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Abstract
This paper proposes a subspace identification method for closed-loop EIV (errors-in-variables) problems based on
instrumental variables . First, a unified framework is derived, and then the reason is discussed why some existing subspace
methods based on instrumental variables could be biased under closed-loop conditions. Afterwards a remedy is given to
eliminate the bias by simply replacing the instrumental variable. Using orthogonal projection, the resulting instrumental
variable method is very simple and easy to extend. In addition, simulation studies illustrate the effects of different
instrumental variables.

Keywords Subspace identification · Closed-loop system · EIV (errors-in-variables) model · Instrumental variables

1 Introduction

In this Big Data era, massive data are generated, processed,
transmitted, and stored in various field [4, 6, 19]. Indus-
trial control systems are no exception. Advanced control
approaches are generally based on mathematical models
which are usually data-driven models obtained from the
input and output data of dynamic systems through system
identification methods. Subspace identification methods
(SIMs) [13, 17, 21, 25] are attractive since a state-space real-
ization is estimated directly from input-output data, without
non-linear optimization as generally required by the pre-
diction error methods (PEMs) [15]. Moreover, SIMs have
a better numerical reliability and a modest computational
complexity compared with PEMs, particularly when the
number of outputs and states is large. If the available data
records exceed hundreds of thousands or even millions of
samples, cloud computing can be adopted to solve the sys-
tem identification problem [2, 7, 18], since cloud computing
has rapidly emerged as an accepted big data computing
paradigm in many areas such as smart city [29], smart medi-
cal [1], smart transportation [30] and image processing [28].
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However, most of the SIM algorithms only consider out-
put errors and assume the input variables are noise-free.
This assumption is far from being satisfactory since all vari-
ables contain noise in practice. The effect of disturbances
can be eliminated by appropriate selection of the instru-
ment variables that are independent of disturbances. Chou
and Verhaegen [3] developed an instrumental variable sub-
space method which can be applied to errors-in-variables
(EIV) and closed-loop identification problem, but it han-
dles white-noise input differently from correlated input.
Gustaffson [9] investigated an alternative IV-approach to
subspace identification and proposed an improvement of
EIV-algorithm of [3].

In parallel, Wang and Qin [26] proposed the use of par-
ity space and principal component analysis (SIMPCA) for
errors-in-variables identification with colored input excita-
tion, which can also be applied to closed-loop identification.
Huang et al. [11] developed a new closed-loop subspace
identification algorithm (SOPIM) by adopting the EIV
model structure of SIMPCA, and proposed a revised instru-
mental variable method to avoid identifying the parity space
of the feedback controller. Wang and Qin [27] introduced
appropriate column weighting for SIMPCA which seemed
to improve the accuracy of the estimation, and pointed out
that the parameter estimates from this method (SIMPCAw)
is equivalent to that from SOPIM.

In this paper, by adopting the EIV model structure,
closed-loop subspace identification methods are proposed
based on instrumental variables using orthogonal projection.
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It is shown that the existing subspace identification methods
via instrumental variables for EIV problems yield biased
solution in closed-loop at least under the condition that the
external excitation is white noise. Therefore a remedy is
proposed to eliminate the bias. Compared with the subspace
methods using PCA, the present methods using orthogonal
projection are quite simple and easy to extend.

The rest of this paper is organized as follows. In
Section 2, the problem formulation and assumptions are
presented. Section 3 addresses the subspace algorithms
based on instrumental variables under a unified framework–
for convenience, called SIV framework– which includes
the methods proposed in [3, 9]. Besides, an easier SIV
method is proposed in terms of implementation in Section 2.
Under the SIV framework, Section 4 presents new closed-
loop subspace methods which yield unbiased estimation for
EIV problems. In Section 5, two numerical examples are
illustrated. The final section concludes the paper.

2 Problem Formulation

Suppose that the plant depicted in Fig. 1 can be described
by the following discrete time linear time-invariant system:

x(k + 1) = Ax(k) + Bũ(k) + w(k)

ỹ(k) = Cx(k) + Dũ(k)
(1)

where x(k) ∈ R
n, ũ(k) ∈ R

m and ỹ(k) ∈ R
l are the

state variables, noise-free inputs and noise-free outputs,
respectively. w(k) ∈ R

n is the process noise term. A, B,
C and D are system matrices with appropriate dimensions.
The available observations for identification are the
measured input signals u(k) and output signals y(k):

u(k) = ũ(k) + o(k)

y(k) = ỹ(k) + v(k)
(2)

where o(k) ∈ R
m and v(k) ∈ R

l are input and output noise.
We introduce the following assumptions:

A1. The system is asymptotically stable, i.e. the eigenval-
ues of A are strictly inside the unit circle.
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Figure 1 EIV model structure.

