamble and the Start Frame Delimiter (SFD),
while the modulated defines the payload and Cyclic
Redundancy Check (CRC). In this way, the time required
to transmit a frame over the air (i.e., T oA) depends on
the Preamble length (Tpream) and the load duration (Tload),
shown in Eq. 3.

T oA = Tpream + Tload (3)

The Tpream is computed by the sum of the preamble
size (Npream) with the mandatory preamble, i.e., 4.25,
multiplying with the symbol duration (Tsimb), as detailed in
Eq. 4.

Tpream = (Npream + 4.25) · Tsimbk (4)

The Tsimb is computed based on Seller et al. [38], as
shown in Eq. 5. As a result, a higher SF requires a longer
Tsimb, considering a constant BW.

Tsimbk = 2sfk

BW
, ∀sfk ∈ SF (5)

The Tload is computed based on the load size (Nload)
multiplied by Tsimbk , as shown in Eq. 6.

Tload = Nload · Tsimbk (6)

We computed Nload based on Eq. 7, where PL denotes
the packet size, IH means the implicit header, DE

represents the data rate optimization. Specifically, IH is
0 if the header is enabled, one otherwise. The implicit
header reduces the packet size using predefined CR and
the receiving check digit CRC, settings, where the frame
header would include these values without it. The DE value
is set to 1 if the data rate optimization DE is enabled.

Nload = 8 + max(ceil

[
(8PL − 4sfk + 28 + 16CRC − 20IH)

4(sfk − 2DE)

]

·(CodingRate + 4), 0) (7)

We compute the Coding Rate value based on Eq. 8.

CodingRate = 4

4 + CR
, CR ∈ [1, 4] (8)

Table 3 describes the main symbols used in this article.
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3.2 MARCO

Resource allocation holds several possibilities for config-
uring SF and CF radio parameters. In this way, MARCO
considers a mixed-integer linear optimization formulation
to define the ideal configurations of the SF and CF param-
eters to minimize the channel utilization, which reduces the
number of collisions. In general, MARCO take into account
a MILP to define the ideal settings of SF and CF parame-
ter, as it considers variables that are not integers. The results
of MARCO can be used as a benchmark to those achieved
by other heuristics because MARCO represents the best SF
and CF parameters configurations.

To optimally allocate the EDs in each sfk , we assign
more ED in some specific sfk to provide the tradeoff
between minimizing channel utilization and reducing the
interference, delay, and power consumption. This definition
is because the lowest sfk value (i.e., SF equals 7) supports
significantly more devices with lower interference than
other SFs, which is explained by the relation between the
transmission rate and SF [45]. Moreover, increasing the
sfk value results in longer transmission times, increasing
the collisions while keeping the channel busy for a more
extended period [45].

In this context, initially we obtain ToA for each sfk based
on Eq.3–8, which is denoted as Tsf7 , Tsf8 , Tsf9 , Tsf10

, Tsf11
,

Tsf12
. Based on the Tsfk values, it is possible to define the

maximum number of ED for each sfk , which is fundamental
to the optimization process. In this sense, we need to
estimate the overall T oA in the channel (TT oA) as follows:

TT oA =
∑

sfk∈SF
Tsfk (9)

We compute the ratio between the T oA for each sfk

(Ratiosfk ) by dividing the sum of T oA to normalize the
values, as shown in Eq. 10. It aims to obtain the fraction of
each T oA concerning the total in the system.

Ratiosfk = Tsfk

TT oA

, ∀sfk ∈ SF (10)

We inverted the Ratiosfk value according to Eq. 11
because of higher T oA means worse network performance.

WeightedSum =
∑

sfk∈SF

1

Ratiosfk
(11)

We divide the normalized value for each SF (Ratiosfk )
with the sum of it (WeightedSum), resulting in the ratio of
ED for each sfK , as shown in Eq. 12. Hence, we define
the ED ratio to be assigned for each sfK value based on
T oA, which gives priority to have more ED in the lowest
sfk value.

