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Abstract
The field of pipelined FFT hardware architectures has been studied during the last 50 years. This paper is a survey
that includes the main advances in the field related to architectures for complex input data and power-of-two FFT sizes.
Furthermore, the paper is intended to be educational, so that the reader can learn how the architectures work. Finally, the
paper divides the architectures into serial and parallel. This classification puts together those architectures that are conceived
for a similar purpose and, therefore, are comparable.
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1 Introduction

The year 2020 marks 50 years since the first pipelined FFT
hardware architectures were presented in 1970 [44, 68].
During these 50 years, the field of fast Fourier transform
(FFT) hardware architectures has developed substantially.
By deepening in the field, we have been able to understand
the mathematical fundamentals that govern the architectures
and this has allowed us to derive efficient circuits to
calculate the FFT.

The aim of this paper is to collect the main advances
in pipelined FFT hardware architectures so far, and present
them in a way that the reader can understand how the
architectures work, serving as an introduction to the field.
The paper focuses on pipelined FFT architectures for
power-of-two sizes and complex input data. Other types of
architectures such as iterative and fully parallel FFTs, real-
valued FFTs, variable-length architectures, FFTs for natural
input/output order and non-power-of-two FFT sizes are
outside the scope of this paper. Likewise, the paper targets
the architectures themselves and the advances in other sub-
fields related to them [36] are not considered. Therefore,
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advances related to FFT algorithms, data management in
FFTs, implementation of rotators and accuracy analysis are
not studied in detail in this paper. Only some concepts in
these sub-fields are provided in Sections 2 and 6, as they
are necessary for understanding the architectures. Further
information related to these sub-fields can be found in [40].

The paper is organized as follows. After discussing some
basic concepts in Section 2, an overview of pipelined FFT
hardware architectures is provided in Section 3. This
overview introduces the types of pipelined FFT architec-
tures and includes a chronology with the main advances
in the field. Later, the different types of pipelined FFT
architectures are described in Sections 4 and 5. Section 4
is devoted to serial FFT architectures, whereas parallel
FFT architectures are discussed in Section 5. For a bet-
ter understanding of the architectures, a brief discussion on
rotations in FFT architectures is provided in Section 6. A
comparison of the architectures is provided in Section 7.
Finally, the main conclusions of the paper are summarized
in Section 8.

2 The FFT Algorithm

The N-point discrete Fourier transform (DFT) of an input
sequence x[n] is defined as:

X[k] =
N−1∑

n=0

x [n] Wnk
N , k = 0, 1, . . . , N − 1, (1)

where X[k] is the output at frequency k, and Wnk
N =

e−j 2π
N

nk are called twiddle factors.
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The term FFT refers to a group of efficient algorithms
to calculate the DFT. Among them, the most widely used
algorithm was proposed by Cooley and Tukey [19]. The
Cooley-Tukey algorithm reduces the number of operations
from O(N2) for the DFT to O(N log2 N) for the FFT.
This is achieved because the calculation of the outputs X[k]
in the DFT includes operations that are shared among the
outputs.

2.1 Flow Graph and Radix

FFT algorithms are generally represented by their flow
graphs. Figure 1 shows the flow graph of a 16-point radix-2
FFT, decomposed according to the decimation in frequency
(DIF) decomposition [27, 40]. The FFT consists of n =
log2 N stages. At each stage of the graph, s ∈ {1, . . . , n},
butterflies and rotations are calculated.

The numbers at the input of the flow graph represent the
index of the input sequence, whereas those at the output are
the frequencies, k, of the output signal X[k]. Finally, each
number, φ, in between the stages indicates a rotation by

W
φ
N = e−j 2π

N
φ . (2)

As a consequence, data for which φ = 0 do not need to be
rotated. Likewise, if φ ∈ [0, N/4, N/2, 3N/4], data must
be rotated by 0◦, 270◦, 180◦ and 90◦, which correspond to
complex multiplications by 1, −j , −1 and j , respectively.
These rotations are considered to be trivial, because they
can be calculated by interchanging the real and imaginary
components and/or changing the sign of the data.

Figure 1 also includes an index I with its binary represen-
tation bn−1 . . . b1b0. This index will be used to understand

Figure 1 Flow graph of a 16-point radix-2 DIF FFT.

the architectures. Indeed, at each stage s, the bit bn−s plays
a crucial role in the architecture, which will be explained in
Section 2.2.

Figure 2 shows the flow graph of a 16-point radix-2
FFT decomposed according to decimation in time (DIT).
It can be noted that DIF and DIT decompositions only
differ in the rotations at the FFT stages. Indeed, it was
observed in [27] that FFT algorithms for powers of two
FFT sizes and based on the Cooley-Tukey algorithms only
differ in the rotations at the different stages. This means
that the structure of butterflies is the same for all the
algorithms.

The DIF and DIT radix-2 FFT algorithms were the first
ones based on the Cooley-Tukey algorithm. Later, other
radices were proposed. All the radices have the form ρk .
On the one hand, the base of the radix, ρ, indicates the
size of the butterflies. Radices with base ρ = 2 use radix-
2 butterflies as the basic structure, as shown in Figure 3.
Radices with base ρ = 4 use radix-4 butterflies as the
basic structure, as shown in Figure 4. On the other hand,
the exponent of the radix, k, refers to how the rotations
are distributed among FFT stages, meaning that the most
complex rotations are placed every k stages.

Figure 5 shows the flow graph of a 16-point radix-22 FFT.
In radix-22 algorithms, odd stages in the flow graph only
include trivial rotations, as can be observed in the figure.
In FFT architectures, this will allow for simplifying the
rotators of the architectures.

Finally, higher radices such as radix-23, radix-24 and
radix-25 offer different distributions of rotations at the FFT
stages. Further information on FFT algorithms can be found
in [27, 70].

