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Abstract
Inertial sensors based on micro-electro-mechanical systems (MEMS) technology, such as accelerometers and angular rate
sensors, are cost-effective solutions used in inertial navigation systems in a broad spectrum of applications that estimate
position, velocity and orientation of a system with respect to an inertial reference frame. Although they present several
advantages in terms of cost and form factor, they are prone to various disturbances such as noise, biases, and random walk
that degrade their orientation estimation. The task of an orientation filter is to compute an optimal solution for the attitude
state, consisting of roll, pitch and yaw, through the fusion of angular rate, accelerometer, and magnetometer measurements,
regardless of the underlying environmental constraints. The aim of this paper is threefold: first, it serves researchers and
practitioners in the signal processing community seeking the most appropriate attitude estimators that fulfills their needs,
shedding light on the drawbacks and the advantages of a wide variety of designs. Second, it serves as a survey and tutorial for
existing estimator designs in the literature, assessing their design aspects and components, and dissecting their hidden details
for the benefit of researchers. Third, a comprehensive list of algorithms is discussed for a fully functional inertial navigation
system, starting from the navigation equations and ending with the filter equations, keeping in mind their suitability for
power-limited embedded processors. The source code of all algorithms is published, with the aim of it being an out-of-box
solution for researchers in the field. The reader will take away the following concepts from this article: understand the key
concepts of an inertial navigation system; be able to implement and test a complete stand alone solution; be able to evaluate
and understand different algorithms; understand the trade-offs between different filter architectures and techniques; and
understand efficient embedded processing techniques, trends and opportunities.

Keywords Coning and sculling compensation · Embedded processors · Kalman filter · Measurement model · Navigation
equations · Quaternions · Rotation matrix · System-error dynamics · Tilt errors

1 Introduction

An integrated navigation system exploits the complemen-
tary characteristics of different navigation sensors, such
as gyroscopes, accelerometers, magnetometers, and global
navigation satellite systems GNSS, to increase the precision
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of the navigation solution. For example, it can compute a
high quality pose estimate of a vehicle’s position and orien-
tation (up to an accuracy of 0.00l degrees per roll, pitch and
yaw axis [1]). Specifically, the underlying attitude (orienta-
tion) estimation problem is common to a wide area of appli-
cations, ranging from unmanned aerial vehicles (UAVs), vir-
tual reality applications, underwater submersible systems,
robots and ground vehicles, to medical instruments and sur-
veying equipment. In addition, recent advances in MEMS
have led to a very wide range of low-cost, light-weight
and accurate components that increase the reliability of
the navigation solution significantly. Nowadays, the naviga-
tion technique common to almost all integrated navigation
systems is the strapdown inertial navigation technique. In
a strapdown inertial navigation system (INS), an inertial
measurement unit (IMU), mounted to the vehicle, senses
accelerations and angular rates for all six degrees of free-
dom of the vehicle. From this data, a strapdown algorithm
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Figure 1 Block diagram
illustrating the basic elements in
controlling a robot.
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(SDA) can compute a navigation solution, assuming that ini-
tial position, velocity and attitude are known [2]. INS-SDAs
must be reliable and computationally-efficient in order to
suit low-end applications with power-limited processing
capabilities [3].

The brain of a typical robot vehicle is called a
navigation computer or controller [4]. The controller uses
on-board sensors to estimate its current position and
orientation. Figure 1 shows a simplified block diagram of a
generic autonomous vehicle computer, including a mission
controller, a state estimator and a command controller. State
estimation is implemented by fusing the raw measurements
from a set of state-observing sensors, and forming an
estimate of the vehicle’s state (position and attitude) [5]. The
vehicle controller algorithms automatically manipulate the
actuators on-board the vehicle to achieve a set of trajectory
commands using the system states (position and orientation)
as feedback. The trajectory commands are generated by the
mission controller, which could be a human operator or a set
of algorithms that convert mission objectives into trajectory
commands [6] (Fig. 1).

This paper aims at providing an overview of various
attitude estimation techniques, building up the knowledge of
the reader from basic principles, as well as providing insight
in an intuitive manner for concepts hidden between the lines

Figure 2 Euler Angles (α, β, and γ ).

of sophisticated equations governing the system as a whole.
The rest of the article is organized as follows:

• Section 2 provides background on the context of why
attitude estimation filters are important.

• Section 3 gives a basic overview of attitude estimators
currently in use, their components and applications.

• Section 4 describes various coordinate systems used
in inertial navigation systems and defines the transfor-
mation of coordinates from one frame to another. Of
primary concern is their relative orientation (Fig. 2).

• Section 5 discusses and elaborates on applied inertial
navigation algorithms, and presents efficient pseudo-
codes of various INS algorithms.

• Section 6 develops the basic INS error equations and
gives insights on deriving a simplified system model of
the same error equations without delving deeply into
rigorous mathematical proofs. This aims at giving the
reader intuition into one of the most basic components
of an inertial navigation system.

• Section 7 discusses the components and the computa-
tional aspects of Kalman filters. Also efficient algo-
rithms targeted for embedded processors are presented.

• Section 8 is dedicated to insights of the Kalman filter
implementations. It points the readers’ attention to
some of the practical aspects to be considered when
designing an attitude estimation filter.

• Section 9 presents different approaches to solving the
attitude estimation problem, which are very efficient in
terms of computational load and power consumption.

Figure 3 Commercial attitude and heading reference systems with
built-in IMUs from XSens Technologies BV and LORD MicroStrain,
with three accelerometers, three gyroscopes, three magnetometers and
three temperature sensors for sensor calibration. These IMUs include
coning and sculling compensation (see Section 5), which enables them
to deliver attitude data at low rates without loosing accuracy.
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Figure 4 The inertial measurement unit is the basic element in
any inertial navigation system. Raw data acquired from the IMU
in the form of delta velocities and delta angles are integrated and
converted to the navigation frame. When in the navigation frame, delta

velocities can be added to estimated wind speeds to predict true air-
speed and thus predict air-distances. Air distances are essential in
estimating the amount of energy consumption (fuel or battery) for any
flying vehicle.

2 Background on Filters

In this section, we provide a background introduction of
the position of attitude estimation filters in the context of
inertial navigation systems in general. We also demonstrate
the development phases, and provide a brief description of
the major mile-stones in its history.

2.1 Attitude Estimation Filters and Inertial Systems

The heart of any inertial navigation system is a fully
calibrated and embedded inertial measurement unit (IMU)
like the 3DM-CV5 from LORDMicroStrain or the series of
IMUs from XSens Technologies BV (Fig. 3.). IMUs should
deliver accurate temperature-compensated (see Section 8
for sensor calibration and compensation) inertial sensor
data from three gyroscopes and three accelerometers to a
navigation floating-point digital signal processor (DSP) [7,
8].

Small angular increments (dφ1) terms obtained from
gyroscope sensors are compensated for fine gyro-bias2

corrections and then integrated using fast quaternion
algorithms (Section 5) to derive a 3×3 (9 element) direction
cosine matrix (Fig. 4), which defines the instantaneous
orientation of the vehicle relative to the local level earth-
centered coordinates (North, East, Down) [9, 10]. Sensed
velocity increments (dV 3) obtained from accelerometers
are then transformed into delta velocity incremental

1Small angular increments, also called Delta theta terms dφ, are small
measured angular changes over one IMU cycle.
2Gyro bias is the mean angular change per second measured by the
gyro when the actual angular rate is zero (stationary case).
3Small velocity increments delivered by the accelerometer sensors
during a time step dT , also called delta velocity terms.

components (with the aid of the direction cosine matrix) in
the local-level earth-referenced coordinate frame.

(a)

(b)

Figure 5 The strapdown system replaces gimbals with a computer
that simulates their presence electronically. In the strapdown system,
the gyroscopes and accelerometers are rigidly mounted to the vehicle
structure so that they move with the vehicle. In a three axis gimballed
platform, the gyros alone will try to maintain the platform aligned in
inertial space. If the platform is operating in local-level coordinates,
the navigation computer must keep the platform horizontal. It does this
by sending command signals to the gyros that otherwise would fight
the gimbals motion.
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Since the IMU also senses gravity, the delta velocities
contain components of integrated gravity [11]. To com-
pensate for this gravity component in the down direction,
we subtract it from the delta-velocity components and then
integrate to give velocity components in the local-earth
referenced coordinate frame (Vn, Ve and Vd ), which are sub-
sequently integrated further to produce updated values of
latitude, longitude and altitude. Using the direction cosine
matrix, heading, roll and pitch values are computed [12].

Usually a high speed Kalman filter propagated and
updated at a predefined computation rate is used to estimate,
align, and correct system computed states and residual fine
inertial sensor bias values. This is done using measurement
aiding from multiple sources including, GPS-receiver’s
position and velocity, barometric pressure sensors and mag-
netic heading. Velocity measurements is required to enable
the system to maintain a mathematical representation of hor-
izontal [13]. When the vehicle is moving, and especially
when velocity is changing, you have no means of separat-
ing sensed gravitational acceleration from true acceleration,
and a slight mathematical misalignment in your horizontal
model will result in erroneous measurements of accelera-
tion (see Section 6) since you will be sensing a component
of gravity. If you have a velocity reference (from airspeed
sensors, wheel-encoders or GPS, etc.) you can correct the
misalignment, maintain a true representation of horizon-
tal, and integrate acceleration and velocity correctly [14].
The way one maintains alignment in modern day navigation
systems is to use a Kalman filter [15].

2.2 Development History

The fundamental principles (laws of mechanics and
gravitation) on which inertial navigation is based was
discovered by Isaac Newton in the seventeenth century [16].
Despite of this, it was about another two centuries before

inertial navigation techniques could be demonstrated. A
brief chronology of the history of inertial navigation
systems is given as follows:

• 1852 - The gyroscopic effect was discovered by
Foucault who was the first to use this word.

• 1923 - Schuler invents a device that enables a vertical
reference to be defined [17].

• 1920 - Directional gyroscopes and artificial horizon
instruments were produced for aircrafts.

• 1930 Boykow introduced the idea of using accelerom-
eters and gyroscopes to build a functional inertial
navigation system.

• 1949 - The first publication suggesting the strapdown
inertial navigation concepts.

• 1950’s - The accuracy of gyroscopes increases incred-
ibly, reducing their errors from 15◦/hour to about
0.01◦/hour.

• 1960’s - The start of the ring laser gyroscope and wide
spread of the so-called stable platform technology.

• 1961 - NASA awarded MIT laboratory (later to become
the Charles Stark Draper Laboratory), a contract for
preliminary design study of a guidance and navigation
system for Apollo [18, 19].

• 1970’s - Advances in technology converged to make
strapdown systems available [20].

• 1980’s - Developments of higher-order gravity models
enabled trajectory accuracy improvements of approxi-
mately an order of magnitude [21, 22]

• 1990’s -A non-gyroscopic inertial measurement unit
was proposed that consisted of a triad of accelerometers
mounted on three orthogonal platforms rotating at
constant angular velocities [23].

Nearly all IMUs fall into one of the two categories; stable
platform systems Fig. 5b or, strapdown systems, Fig. 5a.
The difference between the two categories is the frame of

Figure 6 Any GNSS-INS
system is composed of a INS
responsible of predicting
velocity, position and heading, b
State fusion filter that combines
the readings from both INS and
GNSS to optimally estimate
attitude of the system.
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Table 1 Types of random error noise sources.

Type Description Units Result of integration

MEMS Gyro Error Characteristics

Constant Bias The average output from the
gyroscope when it is not undergo-
ing any rotation

◦/sec A steadily growing angular error.

White Noise (Angle Random Walk ARW) Very high frequency noise that is
added to the signal that has an
average amount equal to sigma
(σ ) and with a long term average
equal to zero.

◦/sec/
√
Hz To find error in orientation due

to gyro white noise multiply
ARW by the square root of the
integration time (t).