Priorisf = Ratiosfk
WeightedSum

, ∀sfk ∈ SF (12)

Table 3 Main symbols used in our model

Symbol Description

n number IoT devices

m number of GWs

txi IoT device power transmission

edi actual IoT device

i IoT device index

gwj actual GW

j GW index

Rj GW radius range

A circular coverage area

sfk actual SF

k SF index

N number SF channels

cff actual CF

f CF index

F number of CF channels

LPl(d) log-distance path loss value

LPl(d0) path loss in the reference distance

d0 reference distance

γ loss exponent

d euclidean distance between a IoT
device edi and a GW gwj

Prx,j,i power received in the GW gwj

from the IoT device edi

GL antenna gain

Ssfk
sensibility value in the SF sfk

Tpream preamble lengh

Tload load duration

Npream preamble size

Tsimbk symbol duration in the SF sfk

Nload load size

PL packet size

IH implicit header

DE data rate optimization

CRC cyclic redundancy check

CR coding rate value

Tsfk ToA in the SF sfk

ϑi,sf,cf binary variable to check if the edi

with sfk in the cff was chosen by
the model

δi,sf binary variable to check if the edi

has enough power for transmit-
ting the packet

with the selected sfk

λ average transmission rate

U channel utilization

Finally, we compute the exact number of EDs each sfk

(Quantsf), determined based on Eq. 13.

Quantsf = Priorisf × n, ∀sfk ∈ SF (13)
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Besides, the following variables are defined to guarantee
the optimal settings of SF and CF parameters:

– ϑi,sf,cf ∈ {0.1}: binary variable, where a value of 1
means that edi with sfk in the cff was chosen by the
model, 0 otherwise;

– δi,sf ∈ {0.1}: a binary variable, where 1 denotes that edi

has enough power for transmitting the packet with the
selected sfk value, 0 otherwise;

– λ: average transmission rate, measured in pack-
ets/second.

The MILP model aims to minimize the channel
utilization U and collisions by configuring the SF and CF
parameters. MARCO uses the LoRaWAN channel with the
lowest possible cost based on the time needed to transmit a
frame Tsfk and the average transmission rate λ, as shown in
Eq. 14. Specifically, MARCO computes the channel cost by(
Tsfk × λ

)
, while the variable ϑi,sf,cf decides which sfk and

cff values a given edi will use.
[The constraint, defined by Eq. 15, guarantees that

the selected sfk and cff values (δd,sf ) provide packet
transmissions with enough power. This behavior is because
the gwj needs to receive a packet with receiver power
Prx,j,i higher than the sensibility Ssfk

for a given sfk

value [39].] We consider the sensitivity Ssfk
values

introduced in Table 2. The restriction introduced by
Eq. 16 ensures that resource allocation has been made
appropriately for all EDs, and the number of EDs is defined
previously. The constraint defined by Eq. 17 establishes the
ratio of ED to be assigned for each sfK value based on
T oA, which gave priority to have more ED in the lowest
sfk value. Finally, the restrictions introduced by Eqs. 18 and
19 perform channel allocation, considering the reduction of
packet collisions on the same SF and CF.

min
U

U =
∑
i ∈ L

∑
sfk ∈ SF

∑
cff ∈ CF

ϑi,sf,cf ×
(
Tsfk × λ

)
(14)

subject to:
∑

sfk ∈ SF

∑
cff ∈ CF

ϑi,sf,cf × δd,sf = 1, ∀i ∈ n (15)

∑
i ∈ L

∑
sfk ∈ SF

∑
cff ∈ CF

ϑd,sf,cf = n (16)

∑
cff ∈ CF

∑
i ∈ L

ϑd,sf,cf ×δd,sf = n× Priorisf, ∀sfk ∈ SF (17)

∑
i ∈ L

(ϑd,sf,cf − ϑd,sf,cf-c) � 1, ∀sfk ∈ SF,

∀cff ∈ CF, ∀c ∈ {1..(cff − 1)} (18)