Figure 2 Flow graph of a 16-point radix-2 DIT FFT.
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Figure 3 Radix-2 butterfly.

2.2 The bit bn−s

The bit bn−s is the essence of FFT architectures. In order
to understand its relevance, let us consider the flow graph
in Figure 1. At the first stage, the butterflies operate on
the pairs of data with indexes (0,8), (1,9), (2,10), etc. By
representing these indices in binary, we get (0000,1000),
(0001,1001), (0010,1010). The comparison of the indices
in each pair shows that each pair only differs in the most
significant bit, which is b3, and this holds for all the pairs of
indices at stage 1. By doing the same analysis for stage 2,
we can see that the indices of pairs of data that are processed
by the butterflies only differ in b2. For stage 3 it is b1 and
for stage 4 it is b0.

In general, for any N-point FFT with n = log2 N stages,
pairs of data that are processed together in the butterflies
at stage s differ in bn−s . This is an important statement
that leads to the following one: In any FFT architecture,
pairs of data that are input at a butterfly at the same clock
cycle must always differ in the bit bn−s of the index. This
guarantees that the architecture calculates the butterflies
of the algorithm correctly. This will be the base for the
explanation of the architectures in Sections 4 and 5.

3 Overview of Pipelined FFT Architectures

Figure 6 shows the general structure of a pipelined FFT. It
consists of n stages connected in series where data flows
from stage 1 towards stage n, and each stage s of the
architecture calculates all the computations of one stage of
the FFT algorithm. Each stage has P inputs and P outputs,
and data flow in continuous flow at a rate of P data per
clock cycle.

Figure 4 Radix-4 butterfly.

Figure 5 Flow graph of a 16-point radix-22 FFT.

3.1 Types of Pipelined FFT Architectures

Table 1 shows a classification of pipelined FFT architec-
tures. The table separates the architectures into serial and
parallel. Serial pipelined FFT architectures process a contin-
uous flow of one datum per clock cycle and will be studied
in Section 4. They are classified into single-path delay feed-
back (SDF), single-path delay commutator (SDC), single-
stream feedforward (SFF) and serial commutator (SC).

Parallel pipelined FFT architectures process P data per
clock cycles, where P > 1, and will be studied in Section 5.
They are classified into multi-path delay feedback (MDF),
multi-path delay commutator (MDC) and multi-path serial
commutator (MSC).

3.2 Chronology

Table 2 shows a timeline with the main advancements in the
area of FFT hardware architectures. The table includes only
those works that have proposed new types of architectures
or relevant modifications that have lead to a reduction in
the number of resources. Other papers in the field that
provide relevant contributions but target already known
architectures are not included in the chronology.

The first two pipelined FFT architectures where proposed
in 1970 with a few months of difference. They were the first
SDC FFT [68] and the first SDF FFT [44], both for radix-
2. The first MDC FFTs were proposed in 1973 [42]. This
work included alternatives for different radices. However, it
had the limitation that the parallelization of the architectures
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Figure 6 Structure of a pipeline
FFT architecture.

must be equal to the radix, i.e., P = r . This way, radix-2
was used to process 2 data in parallel, radix-4 to process 4
data in parallel and radix-8 to process 8 data in parallel.

For SDF FFT architectures, the use of radix-4 was
introduced in 1974 [23]. In 1979, an SDF FFT architecture
that divided the calculation in FFTs of 16 points was
presented [24]. Although it was referred to as a radix-16
algorithm, this architecture was what we call nowadays
radix-24. For SDC FFT architectures radix-4 was adopted in
1989 [7].

An evolution of MDC FFT architectures happened in
1983 [50], where the first radix-2 FFT hardware architec-
tures for any P were presented. This dissociated the number
of parallel data from the radix. The number of parallel data
did not have to be equal to the radix anymore.

MDF FFTs had a late appearance with respect to SDF,
SDC and MDC architectures, as the first MDF FFTs were
presented in 1984 [82].

Radix-22 was introduced in 1998 for SDF FFT archi-
tectures [45]. Radix-2 made a better use of the butterflies
than radix-4, whereas radix-4 made a better use of the rota-
tors than radix-2. From them, radix-22 took the best of both
radix-2 and radix-4. This is why the literature started to talk
about radix-2k since then.

However, there was still an issue with the usage of butter-
flies and rotators in FFT architectures, as no architecture so
far achieved a 100% utilization of butterflies and rotators.
This was solved in 2006 when a deep feedback SDF FFT
was presented [85]. Nevertheless, this improvement came at
the cost of and increase of 33% in memory.

From 1989 to 2008, SDF FFTs were the main serial FFT
architectures. The reason was that SDC FFTs only reached
50% utilization, as they were not processing data during
half of the time. This was solved in 2008, when an SDC
FFT that split the higher and lower part of the data bits
was presented [9]. This was followed by two works on SDC
FFT architectures that split data into the real an imaginary
components [65, 81]. These two works differed in the
management of the rotators.

Table 1 Types of pipelined FFT architectures.

Parallelization Architectures Throughput

Serial SDF, SDC, SFF, SC P = 1

Parallel MDF, MDC, MSC P > 1

In the meantime, new advancements on MDC FFT
architectures were presented. The first radix-22 MDC FFTs
were introduced in 2009 [26], which was extended to radix-
2k in 2013 [33].

In 2016, a new MDF FFT called M2DF was intro-
duced [80]. This architecture was based on making a better
use of the butterflies in MDF architectures.

The first SC FFT architecture was also presented in
2016 [35]. This was the first architecture to use circuits
for serial-serial permutation, leading to 100% utilization in
butterflies and rotators, while using a small memory.

The SFF FFT was presented in 2018 [47]. This
serial architecture uses a small number of butterflies,
rotators and multiplexers. This is achieved by making use of
a double memory.