Bias Stability (Sometimes called Bias Instability) A bias stability measurement
describes how the bias of a device
may change over a specified
period of time. (Bias Fluctua-
tions) [26]

◦/sec

Rate Random Walk This is a rate error due to white
noise in angular acceleration [27]

◦/ sec1.5 Introduces the opportunity to
plan for re-calibration in critical
applications that require extended
life.

Accelerometer Error Characteristics

Constant Bias The average output from the
accelerometer when it is not
undergoing any movement.

m/sec2 A steadily growing velocity error.

White Noise (Velocity Random Walk VRW) Very high frequency noise that is
added to the signal that has an
average amount equal to sigma
(σ ) and with a long term average
equal to zero.

m/sec/
√
hr To find error in velocity due to

accelerometer white noise multi-
ply VRW by the square root of
the integration time (t).

Bias Stability (Sometimes called Bias Instability) A bias stability measurement
describes how the bias of a device
may change over a specified
period of time

m/sec

Acceleration Random Walk This is an acceleration error due
to white noise in jerk (derivative
of acceleration) [28].

m/sec2/
√
hr

reference in which the rate-gyroscopes and accelerometers
operate.

2.2.1 Stable Platform Systems

In stable platform system types, the inertial sensors are
mounted on a platform which is isolated from any external
rotational motion. In other words the platform is held
in alignment with the global frame. This is achieved
by mounting the platform using gimbals (frames) which
allow the platform freedom in all three axes. The platform
mounted gyroscopes detect any platform rotations. These
signals are fed back to torque motors which rotate the
gimbals in order to cancel out such rotations, hence keeping
the platform aligned with the global frame. To track the

orientation of the device the angles between adjacent
gimbals can be read using angle pick-offs. To calculate
the position of the device the signals from the platform
mounted accelerometers are double integrated. Note that it
is necessary to subtract acceleration due to gravity from the
vertical channel before performing the integration.

2.2.2 Strapdown Systems

In strapdown systems, the inertial sensors are mounted
rigidly onto the device, and therefore output quantities are
measured in the body frame rather than the global frame.
To keep track of orientation the signals from the rate
gyroscopes are ‘integrated’, as described in Section 5. To
track position the three accelerometer signals are resolved
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into global coordinates using the known orientation, as
determined by the integration of the gyro signals. The global
acceleration signals are then integrated as in the stable
platform algorithm.

Stable platform and strapdown systems are both based
on the same underlying principles. Strapdown systems have
reduced mechanical complexity and tend to be physically
smaller than stable platform systems. These benefits are
achieved at the cost of increased computational complexity.
As the cost of computation has decreased strapdown
systems have become the dominant type of INS.

More recently, there has been significant developments in
inertial sensors, especially gyroscopes with large dynamic
range giving the strapdown principles opportunity to be
realized. This has enabled the complexity and size of inertial
navigation systems to be reduced, as well as enabling
reliable [24] inertial sensors to be produced at a relatively
inexpensive price, which led to significant advancements in
a diversity of applications (see Section 3).

3 Aided Inertial Navigation Systems

The inspiration of any system integration concept, is to get
superior execution than would be conceivable by any of
the stand-alone systems. This section starts with a look at
the qualities of GNSS and INS systems that make them so
appropriate to combine together [25]. The subtleties for
combining the systems together will be examined afterward
within this section.

One of the imperative points of interest of inertial
(gyroscopes and accelerometers) systems is that they require
no interaction with the environment past the client. This is
attractive particularly to clients where outside supporting
cannot be depended upon or is rare. In another sense, no
external interference besides the client is needed for the INS
to work properly. On the contrary, GNSS systems, which
depend on signals transmitted from satellites, obviously,
can’t be ensured in all cases, and transitory blackouts going
from seconds to minutes might be conceivable, contingent
upon the application and working environment (see Fig. 6).

The only restriction concerning the output rate of the
inertial system, is the computational power of the INS host
computer. Some INS’s are able of delivering the navigation
state vector at 100 Hz or more. On the other hand, most
GNSS receivers have data rates of 1 to 20 Hz, in spite of
the fact that a few specialized receivers can give yield up
to 100 Hz. Expressed in an another way, the bandwidth of
the navigation states delivered by inertial system is regularly
much higher than with GNSS, which is vital in guidance and
control and for high-dynamic applications.

GNSS and INS are complementary in terms of the
information they provide. In particular, despite the fact

that GNSS can provide an attitude solution, this is usually
dodged in practice because it includes employing multiple
receiver antennas and expensive equipment, while attitude
is the main output of INS algorithms.

Most critically, GNSS and INS systems are also
complementary in terms of their errors (Table 1). While
low-cost INS inertial sensors are error unbounded, GNSS
provides velocity and position estimates that are limited
and bounded in terms of their errors. Also, GNSS
systems are dominated by high-frequency errors while
INS systems are susceptible to low-frequency errors due
to the integration (effectively a low-pass filter) of the
mechanization equations (see Section 6).

With respect to what has been mentioned, whenever
GNSS and INS systems are fused, the GNSS can deliver
high-fidelity position and velocity measurements that can
bound the INS system generated errors, which in turn
delivers high frequency navigation states (attitude, position
and velocity) needed for guidance and control of vehicles.
The INS system can also maintain good accuracy in case
of outages of GNSS during temporary blockage of receiver
antennas. These are the main reasons that motivate the
integration of both systems nowadays.

In this article, we will demonstrate to the reader how
both systems (INS and GNSS) can be fused together for
an optimal navigation solution. It is helpful to always
remember that the navigation solution is obtained by
integrating the acceleration readings to obtain velocity and
by double integrating the sensed accelerometers to obtain
position.

3.1 Applications of Inertial Navigation Systems

Inertial navigation systems are used extensively in every
day applications, covering aircraft navigation, spacecrafts,
robots, unmanned aerospace vehicles and ships. As well,

Figure 7 Diverse applications need different accuracies of gyros in
strapdown inertial navigation systems.
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Figure 8 Earth-centered inertial (ECI) frame.

many novel applications include, active suspension of high
performance racing cars, Stewart platform simulators and
surveying of underground oil pipelines and wells. They can
also be applied to many advanced medical equipment, such
as MRI devices, surgical robots and intelligent beds. The
use of inertial navigation systems is widely spreading in the
medical field, for example, in the manufacturing of wheel
chairs based on inertial systems. They have been placed
on head trackers of disabled people where they can choose
where to go and in what direction solely by moving their
heads.

Due to such diversity of fields where inertial systems
may be applied, a broad range of inertial sensor accuracy is
required (especially for gyroscopes, see Fig. 7).

Also, since inertial systems differ in the amount of time
they will be required to report accurate data, it is necessary
to choose the sensors accordingly. For example, many
airborne systems may need to provide accurate position and
attitude data for several hundreds of kilometers or several
hours. In this instance, it is necessary to rely on inertial
sensors having very low residual gyroscope biases, having
the order of 0.001 degrees per hour. Other cases involving
marine or space applications may be required to provide
accurate data for weeks or even months. In these extreme
cases, gyroscopes having bias errors on the order of 0.0001
degrees per hour are mandatory. In some cases such as
torpedo guidance operating for a few minutes, it is sufficient

to rely on sensors with moderate accuracy (0.1 to 100
degrees per hour, see Fig. 7).

4 Coordinate Frames and Transformations

The attitude of a vehicle is defined as its orientation with
respect to a reference frame. It is substantial to understand
the different coordinate frames used in inertial navigation
systems and their transformations to grasp its concepts. In
this section we will discuss the basic coordinate frames
that have three orthogonal unit vectors and that follow the
right-hand rule [29].

4.1 Coordinate Frames

The measurement sensed by an Inertial Measurement
Unit (IMU) are three orthogonal components of the body
rotation rates and three accelerations in a coordinate frame,
which is not directly related to any coordinate frame.
These measurements have to be analytically integrated
and transformed through several coordinate frames. It is
important therefore that all coordinate frames involved in
the transformation of the measurements, and results of
integration are well defined before any discussion of an
inertial navigation system is presented.

4.1.1 Earth-Centered Inertial (ECI) Frame

Newton defines the inertial frame as the frame of reference
that does not rotate or accelerate.

Such a frame is not practically realized although,
theoretically well defined. It is best approximated as one
that is fixed with respect to the distant stars. For all practical

North pole

Greenwich
meridian Local

meridian
plane

Equatorial
plane

e-frame

i-frame

Figure 9 The relative orientation and position of the Earth, inertial
frame, and navigation frame.
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Figure 10 The x-axis of the body frame is aligned with the
longitudinal axis of the air-frame. The y-axis is aligned with the right
wing, while the z-axis completes the triad.

purposes the inertial frame can be treated as the frame that
has the following (see Fig. 8):

• xi-axis towards the mean vernal equinox.
• yi-axis completes a right handed system.
• zi-axis towards the north celestial pole.

4.1.2 Earth-Centered, Earth-Fixed (ECEF) Frame

It is a right-handed coordinate system that rotates with and
is attached to the earth, which is why it is called earth fixed.
This frame is not inertial since, it revolves around the sun
at an average orbital speed of 29.78 km/sec and rotates at
a rate of 7.292115.10−5 rad/sec. The Earth-fixed frame can
be defined as follows:

• Its origin at the mass center of the earth.
• xe-axis pointing towards the Greenwich meridian in the

equatorial plane.
• ye-axis 90 degrees of Greenwich meridian, in the

equatorial plane.
• ze-axis is the axis of rotation of the earth and passes

through the north pole.

In fact, it is important to note that the Global Positioning
System (GPS) reports the position and velocity of the
satellites in the ECEF coordinates system (Fig. 9).

4.1.3 Local-Level or Navigation Frame

It is a non-inertial frame that is commonly used to describe
the navigation of a vehicle in a local-level frame. Its axes are
aligned along the geodetic directions defined by the earth’s
surface. Is is defined as follows:

• Its origin is at the mass center of the vehicle under study.
• The xn-axis points north parallel to the geoid surface.

• The ye-axis points east parallel to the geoid surface,
along a latitude curve.

• The zd -axis points downward, toward the Earth surface,
anti-parallel to the surface outward normal N .

4.1.4 Body Frame

The body frame is a non-inertial reference frame, in which
the measurements of a strapdown inertial navigation system
are reported. Its axes are aligned with the output axes of the
gyroscopes and accelerometers of the Inertial Measurement
Unit (IMU). Thus, the raw data composed of the rotation
rates and the accelerations experience by the body are
coordinatized along the body axes. It is noted that the
navigation frame can be rotated to the body frame by three
consecutive right-handed rotations about its three axes (see
Fig. 10). The definition of the body frame of an inertial
navigation system can be summarized a follows:

• Its origin is at the mass center of the inertial navigation
system.

• The xb-axis points towards the front of the INS.
• The yb-axis points towards the right of the INS.
• The zb-axis points downwards and perpendicular to the

x-y plane.

4.1.5 Platform Frame

The platform frame is a virtual frame created mainly for
the derivation of the error equations. It is an image of
the navigation frame which is recognized on an on-board
computer using the outputs from the sensors. Since these
sensors are dominated by noise, the platform frame does
not coincide with the navigation frame and has a small
deviation error from the navigation frame. The definition of
the platform frame is as follows:

• Its origin at the mass center of the vehicle under study.
• xp-axis slightly misaligned due to attitude errors with

the xn-axis of the navigation frame.

Reference
Frame

Aircraft
Frame

Figure 11 Euler angle sequence corresponding to the three consecu-
tive rotations about the z, y, and x axes, respectively.
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• yp-axis slightly misaligned with the xe-axis of the
navigation frame and perpendicular to the xp-axis.

• zp-axis completes an orthogonal right-handed system.

4.1.6 Sensor Frame

Due to installation errors, the body frame does not coincide
with the sensitivity axes of the sensors ( accelerometers and
gyros) used in our inertial navigation system. These errors
can be compensated during manufacturing by appropriate
calibration. For this reason, we assume here that the
body frame and the sensor frame coincide (they are
interchangeable).