A2. w(k), v(k), o(k) are zero-mean white noises, and

E

{[
w(k)
v(k)
o(k)

] [
wT (j) vT (j) oT (j)

]} =
[

Rw Rwv Rwo

Rvw Rv Rvo

Row Rov Ro

]
δkj

(3)

here, E{·} denotes statistical expectation, Rw denotes
the autocorrelation function of the random variable
v, Rwv denotes the cross-correlation function of the
random variables w and v, and similar definition for
the otherR(·). δkj is the Kronecker delta function, i.e.,

δkj =
{
0, if k �= j

1, if k = j
(4)

A3. ũ(k) is a quasi-stationary deterministic sequence and
satisfy the persistence of excitation condition [15].

A4. The pair (A, C) is observable, and the pair
(A, [B R

1/2
w ] is reachable [5].

3 Notations and the SIV Framework

Firstly, we define the stacked past and future output vectors
and the block Hankel output matrices as the following:

yp(k) =

⎡
⎢⎢⎢⎣

y(k − p)

y(k − p + 1)
...

y(k − 1)

⎤
⎥⎥⎥⎦ , yf (k) =

⎡
⎢⎢⎢⎣

y(k)

y(k + 1)
...

y(k + f − 1)

⎤
⎥⎥⎥⎦ (5)

Yp = [
yp(k) yp(k + 1) · · · yp(k + L − 1)

]
(6)

Yf = [
yf (k) yf (k + 1) · · · yf (k + L − 1)

]
(7)

where subscript p, f are user-defined integers (p ≥
f > n) and stand for past horizon and future horizon,
respectively. The input and noise block Hankel matrices
Up, Uf , Of , Wf , Vf are defined similarly to Yp, Yf .

Through the iteration of Eqs. 1 and 2, we can derive the
following subspace matrix equation

Yf = Γf Xk + Hf Uf − Hf Of + Gf Wf + Vf (8)

where

Xk = [
x(k) x(k + 1) · · · x(k + L − 1)

]
(9)

is the state sequence,

Γf :=

⎡
⎢⎢⎢⎣

C

CA
...

CAf −1

⎤
⎥⎥⎥⎦ (10)
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is the extended observability matrix with rank n,

Hf :=

⎡
⎢⎢⎢⎢⎣

D 0 · · · 0

CB D
. . . 0

...
. . .

...
CAf −2B · · · CB D

⎤
⎥⎥⎥⎥⎦ (11)

and

Gf :=

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0
C 0

. . . 0
...

. . .
...

CAf −2 · · · C 0

⎤
⎥⎥⎥⎥⎦ (12)

are two block Toeplitz matrices.
Unlike traditional subspace identification methods [16,

20, 23, 24], SIV first eliminates the effect of the noises via
instrumental variables (IV). Suppose the IV vector ξ(k) ∈
R

nξ is available, for example, a natural choice is ξ(k) =
[uT

p (k) yT
p (k)]T in the EIV case. Construct the IV matrix

Ξ := [
ξ(k) ξ(k + 1) · · · ξ(k + L − 1)

]
(13)

such that

lim
L→∞

1

L
[Wf Vf Of ]ΞT = 0 w.p.1 (14)

For notational convenience, all noise terms are collected
in Nf = Vf −Hf Of +Gf Wf . Postmultiplying both sides
of Eq. 8 by ΞT , we get

R̂yf ξ = Γf R̂xξ + Hf R̂uf ξ + R̂nf ξ (15)

where R̂yf ξ := 1
L
Yf ΞT , R̂xξ := 1

L
XkΞ

T , and R̂uf ξ , R̂nf ξ

are defined conformably with R̂yf ξ . From the condition
Eq. 14,

R̂yf ξ = Γf R̂xξ + Hf R̂uf ξ w.p.1 as L → ∞ (16)

Next SIV removes the effect of the future input on the
future output by orthogonal projection.