Finally, the first MSC FFT was presented in 2020 [46],
which is the parallel version of the SC FFT.

Table 2 Timeline.

Year Contribution

1970 First SDC FFT (radix-2) by O’Leary [68]

1970 First SDF FFT (radix-2) by Groginsky and Works [44]

1973 First MDC FFT (radix-2, 4 and 8 and P = r) by Gold

and Bially [42]

1974 First radix-4 SDF FFT by Despain [23]

1979 First radix-16 SDF FFT (which turned out to be radix-24)

by Despain [24]

1983 First radix-2 MDC FFT for any P by Johnston [50]

1984 First MDF FFT by Wold and Despain [82]

1989 First radix-4 SDC FFT by Bi and Jones [7]

1998 First radix-22 SDF FFT by He and Torkelson [45]

2006 Deep feedback SDF FFT by Yang et al. [85]

2008 First SDC FFT splitting high and low parts of the data

bits by Chang [9]

2009 First radix-22 MDC FFT by Garrido [26]

2011 SDC FFT splitting real and imaginary components

by Liu et al. [65]

2013 Radix-2k MDC FFT by Garrido et al. [33]

2015 Combined SDC-SDF FFT architecture by Wang et al. [81]

2016 First M2DF FFT by Wang et al. [80]

2016 First SC FFT by Garrido et al. [35]

2018 First SFF FFT by Ingemarsson and Gustafsson [47]

2020 First MSC FFT by Hsu et al. [46]
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Figure 7 16-point radix-2 SDF FFT architecture.

4 Serial Pipelined FFT Architectures

4.1 The SDF FFT Architecture

Figure 7 shows a 16-point radix-2 SDF FFT architecture [1,
44]. Each stage includes a radix-2 butterfly (R2), a rotator
(⊗) or trivial rotator (diamond-shaped), and a buffer of
length L = 2n−s . The internal structure of a stage is shown
in Figure 8 and the timing of one stage of the SDF FFT is
shown in Figure 9.

The SDFworks in a simple way, which can be understood
from Figures 8 and 9. At each stage, it receives the data
in the flow graph in Figure 1 in the order of the index,
i.e., from top to bottom in the flow graph. According to
this order, pairs of data that differ in bn−s arrive with a
difference of 2n−s clock cycles. In order to have these pairs
of data simultaneously at the input of the butterfly, a buffer
of length L = 2n−s is used. This way, the output of the
buffer is computed in the butterfly together with the input
of the stage. Afterwards, one of the results of the butterfly
continues towards the multiplier and the other output is
saved in the buffer. From Figure 8(b) it can be clearly seen
that data do not change order and they simply pass through
the butterfly at certain clock cycles. In Figure 9 the light blue
rectangle indicates when the butterfly processes data, which
occurs when part A is at the output of the buffer and part B
at the input of the stage. This occurs 50% of the time. The
other 50% of the time is used to allow data flow through the
buffer. This results in a 50% utilization of the butterfly.

A radix-2 SDF FFT architecture uses one butterfly per
stage, which corresponds to 2 log2 N complex adders for
the entire FFT. It also includes non-trivial rotators in all the
stages but the last two, leading a total number of log2 N − 2

Figure 9 Timing of a radix-2 SDF FFT architecture.

rotators. Finally, adding the buffer lengths at each stage
s = {1, . . . , n} results in a total memory of N − 1.

The radix-4 SDF FFT architecture [23, 71] is shown
in Figure 10. The number of stages in this case is n =
log4 N = log4 16 = 2. Each stage uses a radix-4 butterfly
and three buffers of length L = 4n−s . The internal structure
of a stage in a radix-4 SDF FFT architecture is shown in
Figure 11. The idea is the same as in the radix-2 FFT.
However, in this case the butterfly processes four data
that are equally separated in time. Figure 12 shows the
timing. Here groups of data flow through the buffers and
the butterfly is in use 25% of the time. This utilization is
lower than that of radix-2. However, the reduction of stages
in radix-4 reduces the number of rotators.

The total number of complex adders in the butterflies of
a radix-4 FFT is 8 log4 N , the total number of rotators is
log4 N −1 and the total memory is N −1. As a result, radix-
4 halves the rotator complexity with respect to radix-2 but
doubles the butterfly complexity.

A 16-point radix-22 SDF FFT architecture [6, 20, 22, 43,
45, 55, 58, 67, 74, 79, 88–90] is shown in Figure 13. It works
as a radix-2 SDF FFT, being the data management the same.
The only difference is in the rotators, which can be observed
by comparing Figures 1 and 5. As radix-22 only has trivial
rotations in odd stages, the rotators in those stages are also
trivial.

As a result, a radix-22 SDF FFT has the same butterfly
and memory complexity as radix-2 but half the complexity
of the rotators, which is 1/2 · log2 N − 1. This rotator

Figure 8 Stage of a radix-2 SDF
FFT architecture. (a)
Conventional drawing. (b)
Alternative drawing.
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Figure 10 16-point radix-4 SDF FFT architecture.

complexity is the same as in radix-4. Therefore, radix-22

benefits from the small complexity of the butterflies in
radix-2 and the small complexity of the rotators in radix-4.

Higher radices have also been considered for the
SDF FFT architecture. The literature includes SDF FFT
architectures for radix-23 [2, 52], radix-24 [24, 25, 51, 54,
66, 72], and split radix [86]. Indeed, several radices of the
form 2k are considered in some works [21, 29, 77].