4.2 Transformations

In this section, the basic mathematical tools that define
the transformation between orthogonal coordinate systems
are introduced. We will focus mainly on the concepts of
Rotation Matrix, Quaternions, and Rotation Vectors.

4.2.1 Rotation Matrix

A common coordinate transformation in this article is the
rotation from the North-East-Down coordinate frame to the
body x-y-z coordinate frame via the ordered Euler angles
(see BOX A) yaw (ψ), pitch (θ), and roll (φ).

A sequence of such distinctive rotations is often called
a Euler angle sequence of rotations. The restriction stated
above that successive axes of rotations be distinct still
permits at least 12 Euler angle sequences. The sequence xzy
means a rotation about the x-axis, followed by a rotation
about the new z-axis, followed by a rotation about the newer
y-axis.

Specifically the first rotation is ψ about z which is
denoted here as Cz(ψ). The second rotation is Cy(θ), or θ

about y. Finally, the third rotation is Cx(φ) or φ about x (see
Fig. 11). These three single axis rotations are written as:

Cx(φ) =
⎡
⎣
1 0 0
0 cosφ sinφ

0 − sinφ cosφ

⎤
⎦ , (1)

Cy(θ) =
⎡
⎣
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦ , (2)

Cz(ψ) =
⎡
⎣

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤
⎦ . (3)
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Thus, the transformation from body x-y-z coordinate frame
coordinate frame to the n-frame (North-East-Down) is writ-
ten as a cascade of the three single-axis rotations above,
which can be solved using standard matrix multiplication:

Cb
n =Cz(ψ)Cy(θ)Cx(φ)

=
⎡
⎣

cosψ cos θ cosψ sin θ sinφ+sin θ sinφ cosψ sin θ sinφ + sin θ sinφ

− sinψ cos θ −sinψ sin θ sinφ+cos θ cosφ sinψ sin θ cosφ + cos θ sinφ

sin θ − cos θ sinφ cos θ cosφ

⎤
⎦ .

(4)

4.2.2 Quaternions

The rotation matrix describes the rotation of 3 degrees of
freedom with 9 quantities, with redundancy. Euler angles
and rotation vectors are compact but with singularity as
mentioned before.

Normal complex numbers can describe rotations in a
plane. Recall that in order to rotate a two degrees-of-
freedom vector represented be complex number in the plane
by an angle θ , we multiply by eiθ . It can be written in the
usual form

eiθ = cos θ + i sin θ . (5)

A quaternion q has a real part and three imaginary parts.
Usually the real part is written first and the three imaginary
parts next, as

q = q0 + q1i + q2j + q3k, (6)

where i, j, k are three imaginary parts of the quaternion.
These imaginary parts satisfy the following equations:

⎧⎪⎪⎨
⎪⎪⎩

i2 = j2 = k2 = −1
ij = k, j i = −k

jk = i, kj = −i

ki = j, ik = −j

(7)

Alternatively, quaternions are often represented using a
scalar and a vector as:

q = [s, v]T , s = q0 ∈ R, v = [q1, q2, q3]T ∈ R
3.

Here s is the real part of the quaternion and v is its imaginary
part. If the imaginary part of the quaternion is 0 it is called
a real quaternion and if the real part is 0 it is called
imaginary quaternion.

4.2.3 Rotation Vector

In fact, a rotation can be described by a rotation vector and
a rotation angle. Thus we can use a vector whose direction

is parallel to the axis of rotation and whose magnitude is
equal to the angle of rotation.

Let us introduce a rotation vector �, which is directed
along the axis of rotation and has a magnitude equal to the
rotation angle in radians. The equation of the rotation vector

1318



J Sign Process Syst (2022) 94:1309–1343

Figure 14 Vector v and its image w are related by the rotation about a
vector aligned with the quaternion vector.

can be defined as

� = ‖�‖n =
⎡
⎣

φx

φy

φz

⎤
⎦ = ‖�‖

⎡
⎣
cosα

cosβ

cos γ

⎤
⎦ , (8)

where n is the unit vector in the direction of the rotation
vector. α, β, γ are the angles between the rotation vector
and the coordinate frame axis. The quaternion elements can
be represented through the parameters of the rotation vector
� as

q0 = cos
φ

2
,

q1 = sin
‖	‖
2

φx

2
,

q2 = sin
‖	‖
2

φy

2
,

q3 = sin
‖	‖
2

φz

2
.

(9)

We can show using Fig. 14 that the image of the vector
v under rotation around the vector part of the quaternion
q, and through an angle “2θ” where q0 = cos θ (φ = 2θ
in Eq. 9) is the scalar part of the quaternion, q, to be the
vector w.

The vector v can be resolved into a vector a along the
quaternion and a vector n perpendicular to a, such that, v =
a+n. Since a is aligned with q it is invariant under rotation.
On the other hand, it can be easily proved geometrically that
m = cos 2θn + sin 2θn⊥.

5 Applied Inertial Navigation

The main steps in obtaining a solution for a navigation
system problem are as follows (Fig. 15):

• Gyro bias corrections
• Quaternion integration
• Direction cosine computation
• Heading, Roll and Pitch computation

• Delta velocity transformations to earth coordi-
nates

• Sensed gravity component removal
• Velocity integration
• Position and altitude integration

5.1 Gyro Bias Corrections

When looking at the output of inertial sensors like
gyroscopes and accelerometers, you observe that there is a
small offset in the average signal output even if the sensors
are not moving. This phenomena is known as sensor bias.
This bias is the result of physical properties of the sensors
that change over time which often lead to increase in sensor
bias. The physical properties of sensors are different and
so each sensor needs to be calibrated individually. Usually,
gyroscopes are factory calibrated for coarse biases but
even though, residual biases still remain in the gyroscope
outputs. Remember that bias changes so there is no constant
value that can be used to compensate for bias. Advanced

Figure 15 Navigation algorithm flow diagram.
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algorithms are run in real-time to estimate and adjust for
these biases.

If not corrected for bias, the output orientation of the
system will drift with time. Consider a bias of 0.1 deg/s in
the gyroscope output. This means we would have a drift of,
0.1 × 60 = 6 degrees in the orientation after one minute.
Thus, it is crucial to estimate theses biases and compensate
for them in the host computer of your inertial navigation
system. On-board filters use sensor fusion to predict the
biases and correct for them. The dφ terms extracted from
the IMU are compensated for gyroscope biases by a simple
subtraction operation as shown in Algorithm 1.4

5.2 Coning Correction

In old navigation systems, the inertial measurement unit
(IMU) was mounted on a gimballed platform that was
maintained in a horizontal position whenever the vehicle
rotated, so that the gyroscopes and the accelerometers
did not rotate with the vehicle. Nowadays, in strap-down
systems, the gyroscopes and accelerometers are attached
and rotate with the vehicle. To obtain velocities and angles
you have to time integrate the reported acceleration and
angular rates which is a highly non-linear operation. In
particular, if you have high speed motion occurring you
have to do the integration really fast to prevent errors from
creeping in. This implies the IMU should be sampled at a
really high rate (e.g., 1000 Hz) to provide raw angular rates
and accelerometer data for the integration process. Since
this integration is part of the Kalman filter (see Section 7)
process, it places a heavy burden on your processor. This
forms a major confliction. On the one hand you need to

4The adapted terminology here for estimated gyroscope biases is
δwG = (δωs

Gx, δωs
Gy, δωs

Gz)

get data a high rate to preserve integration accuracy. On
the other hand you can’t afford dealing with this high
throughput of data. So what the coning algorithm does is
to reduce the heavy burden on the navigation processor by
performing accurate high speed integration on-board the
IMU processor. The output is in the form of delta theta
which is the integration of the raw angular rate data. The
benefit is that the delta theta quantity has already captured
the integration non-linearities using a high speed coning
algorithm. The resulting output still retains accuracy even at
a slow rate (e.g., 100 Hz). These delta theta quantities are
used by the quaternion integration block of the navigation
processor to find the attitude of the system.

In order to implement the quaternion integration, the
delta theta quantities which form components of the rotation
vector φ = [dφx, dφy, dφz] for one time step should be
calculated. The general equation for the dynamics of this
vector φ̇ can be expressed by the following equation:

φ̇ = ω + 1

2
φ × ω + 1

φ2

(
1 − φ sinφ

2(1 − cosφ)

)
φ × (φ × ω),

(14)

where φ is the rotation vector that defines the attitude of the
body frame B at general time t relative to frame B at time
tm−1, and ω is the angular rotation rate of frame B relative
to inertial space coordinatized in frame B.

A more convenient form for practical implementation
would require writing the sine and cosine terms as series
expansions and ignoring any terms higher than third
order. For example, through a series expansion, the scalar
multiplier of the φ × (φ × ω) term in Eq. 14 can be written
as:

1

φ2

(
1− φ sinφ

2(1−cosφ)

)
= 1

12

(
1+ 1

60
φ2+· · ·

)
≈ 1

12
. (15)

Hence, the rate of change of the rotation vector is given by

φ̇ ≈ ω + 1

2
φ × ω + 1

12
φ × (φ × ω). (16)

It can be shown through analysis that, to second order
accuracy of φ,

1

2
φ × ω + 1

12
φ × (φ × ω) ≈ 1

2
α × ω, (17)

with

α =
∫ t

tm−1

ωdτ, (18)

where α is the integral of ω from time tm−1 to time t .
Thus, Eq. 14 becomes to second order accuracy:

φ̇ ≈ ω + 1

2
α × ω. (19)

Using Eq. 19, it is possible to determine the attitude rotation
vector that relates the body B frame attitude at time tm
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relative to time tm−1

φm =
∫ tm

tm−1

[
ω + 1

2
α × ω

]
dτ = αm + βm, (20)

with

αm =
∫ tm

tm−1

ωdτ, (21)

βm = 1

2

∫ tm

tm−1

(α × ω) dτ, (22)

where βm is by definition, the coning attitude motion from
time tm−1 to time tm. The variable βm has been named
coning term since it measures the effects of coning motion
present in ω. Coning motion is the condition where the
angular velocity vector is itself rotating. As can be easily
seen from Eq. 21, α and ω remain parallel when the angular
velocity vector does not rotate. Hence, the βm terms zeroes
out since the cross product in its integrand is zero. In this
case, Eq. 20 reduces to

φm =
∫ tm

tm−1

ωdτ . (23)

This condition can also be seen directly from Eq. 14 since
the second and third terms on the right-hand-side zero out.

5.2.1 Coning algorithm

In this section, we will develop an efficient digital algorithm
for calculating the coning term. The integration time
in Eq. 22 can be divided into a time up to and after tl−1,
where tl−1 is between tm−1 and tm. From Eq. 22,

β l = β l−1 + β l , βm = β l

∣∣
tl=tm

,

β l

∣∣
tl=tm−1

= 0 ,

β l = 1
2

∫ tl
tl−1

(α × ω) dτ .

(24)

.
A similar process can be utilized to digitize (21) giving

the following

αl = αl−1 + αl , αm = αl |tl=tm ,

αl |tl=tm−1
= 0 ,

αl = ∫ tl
tl−1

ωdτ .

(25)

Substituting α = αl−1 + α(t) in β l of Eq. 24 we
obtain

β l = 1
2 (αl−1 × αl) + 1

2

∫ tl
tl−1

(α(t) × ω) dτ ,

β l = β l−1 + β l , βm = β l

∣∣
tl=tm

,

β l

∣∣
tl=tm−1

= 0 .

(26)

Equations 25 and 26 form the basis for a recursive digital
algorithm at the high l rate of the on-board IMU processor
to calculate the αm and the coning term βm of the lowm rate
of Eq. 20. What remains is to determine a digital integration
algorithm for the integral term in Eq. 26.