∑
d ∈ L

(ϑd,sf,cf − ϑd,sf,cf+c) � 1, ∀sfk ∈ SF,

∀cff ∈ CF, ∀c ∈ {1 · · · (8 − cff )} (19)

3.3 CORRECT

This subsection presents CORRECT, a resource allocation
heuristic to efficiently adjust on-the-fly SF and CF
to minimize the channel utilization while reducing the
interference. Unlike an optimization model, this approach
uses mathematical approximations to allocate EDs in the
available SF and CF, with a lower computational cost. This
procedure makes it possible to implement the algorithm
internally to the reduced system of an ED. [The complexity
of the CORRECT heuristic is analyzed as follows. In worst
case the complexity of CORRECT is O(n ∗ |SF | ∗ (|CF | +
(|CF | − 1))). Given the cardinality of the set SF (|SF |)
and the set CF (|CF |) equal to 6 and 8, respectively, the
number of CFs and SFs can be considered constant values.
Hence, the CORRECT heuristic algorithm’s complexity is
then O(n), where it depends only on the number of EDs n.]
In its operation, the CORRECT heuristic receives as input
the number of EDs n. Based on Algorithm 1, CORRECT
adjusts the SF and CF configurations for each ED in a
LoRaWAN network.

Initially, we compute the sum of T oA for each SF
(TT oA) based on Eq. 9 to estimate the overall T oA in the
channel. Moreover, CORRECT computes the fraction each
SF ToA has to TT oA (Ratiosfk ) based on Eq. 10. Next,
CORRECT inverted the Ratiosfk value according to Eq. 11
because a higher T oA means worse network performance.
Then, CORRECT computes the ratio of IoT devices from a
LoRaWAN for each sfk , as shown Eq. 12, by dividing the
normalized value for each SF, Ratiosfk , with the sum of it,
WeightedSum. Finally, based on the fraction of devices per
sfk obtained, we calculate Quantsf based on Eq. 13, which
defines the exact number of EDs on each SF.

In this way, the CORRECT heuristic analyzes if the ED
power is enough to transmit based on the sensitivity Ssfk

(Line 9). [In this context, we need to estimate the received
power Prx,j,i in the gateway gwj based on Eq. 2 and
compare it with the current SF sensitivity Ssfk

based on
Table 2.] After that, it checks if the number of EDs assigned
to the current SF (

∑
edi ∈ {sfk}) did not exceed the

number of devices allowed for such sfk (Quantsf), as shown
in Line 10, and assigns the current SF to the device edi .
This analysis helps ensure that most EDs are distributed in
the smaller sfk , reducing ToA and consequently decreasing
collisions. In addition, it checks if the number of EDs
assigned to the current CF (

∑
edi ∈ {cff }) did not exceed

the number of devices allowed for such cff (
Quantsfk

CF
), as

shown in Line 13, and assigns the current CF to the device
edi . Finally, the CORRECT heuristic checks if devices
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remain without CF configuration, comparing the number
of EDs assigned to the current SF (

∑
edi ∈ {sfk}) and

the sum of the number of devices allocated in each cff

(
∑

cff ∈ CF
∑

edi ∈ {cff }), and in case there are EDs
without configuration, we configure each one edi in a
cff . This step helps reduce the channel overhead, thereby
reducing packet collision.

4 Evaluation

This section presents an evaluation of the CORRECT
heuristic using various simulation tests and performance
metrics. We describe the simulation environment and
the performance metrics used. Specifically, we analyzed
the performance of CORRECT and four other resource
allocation heuristics with different numbers of EDs using
performance metrics such as PDR, the number of interfered
packets, throughput, and transmission delay. Moreover, we
analyzed the MARCO model as a benchmark performance
for the heuristics we have evaluated.