Despite the fact that high-radix SDF FFTs are very
popular, they have a utilization of 50% for the butterflies. A
way to improve this utilization is to use the deep feedback
strategy in [85]. The deep feedback SDF FFT architecture is
shown in Figure 14, the detail of a stage of the architecture
is shown in Figure 15 and the timing in Figure 16. It can be
noted that the stages include three buffers, one of them with
double length than the other ones. First, data enter the long
buffer, and then the other two buffers. The timing indicates
when butterflies are calculated. They use a radix-2 butterfly
that is reused at different time instants. Also, the input data
to the butterfly is taken from different nodes of the circuit
at different time instants. This is why the stage in Figure 15
uses multiplexers to route the data. Furthermore, there is no
overlap between the calculations of the butterfly, and the
radix-2 butterfly is in use 100% of the time.

The total number of complex adders in the butterflies of
a deep feedback SDF FFT architecture is 2 log4 N , the total
number of rotators is log4 N − 1 and the total memory is
4(N − 1)/3.

Figure 12 Timing of a radix-4 SDF FFT architecture.

Figure 13 16-point radix-22 SDF FFT architecture.

Figure 14 16-point deep feedback radix-2 SDF FFT architecture.

Figure 11 Stage of a radix-4
SDF FFT architecture.
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Figure 15 Stage of a deep
feedback radix-2 SDF FFT
architecture.

4.2 The SDC FFT Architecture

Although the SDC processes serial data, it is based on a 2-
parallel MDC FFT, such as that in Figure 17. The timing
for the MDC FFT architecture is shown in Figure 18, where
the data order at each stage is indicated. For instance,
stage 1 receives the data with indexes 0 and 8 in parallel,
followed by 1 and 9 and so on. It can be noted that data
that differ in bit bn−s arrive in parallel at the input of
the butterflies, which allows for calculating the butterflies
properly. However, the data order is not the same at each
stage, which makes it necessary to include shuffling circuits
to reorder the data. These circuits consist of two buffers
and two multiplexers, where the number drawn in the buffer
is the buffer length. The buffers at stage 1 exchange the
position of data with indexes (7, 6, 5, 4) and (11, 10, 9, 8).
This is done by delaying the lower path 4 clock cycles in
the buffer, swapping both sets of data with the multiplexers
and then delaying the upper path 4 clock cycles so that data
are again aligned. The data exchanges done by the shuffling
circuits are indicated in the timing with lines that connect

Figure 16 Timing of a deep feedback radix-2 SDF FFT architecture.

the data sets and the resulting order is the order at the
following stage.

The SDC FFT architecture [21, 68] is shown in Figure 19.
The only difference with the MDC FFT in Figure 17 lies in
the input and output of the data. Whereas the MDC receives
two data in parallel at the input, the SDC receives data in
series. The first half of the data passes through the input
buffer and the second half is connected to the lower input.
This creates the same order as in the timing of Figure 18.
Afterwards, the architecture processes the data. Finally, the
output is made serial again.

The consequence of making data parallel is that the
architecture only works 50% of the time, whereas the other
50% of the time it receives and outputs the data.

In terms of hardware components, the architecture in
Figure 19 uses a total of 2 log2 N complex adders in
butterflies, log2 N−2 rotators and a total memory of 2N−2.

To solve the low utilization of the SDC FFT in Figure 19,
several alternatives have been proposed. The first one
is shown in Figure 20 and was proposed in [9]. This
architecture splits the high (H) and low (L) parts of the data
in two branches. This way, the architecture is working 100%
of the time. To achieve this, the architecture changes slightly
with respect to the SDC in Figure 19. First, it includes pre-
processing and post-processing stages. Furthermore, both
upper and lower branches include multiplexers. Finally, the
complexity of butterflies, rotators and buffers is reduced, as
they receive half of the bits every clock cycle.

The timing for the architecture in Figure 20 is shown
in Figure 21. The first two shuffling circuits are used to
adapt the input order to the butterfly of stage 1. Note that
the orders at the different stages fulfill the demand of bn−s .
Finally, the shuffling circuit after the last stage places again
the high and low bits of the data in parallel, which allows
for concatenating them and form the output data.

For the SDC architecture in Figure 20, the number of
complex adders in butterflies is 2 log2 N . As the adders have
half the data word length, the adder count results in log2 N .
The number of rotators is log2 N − 2 after the half word
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Figure 17 16-point 2-parallel
radix-2 MDC FFT architecture.

Figure 18 Timing of a 16-point
2-parallel radix-2 MDC FFT
architecture.

Figure 19 16-point radix-2 SDC FFT architecture.

Figure 20 16-point radix-2 SDC FFT architecture that divides the data in high and low parts.

Figure 21 Timing of a 16-point 2-parallel radix-2 SDC FFT architecture that divides the data in high and low parts.
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Figure 22 Rotator in an SDC FFT architecture that divides the data in
real and imaginary parts.

length correction. And the total memory is 3N/2 after the
half word length correction.

An alternative to the architecture in Figure 20 consists in
splitting the input data into its real and imaginary parts. This
alternative was used in [10, 65]. In this case, the timing is
the same, and the architecture only differs in the rotators.
If we observe the timing in Figure 21 and assume that H
corresponds to the real part (R) and L corresponds to the
imaginary part (I), then each rotator receives the real and
imaginary components of the same datum in consecutive
clock cycles through the same branch. This allows for using
the circuit in Figure 22 to place the real and imaginary
components of the data in parallel at the input of the rotator.
Then the rotation is calculated and, after that, the data order
is restored.

For this architecture, the complex adder count is log2 N ,
the rotator count is log2 N − 2 and the total memory is
slightly larger than 3N/2 due to the registers used to adapt
the order at the rotators.

A further step in the evolution of SDC FFT architectures
is shown in Figure 23 and corresponds to [81], where it is
observed that the separation in R and I leads to the fact that
only data through the lower branch of the architecture need
to be rotated. This allows for using the rotator in Figure 24,
which has half of the complexity, as the rotation is done in
two consecutive clock cycles.

For this architecture, the complex adder count is log2 N ,
the rotator count is 1/2 · log2 N − 1 and the total memory is
3N/2.