In order to digitize the integral term in Eq. 26, it is wise to
consider an linear analytical form for the angular rate vector
ω between any two time steps tl−1 and tl . Approximating
ω profile as a constant a added to a linear build-up in time
having rate b, we obtain

ω ≈ a + b(t − tl−1), (27)

where both a and b are constant vectors. Therefore, both
constants can be determined from current and previous
values of αl

a = 1

2Tl

(αl + αl−1) , b = 1

T 2
l

(αl − αl−1) .

(28)

Substituting (28) in Eq. 27 and the integral part of Eq. 26
gives

1

2

∫ tl

tl−1

(α(t) × ω) dτ = 1

12
(αl−1 × αl) . (29)

When substituted in Eq. 26, the final result is

β l = 1

2

(
αl−1 + 1

6
αl−1

)
× αl . (30)

The overall digital algorithm for αm and the coning term
βm is determined from the above results and abbreviated in
Algorithm 2.
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5.3 Sculling Compensation

Sculling on the other hand is basically analogous to coning
but it has to do with the accelerometers instead of the
gyroscopes. Coning relates specifically to an error in your
angle measurement and so fundamentally it is coming
from gyro data. On the other hand, sculling happens when
you have a cyclic linear acceleration in combination with
cyclic rotation. We call this sculling because it results in
an apparent but erroneous velocity, and the characteristic
motion that gives you this erroneous velocity looks like the
sculling type of oar, where the oar sweeps back and forth.
Without compensation, this would come out in the delta
velocity quantity and the output would have that corruption
built into it. For example, if you have very fast motion,
especially a vibration-like oscillating motion at the same
time that you have a slow sampling rate, you will be in
trouble without the sculling compensation provided.

Therefore, in order to prevent delta velocity errors from
creeping in, it is convenient to account for the body
frame rotation C

Bm−1
B(t)

during the mth computer cycle index
period. To find delta velocities, we integrate the reported
accelerometer measurements according to the following

vm =
∫ tm

tm−1

C
Bm−1
B(t)

aSF dt, (31)

where aSF is the accelerometer reported values and C
Bm−1
B(t)

the general direction cosine matrix defining the attitude of
Frame B relative to Frame Bm−1 for time t greater than
tm−1.

The C
Bm−1
B(t)

term in Eq. 31 can be expressed as:

C
Bm−1
B(t)

= I + sinφ(t)

φ(t)
[φ(t)×] + 1 − cosφ(t)

φ(t)2
[φ(t)×]2,

(32)

where φ(t) = Rotation vector that defines the attitude of the
body frame B at general time t relative to frame Bm−1 at
time tm−1, and φ(t) = Magnitude of φ(t).

A first order approximation for Eq. 32 neglects [φ(t)×]2

and approximates sinφ(t)/φ(t) by unity. Assuming that the
m cycle rate is selected fast enough to maintain φ(t) small,
e.g., less that 0.05 radians, we can write φ(t) ≈ α(t). In this
case (32) becomes

C
Bm−1
B(t) ≈ I + [α(t)×] . (33)

Substituting (33) in Eq. 31 then yields to first order

vm = ∫ tm
tm−1

(I + [α(t)×] aSF ) dt

= ∫ tm
tm−1

aSF dt + ∫ tm
tm−1

(α(t)×) aSF dt ,

vm = vm + ∫ tm
tm−1

(α(t) × aSF ) dt ,

α(t) = ∫ t

tm−1
ωdτ, αm = α(tm) ,

v(t) = ∫ t

tm−1
aSF dτ , vm = v(tm) .

(34)

Equation 34 can be further synthesized if we work on the
integral term by first noting that:

d
dt

(α(t) × v(t)) = α(t) × v̇(t) + α̇(t) × v(t)

= α(t) × v̇(t) − v(t) × α̇(t) .
(35)

Upon re-arranging this equation, we obtain

α(t) × v̇(t) = d

dt
(α(t) × v(t)) + v(t) × α̇(t) . (36)

Trivially,

α(t) × v̇(t) = 1

2
α(t) × v̇(t) + 1

2
α(t) × v̇(t) . (37)

We now substitute for one of the terms on the right to obtain

α(t) × v̇(t) = 1
2

d
dt

(α(t) × v(t)) +
1
2 (α(t) × v̇(t) + v(t) × α̇(t)) .

(38)

Knowing that α̇(t) = ω and v̇(t) = aSF , Eq. 38 becomes

α(t) × aSF = 1
2

d
dt

(α(t) × v(t)) +
1
2 (α(t) × aSF + v(t) × ω) .

(39)

Substituting (37) for the integrand in Eq. 34 yields the
following

vm = vm + 1
2 (αm × vm)+∫ tm

tm−1

1
2 (α(t) × aSF + v(t) × ω) dt .

(40)

It is easily verified that the integrand in Eq. 40 vanishes for
the cases where the angular velocity term ω and the specific
force aSF are non-rotating and having constant magnitudes.
We conclude that the integral term in Eq. 40 represents a
contribution from rotating high frequency components in
vm.

The integral term in Eq. 40, denoted as “sculling”,
measures the “constant” contribution to v under classical
sculling motion (mariners propel boats using a single
oar with an undulating motion) where the α(t) angular
excursion term about one body frame axis is at the same
frequency and in phase with the specific force aSF along
another axis.

The other terms in Eq. 40, vm + 1
2 (αm × vm), represent

a combination of both low-frequency and high frequency
effects. In particular, 1

2 (αm × vm) is denoted as velocity
rotation compensation term. With this terminology, Eq. 40
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can be re-written as

vm = vm + vRotm + vSculm ,

vSculm = ∫ tm
tm−1

1
2 (α(t) × aSF + v(t) × ω) dt ,

α(t) = ∫ t

tm−1
ωdτ, αm = α(tm) ,

v(t) = ∫ t

tm−1
aSF dτ , vm = v(tm) ,

(41)

and

vRotm = 1

2
(αm × vm) . (42)

where vRotm = “Velocity Rotation Compensation” term,
and vSculm = “Sculling” term. In order to develop a
digital algorithm for calculating the terms in Eq. 41, we
follow an identical procedure to that used for the coning
algorithm. We consider the integration in Eq. 41 as divided
into portions up to and after a general time tl−1 within the
tm−1 to tminterval so that it becomes

vScul(t) = vScull−1 + δvScul(t) ,

δvScul(t) = ∫ t

tl−1

1
2 (α(τ ) × aSF + v(τ ) × ω) dτ ,

(43)

Now let us define the next l cycle time within the tm−1 to tm
interval so that at tl we can write

αl = αl−1 + αl , αm = αl |tl=tm
,

α(τ ) = ∫ τ

tl−1
ωdt, αl = ∫ tl

tl−1
ωdt ,

αl |tl=tm−1
= 0,

vl = vl−1 + vl , vm = vl |tl=tm
,

v(τ ) = ∫ τ

tl−1
aSF dt vl = ∫ tl

tl−1
aSF dt ,

vl |tl=tm−1
= 0 ,

vScull = vScull−1 + δvScull ,

δvScul(t) = ∫ t

tl−1

1
2 (α(τ ) × aSF + v(τ ) × ω) dτ ,

vSculm = vScull

∣∣
tl=tm, vScull

∣∣
tl=tm−1

= 0 .

(44)

Substituting for the terms α and v using Eq. 34 and
incorporating the definition for αl and vl , Eq. 44
becomes

δvScull = 1
2 (αl−1 × vl + vl−1 × αl)+∫ tl
tl−1

1
2 (α(t) × aSF + v(t) × ω) dt .

(45)

As in the coning algorithm design process, we base our
development on an assumed form for the angular rate and
specific-force vectors during the tl−1 to tl time interval. In

this case, we propose a linearly changing angular rate and
specific-force vector over the tl−1 to tl time interval, where
its coefficients are computed from current and past l cycle
sensor samples.Thus we have:

ω ≈ a + b(t − tl−1), aSF ≈ c + d(t − tl−1) , (46)

where a.b, c, d = Constant vectors. With Eq. 46 and theα

and v definitions in Eq. 44

α(t) = a(t − tl−1) + 1
2b(t − tl−1)

2 ,

v(t) = c(t − tl−1) + 1
2d(t − tl−1)

2 .
(47)

Substituting (46) and (47) for the integrand in Eq. 45
yields:

∫ tl
tl−1

1
2 (α(t) × aSF + v(t) × ω) dt =

1
12 (a × d + c × b) T 3

l .
(48)

where Tl = time interval tl − tl−1, i.e., the l cycle
computation period. The constants a, b, c, and d can be
calculated for each tl−1 to tl time interval using successive
measurements of integrated angular rate and specific
force acceleration increments from the inertial sensors. To
determine the constants a, b, c, and d uniquely, it is required
to take sample measurements from two successive intervals.
For sensor samples taken at the l cycle rate the results are as
follows:

a = 1
2Tl

(αl + αl−1) , b = 1
T 2

l

(αl − αl−1)

c = 1
2Tl

(vl + vl−1) , d = 1
T 2

l

(vl − vl−1) .
(49)

Substituting the terms in Eq. 49 in Eq. 48 we obtain the
desired equation for δvScull :

δvScull = 1
2

[(
αl−1 + 1

6αl−1

)
× vl+(

vl−1 + 1
6vl−1

)
× αl

]
.

(50)

A digital algorithm from the above results and from the
coning equations yields the sculling Algorithm 3.
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5.4 Velocity Increments Transformation

The velocity increments (dvx, dvy, dvz) output from the
sculling compensation algorithm are described in the body
frame. In order to perform the velocity integration in the
navigation coordinate frame, it is essential that we transform
their values to the NED frame. This can be easily done
with help of the direction-cosine-matrix Cn

b as shown in
Algorithm 4.

5.5 Quaternion Integration

Quaternion integration deals with the determination of the
quaternion between the body and the navigation frame.
A primary advantage of using the quaternion technique

lies in the fact that only four unknowns are necessary for
calculation of the transformation matrix, while the direction
cosine method requires nine. The quaternion can also be
expressed as a 4x4 matrix. Thus

Q =

⎡
⎢⎢⎣

q0 q1 q2 q3
−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0

⎤
⎥⎥⎦ , (51)

where, as before, q0, q1, q2, q3 are quaternion components.
It can be shown that the quaternion analog of Puasson

equation (see Section 6 (64)) has the form

Q̇ = 1

2
Q[w×], (52)

where [w×] is the skew-symmetric form of the angular
velocity vector w. The recurrent solution of the above
equation can be determined (to first order) as

Qk+1 = Qk + 1

2
Qk[w×]dT , (53)

or

Qk+1 = Qk(I + 1

2
[w×]dT ) = Qkd�, (54)

where dT is the sampling period and dQ = (I + 1
2 [w×]dT )

is usually called the update quaternion. It is the quaternion
of a small rotation that can be represented using Eq. 9 as
follows

d� = dλ0 + dλ1i + dλ2j + dλ3k ,

dλ0 = cos
‖d	‖
2

,

dλ1 = dφx

‖d	‖ sin
‖d	‖
2

,

dλ2 = dφy

‖d	‖ sin
‖d	‖
2

,

dλ3 = dφz

‖d	‖ sin
‖d	‖
2

.

(55)

Substituting in Eq. 54 the expression obtained is:

Qk+1 =

⎡
⎢⎢⎣

q0 q1 q2 q3
−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

dλ0 dλ1 dλ2 dλ3
−dλ1 dλ0 −dλ3 dλ2
−dλ2 dλ3 dλ0 −dλ1
−dλ3 −dλ2 dλ1 dλ0

⎤
⎥⎥⎦ .

(56)

But sin ‖d	‖
2 and cos ‖d	‖

2 can be approximated using a
third order expansion of the Taylor series:

sin x ≈ x − x3

3! + x5

5! , cos x ≈ 1 − x2

2! + x4

4! . (57)
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The series expansion of Eq. 55 gives the following
formula for the quaternion components:

dλ0 = 1 − ‖d	‖2
8

+ ‖d	‖4
384

,

dλ1 = rdφx ,

dλ2 = rdφy ,

dλ3 = rdφz ,

(58)

where r = 1
2 − ‖d	‖2

48 + ‖d	‖4
3840 . Substituting (58) into Eq. 51

we obtain Algorithm 5.