R̂yf ξΠ
⊥
uf ξ = Γf R̂xξΠ

⊥
uf ξ w.p.1 as L → ∞ (17)

where Π⊥
uf ξ denotes the orthogonal projection matrix onto

the nullspace of R̂uf ξ . Assuming that R̂uf ξ has full rank,

Π⊥
uf ξ = I − R̂T

uf ξ (R̂uf ξ R̂
T
uf ξ )

−1R̂uf ξ (18)

Then like other subspace identification methods [10, 12,
14, 22], SIV uses SVD to obtain the extended observability
matrix

Ω := R̂yf ξΠ
⊥
uf ξW2 = [

U1 U2
] [

S1 0
0 S2

] [
V T
1

V T
2

]
(19)

where W2 is a weighting matrix. The matrix U1 consists
of the n principal left singular vectors of Ω , S1 and S2 are
diagonal matrices with the non-increasing singular values

of Ω . Due to the existing of noises, S2 �= 0 and a decision
on the order of the system must be made. The extended
observability matrix is obtained as Γf = U1T , T is a non-
singular matrix and typical choices are T = I or T =
S
1/2
1 .
For numerical implementation, the first step of SIV is to

compute the following QR factorization [8]

1

L

[
Uf

Yf

]
ΞT =

[
R11 0
R21 R22

] [
QT

1
QT

2

]
(20)

From Eq. 20 it is clear that R̂yf ξΠ
⊥
uf ξ = R22Q

T
2 , so Γf can

be obtained by performing SVD on R22. Once Γf has been
estimated, the system matrices A, B, C, D can be computed
as in [13, 21].

Suppose Zp = [UT
p YT

p ]T , W2 = I , and the instruments
are chosen as Ξ = Zp, then SIV boils down to the method
proposed in [3]. Gustafsson [9] found an improvement
to this method by modifying the instruments as Ξ =
( 1
L
ZpZT

p )−1/2Zp. For simplicity, these two methods are
referred to as SIV and SIVw.

On the other side, we choose the instruments as Ξ =
Π⊥

Zp
= ZT

p (ZpZT
p )−1Zp, and call the corresponding

method SIVp. In terms of the estimation accuracy, SIVp is
equivalent to SIVw, because

[Zf Π⊥
Zp

][Zf Π⊥
Zp

]T = [Zf ZT
p (ZpZT

p )−1/2]
[Zf ZT

p (ZpZT
p )−1/2]T (21)

However, SIVp, which uses the orthogonal projection
as the instruments, is easier to implement. Up to now, it
seems that these three methods can work under closed-loop
conditions, because they avoid projecting out Uf directly.
However, simulation results indicate that this is not always
the case for closed-loop systems.

4 New Closed-Loop SubspaceMethods
Under SIV Framework

To find the problem, let us consider the controller described
by the following state space model:

xc(k + 1) = Acx
c(k) + Bc(r(k) − y(k))

u(k) = Ccx
c(k) + Dc(r(k) − y(k))

(22)

where r(k) is the setpoint excitation. Based on Eq. 22, we
can derive the following subspace matrix equation

Uf = Γ c
f Xc

k + Hc
f (Rf − Yf ) (23)

Post-multiplying both sides of Eq. 23 by ΞT ,

R̂uf ξ = Γ c
f R̂xcξ − Hc

f R̂yf ξ + Hc
f R̂rf ξ (24)
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If the following condition

lim
L→∞Rf ΞT = 0 (25)

is satisfied, then

R̂uf ξ = Γ c
f R̂xcξ − Hc

f R̂yf ξ w.p.1 as L → ∞ (26)

Combining Eqs. 16 and 26 gives[
I −Hf

Hc
f I

] [
Ryf ξ

Ruf ξ

]
=

[
Γf Rxξ

Γ c
f Rxcξ

]
(27)

Consequently, both the row space ofRxξ andRxcξ fall in the

row space of

[
Ryf ξ

Ruf ξ

]
. This means

[
Ryf ξ

Ruf ξ

]
, which is used

to identify the process model, contains also the controller
information. In order to exclude the controller information,
the IV matrix Ξ must satisfy the following conditions:

lim
L→∞

1

L
[Wf Vf Of ]ΞT = 0 (28)

lim
L→∞

1

L
Rf ΞT �= 0 (29)

Suppose

Ξ̃ =
[
Rf

Zp

]
(30)

It is natural to choose the IV matrix as follows:

Ξ =
{

Ξ̃ CSIV

ΠΞ̃ CSIVp
(31)

With this modification, all the computation procedures
discussed in the last section are valid for closed-loop
identification. We call the modified algorithms as CSIV and
CSIVp.