4.1 Simulation Environment

We implemented the MARCO optimization model using
the Optimization Programming Language (OPL) and the
IBM CPLEX solver 12.6 on a computer equipped with
an Intel (R) Xeon (R) Silver 4112 CPU @ 2.60GHz,
64 GB of RAM running the Ubuntu operating system
server. The CPLEX resolution time limit was set to 1h, but
all scenarios considered the convergence of MILP before
reaching the limit. For example, MARCO converged in 34
minutes, on average, for the scenario with 3000 devices.
Besides, we performed several simulation experiments
using NS-3 [22], an open-source discrete-event network
simulator, targeted primarily for research and educational
use to evaluate the effectiveness of the evaluated resource
allocation heuristics. [We deployed one gateway at the
center of a two-dimensional scenario with 6x6 km, with
a radius of Rj of 2.5 km, which consists of the most
challenging scenario due to the higher load of packet
interference and packet loss compared with a multi-gateway
scenario. Moreover, different numbers of EDs are deployed
around the gateway, from 500 to 10000, as expected in
massive IoT deployments.] Table 4 summarizes the main
simulation parameters.

[We conducted 33 simulations with different randomly
generated seeds by the simulator’s default pseudo-random
number generator (MRG32k3a). The results obtained show
the values with a confidence interval of 95%. Each simu-
lation evaluates the performance of different resource allo-
cation solutions for LoRaWAN, namely ADR, Min ToA,
Explora-SF, Explora-AT, CORRECT, and MARCO opti-
mization model.] Precisely, the ADR heuristic adjusts SF
and the transmission power based on the distance and phys-
ical obstacles in the transmission, which is the implemen-
tation provided by The Things Network [1]. The Minimum
Airtime heuristic (Min ToA) is a standard assignment used

Table 4 Main simulation parameters

Parameters Value

Region EU863-870

CR 4/5

BW 125 kHz

Transmission power 14 dBm

Number of GWs 1

Number of EDs {500, 1000, 2000, 3000, 5000,
7500, 10000}

Average transmission time 5 min

Packet Length 20 bytes

Simulation time 1 hour
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by an ED to assign a fixed SF so that packets have the
minimum ToA time,i.e., sf7. The EXPLoRa-SF heuristic
distributes the number of EDs equally among the available
SF to reduce packet collision [15]. The Explora-AT heuris-
tic distributes the IoT devices along with the SF according
to a priority in the lower SFs based on the ToA related to
each SF [15]. Finally, MARCO and CORRECT both adjust
the SF and CF values[30].

4.2 PerformanceMetrics

We considered four metrics to evaluate the heuristic for
resource allocation of LoRaWAN, namely, PDR, number
of interfered packets, network throughput, and transmission
delay. PDR ∈ [0, 1] is an effective way to analyze
network deployment as a whole, i.e., in an optimal network
deployment with a minimum number of collisions and
losses, e.g., the value is close to 1 [10]. PDR is computed
from the total number of received packets and the total
number of transmitted packets over the network.

We define Interference as soon as packets overlap
each other in the receptor using the same SF and CF,
configuring the called capture effect, i.e., the intra-SF
collision. [The inter-SF collision is configured when two
packets overlap, using different SF and the same CF. In
these two contexts, the Interference causes a low Signal-
to-Interference-plus-Noise Ratio (SINR).] [Based on the
interference model proposed in [25], the SINR anticipated
in a gwj is computed by Eq. 20.] Where T xpacket0

is the referenced packet transmission power, σ 2 is the
variation between the measured path loss LPl(d) and an
expected path loss ELPl(d), and

∑NPackets

packet=1 T xpacket is the
accumulative transmission power of the interfered packets.
Besides, considering the SINR matrix (21), the element
Tsfi ,sfj

is the margin (in dB units) to consider a packet lost
due to interference. For example, suppose the computed
SINR of a packet transmitted in sf7 and a packet transmitted
in sf8 is below -24 dB. In that case, it is configured double
packet loss due to collisions, which worsens the system’s
performance.

SINR = T xpacket0

σ 2 + ∑NPackets

packet=1 T xpacket

(20)

(21)

We also consider the Network Throughput as the
capacity of all the EDs to send any amount of data to the
GW over time. In this work, the throughput is measured in
Kbps, and we consider the simulation time as the measuring
range. Finally, Delay is computed as the time spent between
sending the packet from the physical layer of the IoT device
through the radio channel until the GW’s physical layer
successfully receives it.