5.6 Normalizing Quaternion Parameters

According to the quaternion properties, its norm should be
always equal to one, which means:

q2
0 + q2

1 + q2
2 + q2

3 = 1 . (59)

But unfortunately, the above condition can be violated due
to calculation errors or rounding approximations. In order
to remove this effect it is necessary to apply a normalization
procedure.Since q2

0 + q2
1 + q2

2 + q2
3 ≈ 1 then we have:

 = 1 − q2
0 + q2

1 + q2
2 + q2

3 = 1 − ‖q‖2 , (60)

is a very small number. Then normalizing each quaternion
parameter by dividing by

√
1 − , and expanding using a

Taylor’s series formula we obtain:

q̂norm = q√
1 − 

≈ q(1 + 

2
) = q ∗ 0.5(3 − ‖q‖2) . (61)

5.7 Direction CosineMatrix Computation

The quaternions compose a four-element unit vector
(q0, q1, q2, q3) obtained from the quaternion integration
step. They can be efficiently used to find the elements of
the 3-by-3 Direction Cosine Matrix (DCM). The outputted
DCM performs the coordinate transformation of a vector
in body axes to a vector in local-level navigation frame
axes. The following algorithm will be used in the embedded
processor to find the 9-elements of the DCM:

Cn
b =

⎡
⎣

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤
⎦ . (62)

1325



J Sign Process Syst (2022) 94:1309–1343

5.7.1 Roll, Pitch, and Heading Calculation (Euler Angles)

The Euler angles are three angles introduced by Leonhard
Euler to describe the orientation of a rigid body with respect
to a fixed coordinate system. Leonard Euler (1707-1783)
was one of the giants inn mathematics [30]. Euler stated and
proved a theorem that states that:

Any two independent orthonormal coordinate frames can
be related by a sequence of rotations (not more than three)
about coordinate axes, where no two successive rotations
may be about the same axis.

When we say that two independent frames are related,
we mean that a sequence of rotations about successive

coordinate axes will rotate the first frame into the second.
The angle of rotation about a coordinate axis is called an
Euler angle. A sequence of such rotations is often called
a Euler angle sequence of rotations. The restriction stated
in the above theorem that successive axes of rotations be
distinct still permits at least 12 Euler angle sequences. The
sequence xzymeans a rotation about the x-axis, followed by
a rotation about the new z-axis, followed by a rotation about
the newer y-axis.

We are specifically interested in the well-known Euler
sequence called the Aerospace sequence. This sequence
(zyx) is commonly used in aircraft and aerospace appli-
cations. For example, a primary flight instrument used in
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aircrafts, continuously relates the orientation of the aircraft
to the local-level n-frame mentioned above.

From the n-frame,first a rotation through the angle
ψ about the z-axis defines the aircraft heading. This is
followed by a rotation about the new y-axis through an angle
θ which defines the aircraft pitch. Finally, the aircraft roll
angle φ, is a rotation about the newest x-axis. These three
Euler angle rotations relate the body coordinate frame of the
aircraft to the local-level n-frame.

6 Principles of Inertial Navigation

6.1 Navigation Equations

It is desirable to formulate the navigation equations in the
earth-centered, earth-fixed frame (e-frame), since usually
the measurements of the GNSS receiver are given in the
e-frame. But usually we are more comfortable in dealing
with n-frame coordinates since it is more trivial to deal with
the North-East-Down directions. Recall that the coordinate
directions of the n-frame are defined by the local horizon
and by the vertical, and centered on the vehicle center
of gravity (cog). Strictly speaking, no horizontal motion
takes place in this frame since it is attached and fixed
to the vehicle. Therefore, the navigation equations are not
coordinatized in the n-frame because no horizontal motion
takes place in this frame. Nevertheless, we will still refer
to the n-frame coordinatization of the navigation equations
as an Earth-referenced formulation in which the velocity
components are transformed along the n-frame coordinate
directions. This concept is rarely discussed in the literature
and usually is a source of confusion.

A vector in the e-frame (navigation frame) has coordi-
nates in the i-frame (inertial frame) given by

xi = Ci
ex

e , (63)

where Ci
e is the transformation matrix from the e-frame

to the i-frame. The time derivative of this matrix is given
by [31]

Ċi
e = Ci

e�
e
ie , (64)

where �e
ie denotes a skew-symmetric matrix with elements

from ωe
ie = (ω1, ω2, ω3)

5 is then given by

�e
ie = [

ωe
ie×

] =
⎡
⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (65)

5 ωe
ie = the angular velocity of the e-frame with respect to the i-

frame, with coordinates in the e-frame. Since the three axis of the
e-frame are aligned with the Earth’s spin axis, then ωe

ie = (0, 0, ωe),
where ωe is the angular rate of the Earth’s rotation.

We also need the second time derivative which
from Eq. 64 and the chain rule for differentiation is given by

C̈i
e = Ci

e�̇
e
ie + Ci

e�
e
ie�

e
ie . (66)

Now differentiating (63) twice with respect to time yields

ẍi = C̈i
ex

e + 2Ċi
eẋ

e + Ci
eẍ

e

= Ci
eẍ

e + 2Ci
e�

e
ieẋ

e + Ci
e(�̇

e
ie + �e

ie�
e
ie)x

e .
(67)

Solving for ẍn and combining with ẍi = gi + ai gives
the system dynamics for position in the e-frame:

ẍe = −2�e
ieẋ

e − (�̇e
ie + �e

ie�
e
ie)x

e + ge + ae . (68)

Since the earth has a constant angular velocity with respect
to the inertial frame, then �̇e

ie = 0 and we obtain

ẍe = −2�e
ieẋ

e − �e
ie�

e
iex

e + ge + ae . (69)

We can transform the navigation equation above into
the n-frame merely by substituting ẋe = Ce

nv
n on the

right-hand side of Eq. 69

d

dt
Ce

nv
n = Ce

n(
d

dt
vn + �n

env
n) , (70)

and on the right hand side of Eq. 69 we use the formula
�n

ie = Cn
e �e

ienC
e
n, and the result is:

d

dt
vn = an − (2�n

ie + �n
en)v

n + gn − Cn
e �e

ie�
e
iex

e . (71)

The last two terms are, respectively, the gravitational vector
and the centrifugal acceleration due to the Earth’s rotation,
coordinatized in the n-frame. Together they define the
gravity vector:

ḡn = gn − Cn
e �e

ie�
e
iex

e . (72)

The distinction between the terms gravitation and gravity,
refers to the difference between the acceleration due to mass
attraction, alone, and the total acceleration, gravitational
and centrifugal, that is measured at a fixed point on the
rotating earth. Gravity has a direction that coincides with the
direction of a plumb line at any given point in space. The
direction of a plumb line coincides with the direction of a
string to which a freely suspended weight, or plumb bob, is
attached.

Finally, by writing �n
en = �n

in + �n
ei = �n

in − �n
ie
6 and

by manipulating the subscripts, we also obtain

2�n
ie + �n

en = �n
in + �n

ie . (73)

Substituting (73) and (72) into Eq. 71, the desired form
of the n-frame navigation equations becomes:

d

dt
vn = an − (�n

in + �n
ie)v

n + ḡn . (74)

The components of the Earth-referenced velocity, vn, the
sensed acceleration, an, and the gravity vector, ḡn, can be

6Relative angular velocities can be added component-wise and they
satisfy commutativity.
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Figure 16 The platform frame
N̂ÊD̂ is a virtual frame that is
slightly misaligned from the true
navigation frame. It is mainly
created for the derivation of the
error equations. It is only
recognized by the INS on-board
computer and it results from the
erroneous gyroscope sensors
that are integrated to give this
false navigation frame.

(a) (b)

(c)

described by their north, east, and down components in the
n-frame as follows:

vn =
⎡
⎣

vn

ve

vd

⎤
⎦ , an =

⎡
⎣

an

ae

ad

⎤
⎦ , ḡn =

⎡
⎣

ḡn

ḡe

ḡd

⎤
⎦ . (75)

6.2 Error Dynamic Equations in the n-Frame

The equations of motion depict the time development
of the user’s position, speed, and attitude under perfect
conditions. The way in which errors proliferate in an INS
can be computed by applying a first-order Taylor series
development (linearization), or perturbation investigation,
to the equations of motion derived in the previous sub-
section. The coordinatization of the error dynamics in the
n-frame represents the traditional and most intuitive scheme
of analyzing INS errors.

6.2.1 Orientation Error Dynamics in the n-frame

The perturbation δan is interpreted as the error in the
expression in the n-frame of the sensed acceleration. It
represents not only accelerometer errors but also orientation
errors that are committed when transforming sensed
accelerations from the sensor frame (s-frame) to the n-
frame. Taking differentials of the relation an = Cn

s as , we
obtain:

δan = δCn
s as + Cn

s δas . (76)

The differential δCn
s is caused by errors in the orientation

of the s-frame with respect to the n-frame. It is convenient
to represent δCn

s in terms of small error angles, one for
each of the n-frame axes: ψn = (ψn, ψe, ψd)T . This can
be represented in the equivalent form of a skew-symmetric
matrix:

�n =
⎡
⎣

0 −ψd ψe

ψd 0 −ψn

−ψe ψn 0

⎤
⎦ . (77)

Since ψn, ψe and ψd represent small angle rotation
errors, the transformation matrix from the true n-frame
to the erroneously computed n-frame (inside the INS
computer), can be written as I − �n. This can be easily
achieved by substituting the small angle errors (see Fig. 16)
inside the DCM (4) on page 7, and approximating it
to first order. Therefore, the computed transformation
may be represented as a sequence of two transformations
comprising first the true transformation from the body frame
(n-frame or s-frame ) to the erroneously computed n-frame
followed by another transformation from the true n-frame to
the erroneously computed n-frame:

Ĉn
s = (I − �n)Cn

s . (78)

It is now clear that:

δCn
s = Ĉn

s − Cn
s = −�nCn

s . (79)
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Substituting (79) in Eq. 76, we obtain

δan = Cn
s δas − �nCn

s as

= Cn
s δas + an × ψn .

(80)

We now establish the dynamic behavior of the error
angles as in the form of a differential equation. Taking the
differential of Ċn

s = Cn
s �s

ns

δĊn
s = δ(Cn

s �s
ns)

= δCn
s �s

ns + Cn
s δ�s

ns ,
(81)

where the perturbation in angular rate, δ�s
ns , is interpreted

as the error in the corresponding computed value, denoted
by �̂s

ns :

δ�s
ns = �̂s

ns − �s
ns . (82)

Differentiating the second line of Eq. 80 with respect to
time and setting the result equal to the right side of Eq. 81,
we get

−�̇
n
Cn

s − �nCn
s �s

ns = δCn
s �s

ns + Cn
s δ�s

ns . (83)

Substituting for �nCn
s and solving for �̇

n
yields

�̇
n = −Cn

s δ�s
nsC

s
n , (84)

in terms of vectors, it is easily verified that this is equivalent
to

ψ̇
n = −Cn

s δωs
ns , (85)

where δωs
ns is the error in the rotation rate of the s-frame

with respect to the n-frame. For small vehicle velocities,
the angular velocity of the navigation frame is negligible,7

consequently, ωs
ns ≈ ωs

is , where ωs
is is the angular velocity

vector delivered by the gyroscope.8

Equation 85 can be discovered directly with no need
for any rigorous derivation, simply by recognizing that,
the errors in the orientation angular rates, ψ̇n, ψ̇e, and
ψ̇d are nothing but the transformations of the gyroscope
angular rate errors, δωs

Gx, δω
s
Gy , and δωs

Gz,
9 (gyroscope

biases in practice) from the body frame to the navigation
frame, which when expanded can be written in the form
(for convenience the body frame and the sensor frame are

7From pure geometric observations of Fig. 13 in Box B on page 9, it
is evident that the vehicle velocity in the north and east direction are
related to latitude and longitude rate respectively through, φ̇ = vn/R

and λ̇ = ve/R cosφ where R ≈ 6370 km is the radius of the Earth.
8Gyroscopes deliver vehicle angular velocities with respect to the
inertial frame, and since in a strapdown mechanization these inertial
sensors are fixed to the vehicle body, their readings are referenced to
this frame. (Usually the sensor and body frame are considered aligned
to each other with a probable offset between their origins).
9The Gyro bias vector adapted in this manuscript is written as δωG =
(δωs

Gx, δωs
Gy, δωs

Gz) (notation adopted from [28]).

considered coincident):
⎡
⎣

ψ̇n

ψ̇e

ψ̇d

⎤
⎦ =

⎡
⎣

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤
⎦

⎡
⎣

δωs
Gx

δωs
Gy

δωs
Gz

⎤
⎦ . (86)

In Eq. 86 the 3 × 3 matrix can be determined by using
Algorithm 7, and the δω terms represent the gyroscope
biases along the three axes x, y, and z of the body frame.