5 Numerical Examples

In this section a simulation study is presented to demon-
strate the performance of the new algorithms proposed in
this paper.

5.1 Example 1: A First Order System

The simulation example is a first order SISO system under
closed-loop operation,

y(k) − 0.9y(k − 1) = u(k − 1) + e(k) + 0.9e(k − 1) (32)

The feedback has the following structure:

u(k) = −0.6y(k) + r(k) (33)

where r(k) is the excitation signal and is generated as

r(k) = (1 + 0.8q−1 + 0.6q−2)r0 (34)

where r0(k) is zero mean white noise with unit variance.
The innovation process e(k) is zero mean white noise
with variance Re = 1.44. Monte-Carlo simulations are
conducted with 30 runs. Each simulation generates 2000
data points. In addition, the input and the output are
contaminated with zero mean white noises whose variances
are tuned so as for the signal to noise ratios (SNR)

Input SNR = var(ũ(k))
var(o(k))

(35)

Output SNR = var(ỹ(k))
var(v(k))

(36)

to be 10.
For this example, we will apply the following subspace

identification methods: SIMPCA in [26], the three methods
(SOPIM, CSIMPCA, CSOPIM) in [11], SIV in [3], and the
proposed methods (SIVp, CSIV, CSIVp) in this paper. The
horizons are chosen as f = p = 2.

Table 1 shows some Monte-Carlo simulation results.
From the table, we can see that the results of the methods
using the same weighting matrix are close, for example,
SIV and SIMPCA, SIVp and SOPIM, CSIV and CSIMPCA,
CSIVp and CSOPIM respectively. For the methods in which
Rf is introduced into the weighting matrix, i.e., CSIV,
CSIVp, CSIMPCA and CSOPIM, the estimate of b1 are
better than that of the other methods. Figure 2 gives the

Table 1 Simulation results for the first order model P(z) = (b1z +
b2)/(z − a), where the means and standard deviations(s.d.) are
computed based on 30 Monte-Carlo runs. Both SNRs are 10, and the
setpoint signal is colored noise.

Method a b1 b2

true 0.9 0 1

SIMPCA 0.8929 -0.0297 0.9920

(0.0510) (0.1965) (0.0516)

CSIMPCA 0.9001 -0.0110 0.9998

(0.0193) (0.0538) (0.0467)

SOPIM 0.8990 -0.0078 0.9933

(0.0323) (0.1416) (0.0527)

CSOPIM 0.9011 -0.0063 0.9976

(0.0186) (0.0352) (0.0304)

SIV 0.8932 -0.0283 0.9919

(0.0497) (0.1916) (0.0517)

CSIV(proposed) 0.9001 -0.0103 0.9993

(0.0193) (0.0531) (0.0464)

SIVp(proposed) 0.8991 -0.0063 0.9927

(0.0323) (0.1395) (0.0526)

CSIVp(proposed) 0.9010 -0.0062 0.9971

(0.0186) (0.0352) (0.0303)
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Figure 2 Bode plots of the first
order model by four different
methods: SIV, SIVp, CSIV and
CSIVp. The solid lines (red) are
true values and the dashed lines
(blue) are estimated values of 30
Monte-Carlo runs.
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visual representation in Bode plots. It is very different for
the four methods (SIV, SIVp, CSIV and CSIVp) in the low
frequency estimates.

If we enhance the effects of the measurement noises by
reducing both SNRs to 5, the simulation results are showed
in Table 2. The methods in which Rf is introduced into the

Table 2 Simulation results for the first order model P(z) = (b1z +
b2)/(z − a), where the means and standard deviations (s.d.) are
computed based on 30 Monte-Carlo runs. Both SNRs are 5, and the
setpoint signal is colored noise.

Method a b1 b2

true 0.9 0 1

SOPIM 0.8724 −0.09203 1.0013

(0.0813) (0.2424) (0.0724)

CSOPIM 0.8989 −0.0019 1.0071

(0.0248) (0.0340) (0.0292)

SIV 0.8703 −0.0972 0.9961

(0.0971) (0.2919) (0.0711)

CSIV(proposed) 0.8965 −0.0183 1.0149

(0.0263) (0.0538) (0.0422)

SIVp(proposed) 0.8730 −0.0881 0.9999

(0.0808) (0.2404) (0.0723)

CSIVp(proposed) 0.8989 −0.0015 1.0059

(0.0247) (0.0340) (0.0292)

weighting matrix, give good results, and the other methods
yield somewhat biased estimates.