4.3 The SFF FFT Architecture

The SFF FFT shares with the SDF FFT the characteristic
that data arrive in natural order at the input of the
architecture. Indeed, the order at each stage in both
architectures is from top to bottom of the flow graphs.

Figure 24 Alternative rotator in an radix-2 SDC FFT architecture that
divides the data in real and imaginary parts.

Figure 25 shows a 16-point radix-2 SFF FFT architecture
and its timing is shown in Figure 26. A characteristic of the
SFF FFT is that it calculates the addition and the subtraction
of the butterfly at different time instants. This allows for
using the same adder/subtractor for both of them. To achieve
this, each stage needs two buffers of length L = 2n−s .
This allows for accessing the data that are processed in the
adder/subtractor twice, first from the input and the point in
between the buffers in order to calculate the addition of the
butterfly, and then from the point in between the buffers
and the output of the second buffer in order to calculate the
subtraction of the butterfly. This is shown in the timing of
Figure 26.

The rotators in an SFF FFT are the same as in an SDF
FFT. They receive data from a single stream in natural
order. Therefore, the SFF allows for the same use of the
radices as in an SDF FFT. For instance, radix-22 makes
trivial the rotators in odd stages, which reduces the rotator
complexity.

The complex adder count of an SFF FFT is log2 N , the
number of non-trivial rotators is log2 N − 2 for radix-2 and
1/2·log2 N−1 for radix-22, and the total memory is 2N−2.

4.4 The SC FFT architecture

Figure 27 shows a 16-point radix-2 serial commutator
FFT [35]. As in other FFT architectures, the stages consist
of butterflies, rotators and shuffling circuits. What makes
the SC FFT different is that it uses circuits that shuffle
data arriving in series [32]. The timing of a stage in the
architecture is shown in Figure 28. At each stage of the
SC FFT, data that differ in bit bn−s arrive in consecutive
clock cycles. This allows for delaying half of the data one

Figure 23 16-point radix-2 SDC FFT architecture that divides the data in real and imaginary parts.
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Figure 25 16-point radix-2 SFF FFT architecture.

clock cycle to make values that differ in bit bn−s arrive
simultaneously to the butterfly. After the calculations, the
other half of the data is delayed one clock cycle to form the
serial data flow again.

According to this, bn−s is related to consecutive clock
cycles at stage s, and bn−s−1 is related to consecutive clock
cycles at stage s +1. Therefore, the shuffling circuits placed
between stages are used to adapt these orders.

The internal structure of a stage in an SC FFT is shown
in Figure 29. As data flows serially, both the real and
imaginary parts of the data are provided at the same clock
cycle. These parts are separated at the input of the stage.
Thanks to the shuffling at the input of the stage, the butterfly
will first add and subtract the real parts of the data, and in the
next clock cycle it will add and subtract the imaginary parts
of the data. This way, the butterfly only requires one real
adder and one real subtractor. Similarly, the rotator receives
data to be processed in two consecutive clock cycles. This
allows for halving the complexity of the rotator. Instead of
four multipliers an adder and a subtractor, the rotator only
needs two multipliers and one adder/subtractor.

As a result, the SC FFT requires a total of log2 N

complex adders for the butterflies, 1/2 · log2 N − 1 rotators
and a memory slightly larger than N .

5 Parallel Pipelined FFT Architectures

5.1 TheMDF FFT architecture

TheMDF FFT architecture is the parallel version of the SDF
FFT. At first, MDF FFT architectures consisted of several
SDF FFT architecture connected by shuffling circuits [82].

Figure 26 Timing of a radix-2 SFF FFT architecture.

However, it is even easier to unfold an SDF into an MDF.
Let us compare the SDF FFT in Figure 7 to the MDF FFT
in Figure 30. In the SDF FFT data arrive in series in natural
order, i.e., from index 0 up to N − 1. In the MDF FFT
the data order at all the stages is shown in Figure 31. In
it, even-indexed data flow through the upper path and odd-
indexed through the lower path. As a consequence, the last
stage, which operates on b0 directly, takes the data from
both paths. Likewise, by separating even-indexed and odd-
indexed data, those data that differ in bn−s are closer in the
pipeline, which halves the length of the buffers at stages 1
to n − 1. Except for these facts, the MDF FFT works as an
SDF FFT.

A higher parallelization for the MDF FFT is also
possible. Figure 32 shows the case of a 16-point 4-parallel
radix-2 MDF FFT architecture, and Figure 33 shows its
timing. Again, the first stages process data as in an SDF FFT
and the length of the buffers in these stages is divided by P

with respect to the buffer lengths in the SDF FFT. The last
two stages process b1 and b0. Both of them appear in parallel
streams, so it is only necessary to combine those parallel
streams, which differ in the bit corresponding to each stage.

In general, a P -parallel radix-2 MDF FFT uses
2P log2 N − P log2 P complex adders in butterflies,
P log2 N−P/2·log2 P −P −[1]∗ non-trivial rotators, where
the term [1]∗ only applies for P = 2, and a total memory of
N −P . As in SDF FFT architectures, radix-22 used in MDF
FFTs transforms the rotators in odd stages to trivial rotators,
which halves the rotator complexity.

The literature explores 2-parallel MDF FFTs for radix-
22 [59] and radix-24 [57]. Regarding 4-parallel MDF FFTs,
radix-4 [11], radix-23 [13, 62], radix-24 [16, 17, 63, 73]
and radix-25 [75] have been considered. And for 8-parallel
MDF FFTs, there exist designs that use radix-2 [24], radix-
23 [64], radix-24 [12, 76] and radix-25 [15].