Since we are interested in implementing our algorithms
on an embedded processor we need to discretize (86). With
the help of BOX B on page 9, we obtain the following
discretized version:⎡
⎣

ψn〈k + 1〉
ψe〈k + 1〉
ψd〈k + 1〉

⎤
⎦ =

⎡
⎣

ψn〈k〉
ψe〈k〉
ψd〈k〉

⎤
⎦ +

⎡
⎣

c11〈k〉dT c12〈k)dT c13〈k〉dT

c21〈k〉dT c22〈k)dT c23〈k〉dT

c31〈k〉dT c32〈k)dT c33〈k〉dT

⎤
⎦

⎡
⎣

δωs
Gx〈k〉

δωs
Gy〈k〉

δωs
Gz〈k〉

⎤
⎦ .

(87)

6.2.2 Velocity Error Dynamics in the n-Frame

The objective in the n-frame coordinatization is to formulate
the error dynamics with respect to the geodetic coordinates
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(φ, λ, h). We write the perturbation from the compact form
of the velocity navigation (74).

d

dt
δvn = − δ(�n

in + �n
ie)v

n − (�n
in + �n

ie)δv
n

+ δan + 	̄
n
δpn + δḡn .

(88)

Of note in the above equation are the errors in the com-
putation of the local gravity vector, ḡ. This vector is not a
constant, and varies as a function of location as identified
in the matrix of gravity gradients, 	̄

n = ∂ḡn/∂pn. Position
errors, δpn, lead to errors in ḡ which, in turn, lead to veloc-
ity errors. Using Eqs. 12 and 13 in Box B on page 9 it can
be easily shown that:

δ(�n
in + �n

ie) =
⎡
⎣

0 δλ̇ sinφ + (λ̇ + 2ωe) cosφδφ −δφ̇

−δλ̇ sinφ − (λ̇ + 2ωe) cosφδφ 0 −δλ̇ cosφ + (λ̇ + 2ωe) sinφδφ

δφ̇ δλ̇ cosφ − (λ̇ + 2ωe) sinφδφ 0

⎤
⎦ . (89)

Since our intention is to give a hands-on experience for
the reader of this manuscript, it is instructive to provide the
approximations usually applied in commercial integrated
navigation systems to the error equations. Typically, for
general applications where n-frame velocities don’t exceed,
say, 120 m/s, the term δ(�n

in +�n
ie)v

n (in view (89) is lower
than 10−5m/s2. This can be neglected in case of low-cost
MEMS are being used in the INS, since the the acceleration
errors, δan, due to accelerometer biases and gyro drift are
much higher. It is important to stress that gyro drifts lead
to an erroneous transformation of sensed acceleration from
body to navigation frame as shown later in this section. For
small navigational velocities, the angular rate of the vehicle
�n

en, is relatively much smaller than the angular rate of the
Earth �n

ie, which is already lower than the noise level found
in typical MEMS sensors. Thus for an elementary analysis
we may consider the second term on the right hand side to be
zero in the error dynamics of Eq. 88. Neglecting the gravity
related10 terms in Eq. 88 we obtain:

d

dt
δvn = δan . (90)

Taking the second part of Eq. 80 and using an ≈
(an, ae, −ḡ) since in case of low vehicle velocity in the
navigation frame the accelerometer in the down direction is
overshadowed by the gravity vector, ad ≈ −ḡ, we obtain:

d
dt

δvn = Cn
s δas + an × ψn

=
⎡
⎣

δaAn

δaAe

δaAd

⎤
⎦ +

⎡
⎣

an

ae

−ḡ

⎤
⎦ ×

⎡
⎣

ψn

ψe

ψd

⎤
⎦

=
⎡
⎣

δaAn

δaAe

δaAd

⎤
⎦ +

⎡
⎣

aeψd + ḡψe

−anψd − ḡψn

−anψe − aeψn

⎤
⎦ .

(91)

where we have used the notation δaA = Cn
s δas (notation

adopted from [33]) to identify the accelerometer error vector

10It can be showed that for relatively short time of navigation 1-2 hr the
gravity gradient terms and the errors in computing the gravity vector
are negligible.

produced in the body frame, but projected on the navigation
frame.

It is instructive to prove the velocity error dynamics,
simply by relying on insights into Fig. 17. We shall re-prove
the error dynamics for the first component in Eq. 91, δvn.
The interested reader is invited to prove the error dynamic
equations of the other terms. From a geometrical viewpoint
of Fig. 17a, we have:

ân = an cosψe − ad sinψe . (92)

For ψe ≈ 0 and ad ≈ −ḡ, Eq. 92 becomes:

ân = an + ḡψe , (93)

which implies that:

ân − an = δan = ḡψe . (94)

Similarly, looking at Fig. 17b, we have:

ân = an cosψd + ae sinψd (95)

For ψd ≈ 0 , Eq. 95 becomes to first order:

ân = an + aeψd , (96)

which implies that:

ân − an = δan = aeψd . (97)

So the total error in an, is the superposition of the terms
produced by ψd and ψe, thus we have:

δan = aeψd + ḡψe . (98)

Adding to Eq. 98 the error in acceleration caused by the
bias term δaAn we obtain:

δan = d

dt
δvn = δaAn + aeψd + ḡψe , (99)

which is nothing but the first row in Eq. 91.11

11Due to continuity of the vn term, we have δan = δ( d
dt

vn) = d
dt

δvn
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Figure 17 Attitude
measurement error produces
very predictable errors in
velocity estimates . If you can
measure velocity and position
errors (say, with GPS), then you
can figure out your attitude error
using a combination of GPS and
inertial sensors.

(a)

(b)

Discretizing (91) with the aid of BOX C, we can easily
obtain the following discrete velocity error equations
⎡
⎣

δvn〈k + 1〉
δve〈k + 1〉
δvd〈k + 1〉

⎤
⎦ =

⎡
⎣

δvn〈k〉
δve〈k〉
δvd〈k〉

⎤
⎦ + dT

⎡
⎣

δaAn〈k〉
δaAe〈k〉
δaAd〈k〉

⎤
⎦

+dT

⎡
⎣

(ae〈k〉ψd〈k〉 + ḡψe〈k〉)
(−an〈k〉ψd〈k〉 − ḡψn〈k〉)

(−an〈k〉ψe〈k〉 − ae〈k〉ψn〈k〉)

⎤
⎦ .

(100)

6.2.3 Position Error Dynamics in the n-Frame

Referring to footnote 7 on page 19 we can write:

δφ̇ = δvn

R
,

δλ̇ = δve

R cosφ
+ ve

R
sinφ

cos2 φ
δφ ,

(101)

but since λ = ve/R cosφ and λ̇ ≈ 0 (for small vehicle
velocity), then Eq. 101 becomes:

δφ̇ = δvn

R
,

δλ̇ = δve

R cosφ
.

(102)

The radius of the Earth, R, is taken to be constant neglecting
the ellipsoidal nature of the Earth.

We should also include altitude h in our position error
dynamic equations. To do so we can simply write:12

δḣ = −δvd . (103)

In order to discretize (102) we approximate the derivatives
by a finite difference, resulting in:

δφ〈k + 1〉 = δφ〈k〉 + dT
δvn〈k+1〉

R
,

δλ〈k + 1〉 = δλ〈k〉 + dT
δve〈k〉

R cosφ〈k〉 ,

δh〈k + 1〉 = δh〈k〉 − dT δvd〈k〉 .
(104)

12The negative sign in error dynamics for the altitude channel is due to
the fact that, it is traditional in GPS-INS fusion systems to take altitude
h and the down axis in opposite directions.

7 Kalman Filter

The Kalman filter is an estimation strategy, instead of being
a filter. The fundamental strategy was designed by R. E.
Kalman in 1960 [34], and has been improved further by
various researchers since. The filter refreshes the estimates
of the state vector which is persistently changing. These
estimates are then updated using a set of measurements
which are subject to noise [35]. The measurements should
be written in terms of the parameters estimated, yet the
measurements at a given time need not contain adequate
information to uniquely decide the values of the state vector
at the time. This is related to the concept of observability
of the system. It closely mimics the case of solving a set of
equations where the number of unknown variables exceeds
the number of equations.

The Kalman filter utilizes information of statistical
properties of the system in order to get ideal estimates of
the data available. It maintains a set of uncertainties about
the estimates that is carried from one iteration to another. It
also carries a measure of correlation between the errors in
the estimates of the states from iteration to iteration.

The Kalman filter is an efficient algorithm from
computing point of view, since it is a recursive algorithm
that only processes the latest measurements and forgets the
old ones. In contrast, non-recursive algorithms waits until all
measurements are available before beginning any estimate
which is time and memory consuming.

7.1 Components of the Kalman Filter

The calculation scheme of the Kalman filter algorithm
is shown in Fig. 18. The Kalman filter has five major
components:

• The state vector and its covariance matrix
• The system model
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Figure 18 Key update equations
of a Kalman filter.

Time Update ("Predict")

(1) Project the state ahead

(2) Project the error 
covariance ahead

(1) Compute the Kalman 
gain

(2) Update the estimates 
with measuremet

(3) Update the error 
covariance

Measurement  Update

Time Propagation

Measurement Update

• The measurement vector and its covariance
• The measurement model
• The algorithm

The state vector is a set of parameters that the filter esti-
mates. It is usually composed of the position, velocity and
other navigation states or their errors. In our demonstra-
tion of the Kalman filter algorithm, we will estimate the
errors in the parameters of an INS system, δ(·), instead of
the parameters them self, (·). This implementation is called
an error-state implementation. In contrast, when estimating
absolute states of the system such as position, velocity, and
orientation, the system is known as a total-state implementa-
tion. The error-state implementation separates the state into
a “large” nominal state x̂, and a “small” error state, δx, such
that x = x̂ + δx. The error-state implementation can per-
form better due to the fact that the error dynamic equations
we derived are linearized versions of their true equations
(due to approximations) and therefore are more accurately
evolved in time for small quantities.

The error covariance matrix P , represents the expectation
of the square of the deviation of the state vector estimate
from the true value of the state vector. The diagonal
elements are the variance of the state estimates, while the
off-diagonal elements represent the correlation between the
errors in the different state estimates. In a Kalman filter, it
is required to initialize the state vector and the covariance
matrix. Usually, in error-state implementations the state
vector is initialized to zero, while the covariance matrix
elements are chosen by the designer to reflect the level of
confidence of his a priori estimates of the initial state vector.