If the setpoint signal is white noise, Table 3 shows the
simulation results. The methods in which Rf is introduced
into the weighting matrix, give consistent results while the
other methods yield biased estimates.

Table 3 Simulation results for the first order model P(z) = (b1z +
b2)/(z − a), where the means and standard deviations(s.d.) are
computed based on 30 Monte-Carlo runs. Both SNRs are 10, and the
setpoint signal is white noise.

Method a b1 b2

true 0.9 0 1

SOPIM 1.2277 −1.1414 1.8986

(3.6480) (1.4319) (6.0666)

CSOPIM 0.8902 −0.0110 0.9935

(0.0341) (0.0361) (0.0414)

SIV 1.6990 −0.9342 2.6176

(6.4536) (1.0969) (10.6990)

CSIV(proposed) 0.8924 −0.0149 0.9905

(0.0387) (0.0356) (0.0406)

SIVp(proposed) 1.0433 −0.8564 1.4960

(2.8934) (1.0233) (4.8086)

CSIVp(proposed) 0.8897 −0.0114 0.9925

(0.0341) (0.0361) (0.0412)
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Figure 3 The block diagram of Example 2.

Figure 4 Pole estimates of the
fifth order system by SIV and
SIVp, where the true poles are
denoted by (red) +.
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solid) is covered by 30 curves.
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5.2 Example 2: A Fifth Order System

The system to be considered is expressed in the innovation
state space form:

A=

⎡
⎢⎢⎣

4.40 1 0 0 0
−8.09 0 1 0 0
7.83 0 0 1 0

−4.00 0 0 0 1
0.86 0 0 0 0

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

0.00098
0.01299
0.01859
0.0033

−0.00002

⎤
⎥⎥⎦ CT =

⎡
⎢⎢⎣
1
0
0
0
0

⎤
⎥⎥⎦ K=

⎡
⎢⎢⎣

2.3
−6.64
7.515

−4.0146
0.86336

⎤
⎥⎥⎦

(37)

and D = 0. The state space model of the controller is:

Ac =
⎡
⎢⎣
2.65 −3.11 1.75 −0.39
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦Bc =

⎡
⎢⎣
1
0
0
0

⎤
⎥⎦CT

c =
⎡
⎢⎣

−0.4135
0.8629

−0.7625
0.2521

⎤
⎥⎦

(38)

andDc = 0.61. The block diagram of this example is shown
in Fig. 3.

The simulation conditions are exactly the same as those
used in [11]: the reference signal r is Gaussian white noise
with variance 1; the innovation e is Gaussian white noise
with variance 1/9. Monte-Carlo simulations are conducted
with 30 runs. Each simulation generates 1200 data points.
Moreover, we add zero mean white noises with variance 0.2
to the input and the output measurements.

Fig. 4 shows the pole plots of the fifth order system by
SIV and SIVp. It is obvious that the results are biased due
to the correlation between the input and the unmeasured
disturbance under feedback control. When the IV matrix is
contained Rf , the corresponding methods CSIV and CSIVp
give consistent pole results which are shown in Fig. 5(a).
Nevertheless, the bode plots in Fig. 5(b) show that the low

Figure 6 Pole estimates of the
fifth order system by CSIV1,
CSIV2, CSIV3, CSIV4, CSIV5
and CSIV6, and the true poles
are denoted by (red) +.
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frequency responses of CSIVp are much better than that of
CSIV which confirms CSIVp is more efficient than CSIV
without column weighting.

In this example, we will explore the effect of different IV
matrices. Besides the IV matrices abovementioned, we also
consider the following IV matrices:

(1)Ξ̃ =
[
Rf

Yp

]
(2)Ξ̃ =

[
Rf

Up

]
(3)Ξ̃ =

[
Rf

Rp

]
(39a)

(4)Ξ̃ =
⎡
⎣Rf

Rp

Yp

⎤
⎦ (5)Ξ̃ =

⎡
⎣Rf

Rp

Up

⎤
⎦ (6)Ξ̃ =

⎡
⎣Rf

Rp

Zp

⎤
⎦ (39b)

The resulting methods called CSIVx or CSIVpx, where
x denotes the number corresponding to the IV matrix. For

example, CSIV1 uses the IV matrix
[

Rf

Yp

]
and CSIVp1 uses

the projection form of the IV matrix. For all methods, the
horizons are chosen as f = p = 20.