An alternative to the conventional MDF FFT architec-
tures is the M2DF FFT shown in Figure 34 and presented
in [80]. The M2DF FFT increases the utilization of the but-
terflies and rotators by creating two data flows in opposite
directions. These two data flows do not overlap in time,
which allows for sharing the butterflies and rotators and
achieve a 100% utilization of these components. To guar-
antee that there is no overlap, one of the data flows needs
to enter the pipeline in bit-reversed order [31]. This can be
observed in Figure 34, where the lower input path is con-
nected to a block that calculates the bit reversal (BR) before
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Figure 27 16-point radix-2 SC FFT architecture.

entering stage 3. The upper path flows from stage 1 to stage
3 and is connected to a bit reversal circuit after stage 3.

The timing of the M2DF FFT is shown in Figure 35.
The indices for the current FFT are highlighted in black
and the previous and following FFTs in the pipeline are
highlighted in gray. The upper flow is shown to the left
and the lower flow to the right. The upper flow follows the
stages 1, 2, 3, BR, and 4, whereas the lower flow follows the
stages BR, 3, 2, 1, and 4. The clock cycles where butterflies
and rotators process data are indicated by a square. For
instance, for the upper dataflow the first 4 clock cycles data
are loaded into the buffer, and the next 4 clock cycles are
used to process these data together with the input data. By
analyzing the timing, it can be observed that the processing
times at stages 1 to 3 of both data flows do not overlap,
which allows for reusing the hardware components. Finally,
the data from both data flows arrive simultaneously at stage
4 to be processed in parallel.

The 2-parallel radix-2 M2DF FFT architecture uses
2 log2 N complex adders in butterflies, log2 N − 2 non-
trivial rotators and a total memory of approximately 2N .
This memory is the result of adding the buffers at the FFT
stages and the circuits for bit reversal, whose optimum
implementation is explained in [31]. Higher paralleliza-
tion for this architecture and other radices are also possi-
ble [80].

Figure 28 Timing of a radix-2 SC FFT architecture.

5.2 TheMDC FFT Architecture

The MDC FFT architecture was explained in Section 4.2 for
the case of 2-parallel data and radix-2. In this section, other
MDC FFT architectures are presented.

Figure 36 shows a 16-point 4-parallel radix-2 MDC FFT
architecture [50]. The timing of the architecture is shown in
Figure 37. At each stage, the shuffling circuits place data
that differ in bn−s at the input of the butterflies.

For 8-parallel data, Figure 38 shows a 16-point 8-parallel
radix-2 MDC FFT. Compared to the 4-parallel MDC FFT
in Figure 36, the 8-parallel MDC architecture does not have
shuffling circuits at the two first stages. The reason for this
is that bn−s at the first stages is achieved by reorganizing the
parallel streams and there is not need to exchange data that
arrive at different clock cycles. This can be observed in the
timing of Figure 39.

The number of hardware components of a P -parallel
radix-2 MDC FFT architectures is P log2 N complex adders
in butterflies, P/2 · (log2 N − 2) non-trivial rotators, and a
total memory of size N − P .

For radix-22, Figure 40 shows a 16-point 4-parallel radix-22

MDC FFT [26, 33], and Figure 41 shows its timing. Due to
using radix-22, odd stages only need trivial rotators, which
reduces the complexity of the rotators in the architecture.

For 8-parallel data, a 16-point radix-22 MDC FFT archi-
tecture is shown in Figure 42 and its timing is shown in
Figure 43.

For a P -parallel radix-22 MDC FFT, the number of
complex adders in butterflies is P log2 N , the number of
non-trivial rotators is 3P/8 · (log2 N − 2) and the total
memory is N − P .

The rotator complexity in MDC FFT architectures can be
reduced even more by using higher radices, such as radix-23

or 24 [33] and by exploring other data orders that allocate
the rotators in only some of the parallel branches [34, 38].

In the literature, multiple MDC FFT architectures have
been proposed for different parallelization. For 2-parallel
data, radix-2 [3, 42, 50, 61], radix-22 [26, 33, 56], radix-
23 [5, 33] and radix-24 [33] have been studied. Architectures
that process 4-parallel data consider radix-2 [50], radix-
4 [14, 18, 60, 69, 71, 84], radix-22 [26, 28, 33], radix-23 [33]
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Figure 29 Stage of an SC FFT
architecture.

radix-24 [8, 33], and various radices 2k [34]. Finally, 8-
parallel MDC FFTs use radix-2 [50], radix-4 [48], radix-
8 [4, 42, 71, 83, 87], radix-22 [26, 33] radix-23 [33, 41],
radix-24 [33], radix-25 [53], radix-26 [49], and various
radices 2k [34].

5.3 TheMSC FFT architecture

The MSC FFT is the parallel version of the SC FFT archi-
tecture. In order to obtain the MSC FFT, the SC FFT is
unfolded. As a result, the MSC FFT consists of several
stages that include an SC structure and other stages that are
calculated as an MDC.

Figure 44 shows a 16-point 4-parallel radix-2 MSC FFT.
Its timing diagram is shown in Figure 45. The architecture
consists of four stages where the two first ones process data
as in an SC FFT. For these two stages, samples that are
processed together in the butterflies arrive in consecutive
clock cycles, as happened for the SC FFT. Later, butterflies
at stages 3 and 4 process data arriving at the same clock
cycle at the inputs of the butterflies.

The number of components in an MSC FFT is calculated
by considering that in the SC-like stages only half butterflies
and half rotators are used. For a radix-2 MSC, this results

Figure 30 16-point 2-parallel radix-2 MDF FFT architecture.

Figure 31 Timing of a 16-point 2-parallel radix-2 MDF FFT architec-
ture.

Figure 32 16-point 4-parallel radix-2 MDF FFT architecture.
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Figure 33 Timing of a 16-point 4-parallel radix-2 MDF FFT architec-
ture.

in P log2 N complex adders, P/2 · (log2 N − 2) non-trivial
rotators and a total memory of size approximately equal to
N − P .