Each complete iteration of a Kalman filter consists of
a propagation and an update step. The state vector and
covariance matrix after being propagated in time and before

updating, are denoted by, x̂
−
k , and P −

k , respectively. Their
counterparts following the measurement update are denoted
by x̂

+
k , and P +

k .
The vector z consists of a set of measurements related to

the state-vector through a deterministic matrix H and with
added noise v:

z = Hx + v . (105)

The measurement innovation, δz−, is the difference
between the true measurement vector and the one computed
from the state vector before a measurement update:

δz− = z − H x̂
− . (106)

The measurement residual, δz+, is the difference between
the true measurement vector and the one computed from the
updated state-vector:

δz+ = z − H x̂
+ . (107)

The standard Kalman filter assumes that the measure-
ment errors form a zero-mean Gaussian distribution, uncor-
related in time, and with a noise covariance matrix R. The
covariance matrix R is nothing but the expectation of the
square of the measurement noise:

R = E(vvT ) . (108)

7.2 Kalman Filter Algorithm

The data flow of the Kalman filter algorithm is shown in
Fig. 19

The following steps constitute the Kalman filter algo-
rithm [36]:

1. Calculate the transition matrix, 	k−1;
2. Compute the noise covariance matrix, Qk−1;
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Figure 19 Dataflow graph of a
Kalman filter.
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3. Propagate the state vector estimate from x̂
+
k−1 to x̂

−
k ;

4. Propagate the error covariance matrix from P +
k−1 to P −

k ;
5. Compute the measurement matrix, Hk;
6. Calculate the measurement noise covariance matrix,

Rk;
7. Calculate the Kalman gain matrix Kk;
8. Extract the measurement, zk;
9. Update the state vector estimate from x̂

−
k to x̂

+
k ;

10. Update the error covariance matrix from P −
k to P +

k ;

The first four steps comprise the system propagation
phase of the Kalman filter. The last two steps comprise the
update phase of the Kalman filter. Later we will see that it
is not necessary to execute the update phase of the Kalman
filter with every propagation step of the state-vector. On
the other hand, the system propagation phase should be
executed in every iteration of the Kalman filter.

7.2.1 Transition matrix

The transition matrix describes the dynamics of the system.
It defines how the state-vector is propagated with time.
It is not a function of any of the state vector parameters.
If its elements are a function of time, then it should be
updated with every iteration of the Kalman filter. Since we
will derive the equations of an error-state Kalman filter, the

elements of the state-vector x, will take the form of error
terms (see Section 6).

xT = (δωs
Gx, δω

s
Gy, δω

s
Gz, δaAz, ψn, ψe, ψd,

δvn, δve, δvd, δφ, δλ, δh) .
(109)

The first three terms are gyroscope biases in the
x, y, and z directions of the IMU sensor frame. They
are considered as random constants, and they are easily
modeled as unchanging elements in the state vector. For
this reason, we have not derived their error dynamics in
the previous section. The fourth term in the state vector is
the accelerometer bias in the z direction. It is also modeled
as a random constant. We have deleted the accelerometer
biases in the x and y directions since they did not improve
the accuracy of our estimated state vector. The collected
set of transition elements are collected in one transition
matrix (110) in a convenient form to directly observe which
parameters are correlated, simply by looking at the first row
and the first column entries. In contrast, it is very important
to estimate the bias in the z direction to prevent the vertical
channel, “h”, in our Kalman filter from diverging. The
transition matrix as seen in BOX C is written as	k−1 = I +
A ∗ dT . It is wise to write the transition matrix without the
identity matrix due to the efficiency in calculations achieved
in our Kalman filter as will be seen in this section. The
elements of the transition matrix will written in Algorithm 9.
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	k−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
δωs

Gx

δωs
Gy

δωs
Gz

δaAz

ψn

ψe

ψd

δvn

δve

δvd

δφ

δλ

δh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TA TB TC

T0 0 0 0 0 0 0 0 0 0 0 0 0 0
T1 0 0 0 0 0 0 0 0 0 0 0 0 0
T2 0 0 0 0 0 0 0 0 0 0 0 0 0
T3 0 0 0 0 0 0 0 0 0 0 0 0 0
T4 T40 T41 T42 0 0 0 0 0 0 0 0 0 0
T5 T50 T51 T52 0 0 0 0 0 0 0 0 0 0
T6 T60 T61 T62 0 0 0 0 0 0 0 0 0 0
T7 0 0 0 0 0 T75 T76 0 0 0 0 0 0
T8 0 0 0 0 T84 0 T86 0 0 0 0 0 0
T9 0 0 0 T93 T94 T95 0 0 0 0 0 0 0
TA 0 0 0 0 0 0 0 TA7 0 0 0 0 0
TB 0 0 0 0 0 0 0 0 TB8 0 0 0 0
TC 0 0 0 0 0 0 0 0 0 TC9 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (110)

7.2.2 Error Propagation Matrix

In order to propagate the covariance matrix we have to apply
the following equation:

P −
k = 	k−1P

+
k−1	

T
k−1 + Qk−1 . (111)

In order to compute the propagation matrix efficiently, it is
beneficial to consider the sparsity of the transition matrix.
We shall apply a divide-and-conquer strategy where only
the matrix multiplications involving non-zero elements of

the transition matrix are executed. We will first compute
the matrix, l = 	k−1P

+
k−1, and then multiply the resulting

matrix (we call it intermediate matrix) with 	T
k−1.

To elaborate on the matrix multiplication issue, let us
consider that we want to multiply two matrices, T and P ,
where T is sparse and P is not, such as:

T =
⎡
⎣
0 t12 0
0 0 0
0 0 0

⎤
⎦ , P =

⎡
⎣

p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎦ . (112)

The entry t12 contributes only to the first row of the
resulting matrix, since the first row of the product uses the
terms, t12 ∗ p21, t12 ∗ p22, and t12 ∗ p23, respectively, in its
computations.

This strategy decreases the number of accesses to
memory where the matrices are stored, since the relevant
entries are only loaded once for each non-zero transition
matrix entry. This greatly reduces the execution time for
the Kalman filter on low-cost embedded processors where
resources are limited.

The detailed steps involved in the computation of l, will
be shown in Algorithm 10.

To continue the propagation computation of the covari-
ance matrix we shall write the algorithm for the second part
of the matrix multiplication and then finally add the system
noise covariance matrix, Qk−1. We apply the same strategy
as above in Algorithm 11. The final stage in propagating the
error covariance matrix is adding system noise as seen in
Algorithm 12.

7.2.3 Measurement Matrix and Kalman Gain

The measurement matrix defines how the measurement
vector varies with the state vector. This relation in Eq. 105
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is repeated here for convenience:

zk = Hkxk + vk . (113)

The measurement noise vector in most applications
is considered white with a few exceptions. It has a
measurement noise covariance matrix, Rk , that may be
assumed constant. In our typical implementation we are
directly measuring some state vector elements (GNSS
positions and velocities).

The Kalman gain matrix is used to determine the
weighting of the measurement information in updating the
state estimates. It is a function of the ratio of the uncertainty
of the true measurement, zk to the uncertainty of the
measurements predicted from the state estimates, Hx−

k .
The Kalman gain matrix is:

Kk = P −
k HT

k (HkP
−
k HT

k + Rk)
−1 . (114)

7.2.4 State Vector and Error Covariance Update

When ever we obtain a measurement the state vector is
updated by the measurement vector using this formula:

x̂
+
k = x̂

−
k + Kk(zk − Hkx̂

−
k ) . (115)

Similarly, the error covariance matrix is updated with:

P +
k = (I − KkHk)P

−
k . (116)

As the updated state vector estimate is based on more
information, the updated state uncertainties are smaller than
before the update.

We will continue this section by providing the detailed
algorithms for the second (update) phase of the Kalman
filter. This phase is comprised of calculating the matrix gain,
Kk , updated state-vector x̂

+
k , and updated error covariance

matrix, P +
k . These three steps will be implemented for each

new measurement obtained (theoretical details deferred to
Section 8).

8 Filter Insights

8.1 Inverse Matrix Calculation

The most complex and time consuming part of the Kalman
filter algorithm is finding the inverse of the matrix in
the Kalman filter gain, Kk . In order to avoid this tedious
calculation, we will prove that it is possible to avoid this
inverse matrix calculation by a small trick.

We can write the Kk and the Hk matrices as follows:

Kk =

⎡
⎢⎢⎣

...
...

...
K1 K2 · · ·
...

...
...

⎤
⎥⎥⎦ , (117)

and

Hk =
⎡
⎢⎣

· · · H1 · · ·
· · · H2 · · ·
· · · ... · · ·

⎤
⎥⎦ . (118)

Using this notation, we have, KkHk = K1H1 + K2H2 +
· · · . Thus, it is easily shown that the error covariance matrix
can be written as follows:

P +
k = P −

k + K1H1P
−
k︸ ︷︷ ︸

P +
k after first measurement

+K2H2P
−
k

︸ ︷︷ ︸
P +

k after second measurement

+ · · · (119)

Note that the sum of the first two terms is nothing but
the updated error covariance matrix associated with one
measurement. Adding the third term to it, we obtain the
error covariance matrix after the second measurement is
manipulated. As shown, it is possible to update the error
covariance matrix after each reported measurement. This
is legitimate as long as we do not propagate the error
covariance matrix while manipulating the measurements. It
is only required to compute the Kalman gain and correct
the state vector after each update of the covariance matrix.
The benefit of following this strategy is that the matrix
inversion in the Kalman gain computation is transformed
to a simple scalar inversion. So by taking any single
measurement element only, we can update the covariance
matrix and derive and apply system corrections for that
single measurement element, much simpler than we can
with multiple measurements. In this case, we avoid matrix
inversion. It is important that we update everything with
a single measurement before using the next measurement,
and that we use the updated status before applying the
next measurement. All updates must be performed before
the next navigation integration cycle. We should always
propagate the Kalman filter after every integration of the
navigation equations, and only update the Kalman filter
(and also make system corrections) whenever we have
measurements. The frequency of these updates could be the
same or less than the Kalman filter propagation frequency.
It depends on the source of our measurements.

8.2 Error Dynamics Approximations

It is also beneficial to address the approximations we made
in deriving the error dynamic equations, Eqs. 85 and 90,
for those readers who may be concerned. With low-grade
IMU we simply forget the Earth’s rotation and consider a
local flat Earth. It is impossible to detect the very slow
rotation of the earth with all the noise and random drift of
the gyroscopes. There is no harm in including these factors
but they are unlikely to make any improvements.
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8.3 Error-State Kalman Filter

It is necessary to remember that we are performing an error-
state Kalman filter where the estimated states are INS errors.
After each Kalman filter iteration, the estimated states are
applied to the corresponding navigation parameters, and
thus the state vectors are reset to zero. Consequently, the
state vector itself does not need to be propagated forward
in time. This type of implementation is called a closed-
loop implementation. It is still critical however that the state
covariance be propagated using the following equation:

P −
k = 	k−1P

+
k−1	

T
k−1 + Qk−1 . (120)

In this closed-loop technique, since the estimated errors
are fed back every iteration, the Kalman filter states are
zeroed which keeps the errors of the filter small. This has
the effect of minimizing the errors introduced in linearizing
the system or process model, since higher order terms in
the Taylor series expansion gets smaller and smaller. This
is in contrast to the open-loop implementation where there
is no feedback, and thus, the states will get larger as time
progresses.

We shall also explain a concept which is not very well
common between Kalman filter practitioners, related to the
idea of how velocity measurements (vn, ve, vd ) are essential
in estimating tilt errors ψn, ψe, and ψd .