4.3 Results

SF is the leading radio parameter that can be adjusted
to influence the radio range, ToA, collisions, and energy
consumption. In this sense, Figure 2 represents a snapshot
of the SF distribution for the different evaluated models
or heuristics when 7500 EDs are deployed around a GW,
wherein the behavior is quite similar to other numbers
of EDs deployed around a GW. By analyzing the results,
we can conclude that both MARCO and CORRECT have
similar SF distribution, showing that there is a similar
SF allocation caused by the use of Priorisf defined in
Eq. 12, as Fig. 2a and b show. CORRECT defines ED
ratio to be assigned for each SF value based on ToA,
which gives priority to have more EDs in the lowest SF
values. For instance,CORRECT assigned 47% of ED to
sf 7, 25.8% to sf8, and so on. CORRECT also assigns the
SF value by guaranteeing that the selected SF value provides
packet reception at the gateway with enough RSSI. Min ToA
assigns all ED in the lowest SF, i.e., sf7, as Fig. 2f shows,
so that maximum data rate with minimum ToA can be
achieved. ADR assigns many EDs in the lowest SF, i.e., sf7,
and Fig. 2e shows. Therefore, the amount of SF is similar
for Min ToA and ADR, due to the extensive GW coverage
range, changing a small portion, which is in sf8. The SF
configuration Min ToA leads to 3.8% of EDs which are
out of the range of the gateway. EXPLoRa-SF uniformly
distributes EDs among the available SF values to reduce
packet collision, as Fig. 2d shows. Finally, EXPLoRa-AT
computes a fairness ToA distribution to normalize the ToA
for all SF configuration, as Fig. 2c shows. Thus EXPLoRa-
AT prioritizes the lower SFs to reduce the total network
ToA.

Figure 3 shows PDR for different numbers of EDs on
the network for CORRECT, MARCO, ADR, Min ToA,
EXPLoRa-SF, and EXPLoRa-AT resource allocation. In
this way, simulating a real scenario considering an imperfect
SF orthogonality, occurs a higher number of packet loss
due to collisions [11]. This problem can be seen by
the higher drop in performance in all algorithms with
device densification. The CORRECT heuristic provides
results remarkably close to the best solution available (i.e.,
MARCO optimization model). Specifically, CORRECT
reduced the PDR by 3.5% in the worst case compared to
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Figure 2 SF value for each ED according to each resource allocation mechanism for a scenario with 10000 EDs.

MARCO. This result occurs because CORRECT heuristic
efficiently adjusts SF and CF parameters. Specifically,
CORRECT assigns the SF value by guaranteeing that the
selected SF value provides packet reception at the GW with
enough received power. Moreover, it defines the number of
devices assigned for each SF value based on ToA, which
gives priority enables more ED in the lowest SF values. We
also observe that CORRECT performs 4.3%, 14%, 13%,
and 18%, better in terms of PDR compared to EXPLoRa-
AT, EXPLoRa-SF, Min ToA, and ADR, respectively. The
Min ToA and ADR have a poor PDR performance because

both set most EDs in the sf7. This behavior leads to
high chances of packet collisions and a low transmission
range, resulting in packet losses, especially in networks
with high EDs. For instance, the GW will be unable
to correctly decode the simultaneous signals sent by the
different EDs using the same SF on the same channel.
On the other hand, by uniformly distributing EDs in each
SF, EXPLoRa-SF assigns many ED in higher SFs. This
issue leads to packet collisions probability mainly in sf11

and sf12 because EXPLoRa-SF occupies the channel longer
[11]. Finally, EXPLoRa-AT reduces packet collisions by

Figure 3 PDR according to
number of EDs for each
resource allocation mechanisms.