Figure 6 displays the pole plots of the fifth order system
by CSIV1, CSIV2, CSIV3, CSIV4, CSIV5 and CSIV6. The
simulation results of the fifth order system by

CSIVp1, CSIVp2, CSIVp3, CSIVp4, CSIVp5 and
CSIVp6 are shown in Figs. 7 and 8. As for the pole
estimates, the methods using the projection IV matrices give
slightly better results. For this example, the methods using
the projection IV matrices which contain Yp yield better
results not only for pole estimates but also for the low
frequency responses. However, it is not always the case for
other systems.

Figure 7 Simulation results of
the fifth order system by
CSIVp1, CSIVp2 and CSIVp3.
The left column is pole
estimates, and the true poles are
denoted by (red) +. The right
column is Bode magnitude plots,
and the true bode plot (red,
solid) is covered by 30 curves.
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Figure 8 Simulation results of
the fifth order system by
CSIVp4, CSIVp5 and CSIVp6.
The left column is pole
estimates, and the true poles are
denoted by (red) +. The right
column is Bode magnitude plots,
and the true bode plot (red,
solid) is covered by 30 curves.
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6 Conclusions

In this paper, closed-loop subspace identification methods
for EIV problems are developed using orthogonal projection
as instrumental variables. They can provide consistent estimates
regardless of whether the reference signal is white noise.
In addition, the effect of different IV matrices is explored.
Compared with the subspace methods based on PCA, the
methods proposed here are simple to implement and easy to
extend. Two simulation examples are given to illustrate the
performance of the proposed methods in closed-loop EIV
identification and the effect of instrumental variables.

Acknowledgements This work was partially supported by the Science
and Technology Research Projects of Hubei Provincial Department of
Education (No.Q20162706), the National Natural Science Foundation

of China (No.61972136), and the Hubei Provincial Department of
Education Outstanding Youth Scientific Innovation Team Support
Foundation (No.T201410).

References

1. Chen, M., Zhang, Y., Qiu, M., Guizani, N., Hao, Y. (2018). Spha:
Smart personal health advisor based on deep analytics. IEEE
Communications Magazine, 56(3), 164–169.

2. Chenaru, O., Stanciu, A., Popescu, D., Florea, G., Sima, V.,
Dobrescu, R. (2015). Modeling complex industrial systems using
cloud services. In International Conference on Control Systems
and Computer Science (pp. 565–571). https://doi.org/10.1109/
CSCS.2015.109.

3. Chou, C.T., & Verhaegen, M. (1997). Subspace algorithms for
the identification of multivariable dynamic errors-in-variables
models. Automatica, 33(10), 1857–1869.

J Sign Process Syst (2021) 93:345–355 353

https://doi.org/10.1109/CSCS.2015.109
https://doi.org/10.1109/CSCS.2015.109


4. Dai, W., Qiu, L., Wu, A., Qiu, M. (2016). Cloud infrastructure
resource allocation for big data applications. IEEE Transactions
on Big Data, 4(3), 313–324.

5. Dorf, R.C., & Bishop, R.H. (2011). Modern control systems, 12th
edn. Upper Saddle River: Prentice Hall.

6. Gai, K., Qiu, M., Zhao, H. (2016). Security-aware efficient mass
distributed storage approach for cloud systems in big data. In
2016 IEEE 2Nd international conference on big data security
on cloud (bigdatasecurity), IEEE international conference on
high performance and smart computing (HPSC), and IEEE
international conference on intelligent data and security (IDS)
(pp. 140–145): IEEE.

7. Gai, K., Qiu, M., Zhao, H., Sun, X. (2017). Resource management
in sustainable cyber-physical systems using heterogeneous cloud
computing. IEEE Transactions on Sustainable Computing, 3(2),
60–72.

8. Golub, G.H., & Van Loan, C.F. (2013). Matrix computations, 4th.
Baltimore: The Johns Hopkins University Press.

9. Gustafsson, T. (2001). Subspace identification using instrumental
variable techniques. Automatica, 37(12), 2005–2010.

10. Gustafsson, T. (2002). Subspace-based system identification:
weighting and pre-filtering of instruments. Automatica, 38(3),
433–443.