Suppose that the INS is stationary (zero-velocity), and
that we have a positive ψn error, which means that the
system model does not have an exact representation of the
rotation of the IMU relative to the local north pointing
axis. Instead, it is rotated clockwise by the angle ψn about
the north pointing axis. Then we will not have the correct
transformation value for dve after performing the direction
cosine transformation of dvx , dvy and dvz (Algorithm 4).
The effect is that the east velocity will increment by an
error equal to (ψn ∗ g ∗ dT ). This is the same term relating
the error δve to ψn in the transition matrix (110). Thus,
the system computed velocity ve is no longer zero. But we
know it is zero, so we give a measurement to the Kalman
filter equal to −ve. This generates a whole set of corrections
for the system, including highly weighted corrections to ve,
ψn and gyroscope biases. The other terms are only weakly
coupled to δve in the Kalman filter and have only very
small, almost negligible corrections (for these corrections,
you need the vn and vd measurements). We then apply
quaternion correction, which reduces the error inψn (as well
as the other terms) so that, next time round, the error in
ve is smaller. This way, after several cycles, we reduce the
error in ψn until the roll and pitch values and ve are correct
(gyroscope biases take a bit longer).

So as we can see, it is the accelerometers (delta
velocities) which determine the alignment and not the
gyroscopes. The gyroscopes are only there so that sensed

Figure 20 Rate-tables are used for gyroscopes/IMU calibration or
hardware-in-loop (HWIL) testing. Payloads are mounted on the table
top platen. A pattern of threaded holes accept a variety of test loads.
It is often equipped with high speed optical or electrical slip-rings
to transmit data to and from the payload under test. It contains a
direct drive brushless motor with dedicated amplifiers, controllers and
a heavy duty power supply. Some of the main error sources that
may be acquired from the calibration process include: sensor-to-axis
misalignments, gyroscope and accelerometer scale factor errors, and
bias errors. The rate-table is usually mounted inside a temperature
chamber in order for the payload unit to be calibrated at equally spaced
temperatures ranging from −40◦C to +85◦C [40].

rotation can be immediately applied to the attitude solution
instead of waiting until the Kalman filter, aided by velocity
measurements, eventually finds the new attitude angles
(direction cosine matrix).

These are some recommendations for Kalman filter
designers:

• Check that you can read and display the IMU data
with your software.

• Prove that quaternion integration, body to nav-
igation direction-cosine-matrix computation and
roll-pitch-heading routines work without the
Kalman filter, by starting level and manually
rotating for a short time. To do this you do not
need to transform and integrate delta velocities.

• Transform, integrate and display velocities; they
should rapidly become very large.

• Develop your Kalman filter by displaying all the
variances adjacent to their respective state matrix
elements. Note that the typical error of the of a
state element “i” (squared) should approximately
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equal to its corresponding i’th diagonal entry in
the covariance matrix Pk .

8.4 SystemModel Error Sources

In the last few years, Microelectromechanical system
(MEMS) gyroscopes and accelerometers are beginning to
take market away from traditional inertial sensors like fiber
optic gyroscopes (FOG) and ring laser gyroscopes (RLG).
This take over has been occurring due to improved error
characteristics, environmental stability, better bandwidth,
enhanced g-sensitivity, and the plethora of of embedded
computational power that can run advanced fusion and
sensor error modeling algorithms. This transition couldn’t
have been achieved if not for the advancements in MEMS

technology which had remarkable improvements on the
error characteristics of the sensors [37–39].

In systemmodeling in general, we only consider the main
error sources. We ignore the terms which have little effect
on system performance, but allow for these small effects
as additional noise in other terms. This is not perfectly
correct, but its is a good compromise, since it simplifies the
mathematics significantly, minimises the size of the Kalman
filter and works surprisingly well.

For example dφx, dφy , and dφz are actual measurements
and their values would be absolutely correct if there were
no errors in scale factors, biases and mis-alignments, and
therefore we do not consider errors in these terms (corrected
for by rate-table Fig. 20). However, if there were additional
errors in dφx, dφy , and dφz, then these errors would come
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from other sources such as measurement electronics, g-
sensitivity and non-linearity, which we have ignored. We
have not modelled these errors in the mathematics but
instead we do account for these additional errors by having
larger values of system noise in the other terms.

A good example where we add ”unnecessary” noise in
the Kalman filter is in δvn, δve, and δvd . Where could noise
appear in these terms? A very minute amount could come
from computing noise (e.g., loss of numerical values which
are smaller than the least-significant-bit when integrating),
but that’s all. So why do we add velocity noise in the
Kalman filter? The answer is, it compromises for errors
caused by non-considered effects and thus prevents the

mathematics in the Kalman filter from exploding due to a
reduced mathematical model.

8.5 IMU and GNSS Time Synchronization

We have assumed that GNSS and IMU sytems are time
synchronized until now. In practice, they are not. Suppose
there is a small time lag between both systems. If the vehicle
is moving at constant velocity then the solutions provided
by both systems will perfectly match, and thus no error
is introduced. In contrast, in case of a small acceleration
experienced by the vehicle, the timing lag will manifest
itself as a position and velocity difference between the
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two system solutions. Therefore, it is mandatory to have
dedicated hardware in your system that compensates for this
time lag, or take care of it by software.

9 Other Attitude Filters

A computationally simpler alternative to a Kalman filter for
the GPS-INS algorithms in Fig. 18 is to use a feedback
controller to correct for gyro drift [41–43]. In the GPS-
INS feedback controller shown in Fig. 21, a compensator
typically based on proportional–integral control, is used
to estimate gyro biases based on a body-frame attitude
error vector, eb. eb is derived by noting that if the output
attitude estimate were correct and other error sources
were negligible, then the estimated North and Down
directions would align with those observed from a yaw
reference (ψ ref ) and a body-frame gravity vector reference
( gb

ref ). The gravity vector reference is derived from the
centripetally corrected accelerometer measurements:

gb
ref = wb

gyro × V b
ref − f b

accel . (121)

The error vector eb is expressed as the summation of
errors generated from the yaw reference (ψ ref ) and body-
frame gravity vector reference ( gb

ref ). So we have:

eb = eb
ψ + eb

g , (122)

where

eb
ψ =

⎛
⎝Cx(φ̂)Cy(θ̂)Cz(ψref )

⎡
⎣
1
0
0

⎤
⎦

⎞
⎠ ×

⎛
⎝Ĉb

ned

⎡
⎣
1
0
0

⎤
⎦

⎞
⎠ ,

eb
g =

(
gb

ref

‖gb
ref ‖

)
×

⎛
⎝Ĉb

ned

⎡
⎣
1
0
0

⎤
⎦

⎞
⎠ ,

(123)

and Ĉb
ned =

(
Cx(φ̂)Cy(θ̂)Cz(ψ̂)

)
is the current estimate of

the transformation matrix from the ned frame to the body
frame.

In Eq. 123, eb
ψ is the rotation vector expressed in body

coordinates between the observed North direction defined
by ψ ref and the system estimated North-direction.(Note
that the cross-product between two vectors, ×, between
two vectors yields a vector orthogonal to both with a
magnitude proportional to the sine of the angle between
them). Similarly, eb

g is the rotation vector in body
coordinates between the centripetally corrected gravity
direction estimated from the accelerometers and the system-
estimated Down direction. As a result, the combined error
vector eb, expresses the angular error and the rotation
axis between the reference NED coordinate frame and the
system-estimated NED frame. This feedback error vector id
filtered via a compensator (proportional-integral controller)
to generate the estimated gyroscope biases. Subtracting
these estimated gyroscope biases from the gyroscope
measurements and performing a quaternion integration on
the de-biased gyroscope data, we obtain the desired Euler
angles.

The drawback of this filer is it its assumption of zero
average linear acceleration for Eq. 121 to apply. While
this assumption is true for most vehicles spending most
of the time cruising with zero acceleration, it may lead to
unaccepted results in terms of attitude estimation in case
of prolonged or transient linear accelerations. Nevertheless
whenever this transient acceleration is gone, it can recover
and converge to the true values of attitude in fast manner.

Yet, another computationally efficient non-linear attitude
filter is shown in Fig. 22. The algorithm uses a quaternion
representation, allowing accelerometer and magnetometer
data to be used in an analytically derived and optimised
gradient descent algorithm to compute the direction of the
gyroscope measurement error as a quaternion derivative.
The quaternion derivative describing rate of change of the
NED frame relative to the sensor frame can be calculated
as [44] shown in Eq. 124:

q̇ = 1

2
q̂ ⊗ w , (124)

where w = (0, wx, wy, wz) is augmented angular rate
measurement vector delivered by the gyroscopes and q̂ is
the normalized quaternion vector representing the relative
orientation between the NED frame and the body coordinate
frame.

Provided the initial conditions are known, Eq. 124 can
be numerically integrated to solve for q. If the time step
considered is dT the integration can be done using the
following

q̂ t = q̂ t−1 + q̇ t dT . (125)

1339



J Sign Process Syst (2022) 94:1309–1343

In the context of an orientation estimation algorithm, it
will initially be assumed that an accelerometer will measure
only gravity and a magnetometer will measure only the
earth’s magnetic field. If the direction of an earth’s reference
field is known in the earth frame, a measurement of the
field’s direction within the sensor frame will allow an

orientation of the sensor frame relative to the earth frame
to be calculated. However, for any given measurement there
will not be a unique sensor orientation solution, instead
there will be infinite solutions represented by all those
orientations achieved by the rotation of the true sensor
frame around an axis parallel with the field’s direction. A
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+

Figure 21 An attitude heading reference system feedback controller
estimates the body orientation by fusing high-bandwidth gyro angular
rate measurements with low-bandwidth attitude references. The yaw
reference comes from amagnetometer or a GPS course-based estimate.
Pitch and roll references are acquired from an estimate of the gravity

vector via centripetally corrected accelerometer measurements. Essen-
tially, this feedback controller uses a compensator to estimate the gyro
biases by regulating the error between the estimated orientation and
the orientation expressed by the low-bandwidth attitude references.

quaternion representation requires a single solution to be
found. This may be achieved through the formulation of an
optimisation problem where an orientation of the sensor,
q̂, is found as that which aligns a predefined reference
direction in the earth frame, dref , with the measured field
in the body coordinate frame, s; thus solving (126) where f

in Eq. 127, defines the objective function [45]:

min
q̂

f (q̂, dref , s) , (126)

where

f (q̂, dref , s) = q̂
∗ ⊗ dref ⊗ q̂ − s . (127)

Many optimisation algorithms exist but the gradient
descent algorithm is one of the simplest to both implement
and compute. The equation used to implement the gradient
descent algorithm is shown in the block diagram (Fig. 22).

10 Summary

The use of attitude estimation filters have seen an
explosive growth in the past few decades, specifically
with the growth of the smartphones market. The use of
touchscreens for gaming has popularized motion detection

and orientation estimation within the portable computing
platform. Orientation estimation algorithms for inertial
sensors is a is a mature field of research. Modern
techniques [12, 46, 47] have focused on simpler algorithms
that ameliorate the computational load and parameter
tuning burdens associated with conventional Kalman-based
approaches. The algorithms presented in this paper employs
some cost-effective techniques and is able to offer some key
advantages in terms of energy efficiency with out sacrificing
accuracy, aiming at deploying this technology in low-cost
hardware.

In this article, we have showed the advantages of fusing
GNSS and INS systems, in terms of their complemen-
tary properties. Various integration architectures are also
exploited, that demonstrate how the lower bandwidth of the
GNSS system can act as an online calibrator for the INS
system. Specifically, how the gyroscope and accelerometer
errors are compensated for, using estimated drift and biases.

This article points the reader’s attention to various
insights necessary for a successful GNSS-INS design. It
is a hands-on approach that when followed step-by-step,
by applying the presented navigation and fusing filter
algorithms, guarantees a completely working and efficient
stand-alone system. The authors have made their best
to keep this article self-contained. To the best of our

Figure 22 Madgwick Filter
based on gradient descent
optimization
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knowledge, this is the one of the few articles that fills the
gaps between the theoretical and applied aspects of inertial
navigation systems.

Appendix

Algorithm 14 is an accurate polynomial implementation of
the arc-tangent function. It takes two arguments as inputs.
It is similar to the four-quadrant inverse tangent function,
“atan2(x,y)” in Matlab.
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