75J Sign Process Syst (2022) 94:65–79



balancing the ToA of packets in each SF and decreases
packet losses when using lower SF values. EXPLoRa-AT
also assigns the SF based on ToA, but EXPLoRa-AT has
PDR results 4.3% lower compared to CORRECT because
the latter avoids collisions with an efficient CF allocation.
Therefore, the PDR results confirm the CORRECT resource
allocation heuristic benefits to using the channel with a
higher delivery probability, even considering an imperfect
SF orthogonality, because CORRECT efficiently adjusts the
SF and CF values.

Figure 4 shows the overall throughput (in Kbps) for
different numbers of EDs on the network for the evaluated
resource allocation models. By analyzing the results, we
observe that the throughput increases when the number
of EDs increases, regardless of the resource allocation
mechanism. This behavior is because the throughput is the
sum of the throughput of each ED in the network. However,
the packets lost due to collisions considering an imperfect
SF orthogonality affects all mechanisms [25]. In the densest
scenario, with 10.000 devices, the higher number of packets
lost impairs the performance. Moreover, in all algorithms,
throughput stabilizes and tends to stop growing after a
certain point. This behavior is due to the network’s duty
cycle limitation limiting the rate of data exchanged on the
channel in high device deployments [3]. [Let us analyze
the scenario with higher packet losses, i.e., 10.000 EDs
deployed around the GW; we note that the CORRECT
heuristic yield result 5.35% closer compared to MARCO,
with 556.3 and 586.09 Kbps, respectively. Explora-AT
also assigns the SF based on ToA, leading to Throughput
results of 23% compared to CORRECT because CORRECT
avoids collisions due to the efficient allocation of CF.
EXPLoRa-SF yields similar results compared to ADR, i.e.,
198.70 Kbps, which is 179.96% worse than CORRECT.
This behavior occurs because EXPLoRa-SF has many EDs
transmitting in higher SFs, which occupy the channel
longer, while Min ToA and ADR allocate most EDs in

the sf7.. The SF allocation performed by Min ToA leads to
worse Throughput results, i.e., 117.12 Kbps, which is 374.98%
worse compared to CORRECT because of the high number of
collisions. Specifically, using the CORRECT heuristic instead
of the ADR heuristic, up to 18% improvement in PDR
is obtained. The heuristic CORRECT yields up 23% lower
throughput compared with the Explora-AT. ]

Figure 5 shows the number of interference packets, i.e.,
collisions, for different numbers of EDs on the network for
the evaluated resource allocation models. It is essential to
highlight that we defined interference as soon as packets
overlap each other in the same CF receptor with the
same SF and differents SFs regarding the SINR threshold
based on matrix (21). In this context, interference has a
high probability of packet loss, worsening the system’s
performance. By analyzing the results, it is possible to
conclude that the number of packet collisions for the
CORRECT heuristic is close to the MARCO model, being
4.74% higher as it has more collisions due to the packets
with the same frequency. This behavior occurs because,
in some scenarios, CORRECT has a more significant
difference in the number of EDs per CF than MARCO.
The similar performance of the CORRECT heuristic
compared to the MARCO optimization model is because
the CORRECT heuristic efficiently adjusts the SF and CF
parameters. In contrast, the number of packet collisions
for CORRECT is about 5.34% lower than EXPLoRa-AT,
16.24% lower than EXPLoRa-SF, 14.92% lower than ADR,
and 19.24% lower than Min ToA. Specifically, in a scenario
with 10.000 EDs deployed around the GW, Explora-SF,
ADR, and Min ToA methods experienced 97381, 110058,
108351, and 114142 packet collisions, respectively, while
CORRECT has approximately 92180 packets collisions.
EXPLoRa-AT also assigns the SF based on ToA. Explora-
AT has PDR results 5.34% lower than CORRECT because
the latter avoids collision with an efficient CF allocation.
This behavior occurs because ADR and Min ToA methods

Figure 4 Overall network
throughput according to number
of EDs for each resource
allocation mechanisms.
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Figure 5 Number of interfered
packets according to number of
EDs for each resource allocation
mechanisms.

assign many EDs in the same SF. Thus, the GW cannot
correctly decode the simultaneous signals sent by the
different devices using the same SF on the same CF. Finally,
the EXPLoRa-SF method equally distributes the number of
EDs along with the available SF. Thus there are many EDs
with higher SFs, which increase the packet collisions mainly
in SFs 11 and 12; once it occupies the channel longer, the
collision probability increases [11].