In the literature, a combination of radix-23 and radix-24

has been used for a 128-point MSC FFT [46], which allows
for a further reduction of the rotator complexity. However,
due to the novelty of the MSC FFT architecture, research
still needs to be done before drawing general conclusions
about this type of architecture.

6 Rotations in FFT Architectures

To deepen into the topic of rotations in FFT architectures
is outside the scope of this paper. However, for a better
understanding of the FFT architectures, this section pro-
vides some basic ideas about rotations in FFTs.

First, it is worth mentioning how to obtain the rotation
coefficients in FFT architectures. This can be done from
the flow graph of the FFT and the timing diagram of the
architecture. The timing diagram shows the data indexes
(I ) at any time and for every stage of the architecture,
whereas the flow graph shows the rotations for each stage
and index. Therefore, to determine the rotation coefficients
of the FFT we just have to take each index from the timing
diagram and obtain the corresponding rotation from the flow
graph. As an example, let us consider the 4-parallel FFT
architecture in Figure 36, its timing diagram in Figure 37
and its flow graph in Figure 1. At stage 2, data with
indexes (12,13,14,15) flow through the lowest path of the

Figure 34 16-point 2-parallel radix-2 M2DF FFT architecture. The
boxes labeled with BR are circuits to calculate the bit reversal [31].

Figure 35 Timing of a 16-point 2-parallel radix-2 M2DF FFT
architecture.

architecture. This means that the rotator at this path of the
architecture must rotate by the rotations corresponding to
these indexes. By checking the flow graph in Figure 1, it
can be observed that the rotations for indexes (12,13,14,15)
at stage 2 are φ = (0, 2, 4, 6). The exact coefficients are
obtained from Eq. 2. For instance, for φ = 4,

W
φ
N = e−j 2π

N
φ = e−j 2π

16 4 = −j . (3)

This means that the rotator at the lowest path at the second
stage of Figure 36 must rotate the datum with index 14 by −j .

When the FFT size is large, it is not easy to represent its
flow graph. However, it is still possible to obtain the values
for φ at each stage of the FFT flow graph mathematically.
This is explained in [70] for any FFT algorithm that can be
represented by a binary tree and more generally in [27] for any
FFT algorithm that can be represented by a triangular matrix.

Figure 36 16-point 4-parallel radix-2 MDC FFT architecture.
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Figure 37 Timing of a 16-point
4-parallel radix-2 MDC FFT
architecture.

For instance, for a radix-2 DIF FFT, φ is obtained as [27]

φs(I ) ≡ bn−s · 2s−1 · [bn−s−1 . . . b0]. (4)

In particular, for stage s = 2 and N = 16,

φ2(I ) ≡ b2 · 21 · [b1 . . . b0]. (5)

Coming back to the example, the indexes I = (12, 13,
14, 15) in binary are b3b2b1b0 = (1100, 1101, 1110, 1111).
By applying (5), this results in the rotations φ = (0, 2, 4, 6),
which corresponds to the same values that were obtained
from the flow graph.

The implementation of a rotator takes into account the
angles that it must rotate at different clock cycles. If all
the angles are trivial, the rotator will be a trivial rotator.
Otherwise, the rotator will be more complex. When many
different angles must be rotated, the rotator is called general
rotator. General rotators are usually implemented by a

Figure 39 Timing of a 16-point 8-parallel radix-2 MDC FFT architec-
ture.

Figure 38 16-point 8-parallel
radix-2 MDC FFT architecture.
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Figure 40 16-point 4-parallel
radix-22 MDC FFT architecture.

Figure 41 Timing of a 16-point
4-parallel radix-22 MDC FFT
architecture.

Figure 42 16-point 8-parallel
radix-22 MDC FFT architecture.
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Figure 43 Timing of a 16-point 8-parallel radix-22 MDC FFT archi-
tecture.

complex multiplier or by the CORDIC algorithm [78].
When the number of different angles is small, it is feasible
to implement the rotators as shift-and-add operations [39],
which reduces their complexity.

Regarding the storage of rotations, for general rotators
it is common to store all the coefficients in a read-
only memory (ROM), although it is also possible to use
memoryless CORDIC approaches [30] that do not require
any memory. This is especially useful for large FFTs [51],
where the coefficient memory would otherwise be large.
For small rotators implemented as shift-and-add, it is also
possible to generate the control signals for the rotator
without storing them in a ROM [39].

Nowadays, existing FFT architectures already achieve
the minimum number of adders, the smallest memory and
the lowest latency. However, the amount and complexity
of rotators in FFT architectures still need to be optimized.
As a result, recent FFT architectures [34, 37, 38] focus on
reducing the number of rotators and their complexity, which

requires to study different data orders and obtain the best
results among them in terms of rotators.

7 Comparison

Table 3 compares the different types of serial pipelined FFT
architectures. The table includes the type of architectures,
the hardware resources in terms of complex adders in
butterflies, complex rotators and complex data memory, and
the performance in terms of the latency and throughput of
the architectures. For simplicity, n = log2 N is used for
reporting the number of adders and rotators.

SDF FFT architectures minimize the memory usage and
the latency. Among them, radices 4, 22 and 24 also minimize
the number of rotators. Conversely, the number of adders in
SDF architectures is larger than in other architectures. The
only exception is the deep feedback SDF FFT, which mini-
mizes the number of adders at the cost of a larger memory.

Except for its first version, the SDC FFT minimize the
number of adders. Its latest version also minimizes the
number of rotators. However, SDC FFT architectures have
higher memory usage and latency than other serial pipelined
FFT architectures.

The SFF FFT minimizes the number of adders and the
latency. Its radix-22 version also minimizes the number of
rotators. The drawback is a larger data memory.

Finally, the SC FFT minimizes the number of adders and
rotators, while achieving almost optimum memory usage
and latency.