Figure 6 shows the delay results for different numbers
of EDs for the evaluated models or heuristics. As expected,
ADR and Min ToA delivered the packets with the lowest
delay values because they assign the lowest SF values
for all EDs, resulting in shorter transmission times. For
instance, the ToA increases from 659 ms to 1318 ms
for a packets transmitted with sf12 instead of sf11,
respectively [17]. It is worth mentioning that MARCO
and CORRECT have similar delay performance results

because the CORRECT heuristic can efficiently adjust the
SF and CF values to provide identical performance results
compared to MARCO. On the other hand, EXPLoRa-SF
delivered packets with the highest delay performance, which
is explained by the fact that it mainly considers high SF
values, resulting in longer ToA than lower SF. EXPLoRa-AT
has a similar SF distribution to MARCO and CORRECT,
leading to a similar ToA. However, once the packets are
lost due to collisions, the network performance in terms
of QoS is affected. Moreover, as the definition, the delay
metric only computes the correctly received packets by
the GW transmitted from the EDs. Therefore, the packets
configured in higher SFs, as of sf10, sf11, or sf12, suffer
more collisions because it occupies the channel longer. The
collision probability increases [11], causing the average
delay to be affected mainly by lower SF packets as the
scenario densifies. Consequently, all the algorithms have

Figure 6 Delay per device
according to number of EDs for
each resource allocation
mechanisms.
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Table 5 Performance comparison among evaluated resource alloca-
tion mechanisms

Mechanisms PDR Throughput Collisions Delay

MARCO 63.11% 432.15 Kbps 27620.71 68.14 ms

CORRECT 61.2% 416.85 Kbps 28868.71 74.28 ms

EXPLoRa-AT 58.55% 380.45 Kbps 30688.28 81.85 ms

ADR 45.7% 241.09 Kbps 37396.85 54.42 ms

EXPLoRa-SF 41.17% 224.32 Kbps 38492.85 103 ms

Min ToA 42.61% 207.12 Kbps 39355.57 54 ms

mostly considered packets received from lower SFs such
as sf7 and sf8, making larger deployments, such as 10,000
EDs, even delay behavior.

We found that CORRECT demonstrated an efficient
performance in delivering high PDR values from our
performance evaluation analysis. Consequently, a high
throughput due to SF and CF’s smart allocation reduces
most packets interference even in a semi-orthogonal SF
scenario. It considers duty cycle limitations, as shown in
interference results, while offering a lower delay. Table 5
summarizes the average performance results from all
deployment formats for the evaluated resource allocation
mechanisms.

5 Conclusion

Resource allocation is a crucial aspect of LoRaWAN, espe-
cially as scalability grows. This article evaluates a heuristic
for resource allocation for LoRaWAN, called CORRECT.
The evaluated heuristic adjusts the LoRaWAN SF and CF
parameters to reduce the channel utilization, packet colli-
sions and, consequently, maximize the number of packets
delivered. The results obtained through simulations have
shown that the CORRECT heuristic provides results close to
optimal obtained by the MARCO model to use the channel,
improving the allocation of LoRaWAN parameters to reduce
collisions and improve the performance of the system as a
whole. Specifically, using the CORRECT heuristic instead
of the ADR heuristic, an improvement of up to 18% in PDR
is obtained. For other heuristics, this difference is even more
significant. As for the network throughput, the heuristic
CORRECT heuristic yields up 18.70% improvement com-
pared to the EXPLoRa-AT; this difference increases even
more when compared with other heuristics. In the future, we
plan to develop a machine learning model that considers SF,
ToA, and CF to improve resource allocation.
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