Table 4 compares the different types of parallel pipelined
FFT architectures. The first column shows the type of
architecture. The second, third and fourth columns show
the number of adders, non-trivial rotators and data memory,

Figure 44 16-point 4-parallel
radix-2 MSC FFT architecture.
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Figure 45 Timing of a 16-point
4-parallel radix-2 MSC FFT
architecture.

Table 3 Comparison of serial
pipelined FFT hardware
architectures.

PIPELINED Complex Complex Complex Latency Th.

ARCHITECTURE Adders Rotators Data Mem. (cycles) (data/cyc.)

SDF, radix-2 [44] 2n n − 2 N − 1 N − 1 1

SDF, radix-4 [23] 4n n/2 − 1 N − 1 N − 1 1

SDF, radix-22 [45] 2n n/2 − 1 N − 1 N − 1 1

SDF, radix-23 [2, 52] 2n 2n/3 − 1 N − 1 N − 1 1

SDF, radix-24 [24] 2n n/2 − 1 N − 1 N − 1 1

SDF, Deep Feedback [85] n n/2 − 1 4(N − 1)/3 N − 1 1

SDC, radix-2 [68] 2n n − 2 2N − 2 N − 1 1

SDC, radix-2, HL [9] n n − 2 3N/2 3N/2 1

SDC, radix-2, RI [65] n n − 2 3N/2 3N/2 1

SDC, radix-2, RI+rot [81] n n/2 − 1 3N/2 3N/2 1

SFF, radix-2 [47] n n − 2 2N − 2 N − 1 1

SFF, radix-22 [47] n n/2 − 1 2N − 2 N − 1 1

SC, radix-2 [35] n n/2 − 1 ≈ N ≈ N 1

Table 4 Comparison of
parallel pipelined FFT
hardware architectures.

PIPELINED Complex Complex Complex Latency Th.

ARCHITECTURE Adders Rotators Data Mem. (cycles) (data/cyc.)

2-PARALLEL ARCHITECTURES

MDF, radix-2 4n − 2 2n − 4 N − 2 N/2 2
MDF, radix-24 [57] 4n − 2 n − 2 N − 2 N/2 2
M2DF, radix-24 [80] 2n n − 2 2N N 2
MDC, radix-2 [45] 2n n − 2 N − 2 N/2 2
MDC, radix-24 [33] 2n n − 2 N − 2 N/2 2
MSC, radix-2 [46] 2n n − 2 ≈ N − 2 N/2 2
4-PARALLEL ARCHITECTURES
MDF, radix-2 8n − 8 4n − 4 N − 4 N/4 4
MDF, radix-24 [17] 8n − 8 2n − 4 N − 4 N/4 4
M2DF, radix-24 [80] 4n 2n − 5 2N N/2 4
MDC, radix-2 [50] 4n 2n − 4 N − 4 N/4 4
MDC, radix-22 [33] 4n 3n/2 − 3 N − 4 N/4 4
MDC, radix-23 [33] 4n 2n − 4 N − 4 N/4 4
MDC, radix-24 [33] 4n 7n/4 − 4 N − 4 N/4 4
MSC, radix-2 [46] 4n 2n − 4 ≈ N − 4 N/4 4
8-PARALLEL ARCHITECTURES
MDF, radix-2 16n − 24 8n − 20 N − 8 N/8 8
MDF, radix-24 [76] 16n − 24 4n − 8 N − 8 N/8 8
M2DF, radix-24 [80] 8n 4n − 11 2N N/4 8
MDC, radix-2 [50] 8n 4n − 8 N − 8 N/8 8
MDC, radix-22 [33] 8n 3n − 6 N − 8 N/8 8
MDC, radix-23 [33] 8n 3n − 7 N − 8 N/8 8
MDC, radix-24 [33] 8n 7n/2 − 8 N − 8 N/8 8
MSC, radix-2 [46] 8n 4n − 8 ≈ N − 8 N/8 8
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respectively. The fifth columns shows the latency of the
architectures and the sixth column shows the throughput.

The architectures in the table are classified according
to their parallelization. For 2-parallel architectures M2DF,
MDC and MSC architectures use the lowest number of
adders and rotators. Additionally, MDC and MSC FFTs
use a small memory. Regarding MDC FFTs, the use of
an advanced radix such as radix-24 does not reduce the
number of rotators with respect to radix-2. However, radix-
24 reduces the complexity of the rotators with respect to
radix-2, as it includes a larger number of W16 rotators
instead of the larger rotators used in radix-2.

For 4-parallel architectures, M2DF, MDC andMSC FFTs
achieve the smallest number of adders. The number of
rotators in 4-parallel FFT architectures depends not only
on the type of architecture, but also on the radix. The
4-parallel radix-22 MDC FFT architecture achieves the
smallest number of rotators. However, the complexity of the
rotators in the radix-24 MDC FFT is smaller. This fact is
detailed in the comparison in [34]. Regarding data memory
and latency, MDF, MDC and MSC FFT architectures
require a small memory and have a low latency.

For 8-parallel architectures, M2DF, MDC and MSC
FFTs achieve the smallest number of adders. The smallest
number of rotators is achieved by the radix-23 MDC FFT
architecture. MDF, MDC and MSC FFT architectures have
a small data memory and achieve the lowest latency.

8 Conclusions

This survey paper has provided the main advancements
on complex-input-data and power-of-two pipelined FFT
hardware architectures during the last 50 years. The main
types of serial FFT architectures are called SDF, SDC, SFF
and SC. All of them process a continuous data flow of
one sample per clock cycle. However, they follow different
strategies to organize the data flow and do the calculations.
This results in trade-off among adder, rotator and memory
complexity. Regarding parallel FFT architectures, the main
types are MDF, MDC and MSC, which are the parallel
version of the SDF, SDC and SC FFTs, respectively.
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