11. Huang, B., Ding, S.X., Qin, S.J. (2005). Closed-loop subspace
identification: an orthogonal projection approach. Journal of
Process Control, 15(1), 53–66.

12. Jansson, M., & Wahlberg, B. (1996). A linear regression approach
to state-space subspace system identification. Signal Processing,
52(2), 103–129.

13. Katayama, T. (2005). Subspace methods for system identification.
London: Springer.

14. Larimore, W.E. (1990). Canonical variate analysis in identifica-
tion, filtering, and adaptive control. In 29th IEEE conference on
decision and control (pp. 596–604): IEEE.

15. Ljung, L. (1999). System identification-theory for the user, 2nd
edn. Upper Saddle River: Prentice-Hall.

16. Picci, G., & Katayama, T. (1996). Stochastic realization with
exogenous inputs and ‘subspace-methods’ identification. Signal
Processing, 52(2), 145–160.

17. Qin, S.J. (2006). An overview of subspace identification.
Computers & Chemical Engineering, 30(10-12), 1502–1513.

18. Qiu, M., Jia, Z., Xue, C., Shao, Z., Sha, E.H.M. (2007).
Voltage assignment with guaranteed probability satisfying timing
constraint for real-time multiproceesor dsp. The Journal of
VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 46(1), 55–73.

19. Qiu, M.K., Zhang, K., Huang, M. (2004). An empirical study of
web interface design on small display devices. In IEEE/WIC/ACM
International conference on web intelligence (WI’04) (pp. 29–35):
IEEE.

20. Van Overschee, P., & De Moor, B. (1994). N4sid: Subspace
algorithms for the identification of combined deterministic-
stochastic systems. Automatica, 30(1), 75–93.

21. Van Overschee, P., & De Moor, B. (1996). Subspace identifica-
tion for linear systems: Theory—Implementation—Applications.
London: Kluwer Academic Publishers.

22. Verhaegen, M. (1994). Identification of the deterministic part
of mimo state space models given in innovations form from
input-output data. Automatica, 30(1), 61–74.

23. Verhaegen, M., & Dewilde, P. (1992). Subspace model identi-
fication part 1: the output-error state space model identification
class of algorithms. International Journal of Control, 56(5), 1187–
1210.

24. Verhaegen, M., & Dewilde, P. (1992). Subspace model identifi-
cation part 2: Analysis of the elementary output-error state space
model identification class of algorithm. International Journal of
Control, 56(5), 1211–1241.

25. Viberg, M. (1995). Subspace-based methods for the identification
of linear time-invariant systems. Automatica, 31(12), 1835–
1851.

26. Wang, J., & Qin, S.J. (2002). A new subspace identification
approach based on principal component analysis. Journal of
Process Control, 12(8), 841–855.

27. Wang, J., & Qin, S.J. (2006). Closed-loop subspace identification
using the parity space. Automatica, 42(2), 315–320.

28. Xiong, Z., Wu, Y., Ye, C., Zhang, X., Xu, F. (2019). Color
image chaos encryption algorithm combining crc and nine palace
map. Multimedia Tools and Applications, 78(22), 31035–31
055.

29. Zhang, Q., Huang, T., Zhu, Y., Qiu, M. (2013). A case study
of sensor data collection and analysis in smart city: provenance
in smart food supply chain. International Journal of Distributed
Sensor Networks, 9(11), 382132.

30. Zhu, M., Liu, X.Y., Tang, F., Qiu, M., Shen, R., Shu, W., Wu,
M.Y. (2016). Public vehicles for future urban transportation.
IEEE Transactions on Intelligent Transportation Systems, 17(12),
3344–3353.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Youfeng Li received the Ph.D.
degree in control science and
engineering from Zhejiang
University, Hangzhou, China,
in 2010. She has been a lec-
turer with Hubei Engineering
University since 2015. Her
research interests include
modeling and control of the
industrial process, computing
intelligence, and machine
learning.

ZenggangXiong received the
Ph.D. degree from the Univer-
sity of Science and Technol-
ogy Beijing, Beijing, China, in
2009. He is currently a Profes-
sor with the School of Com-
puter and Information Sci-
ence and Master Tutor, Hubei
Engineering University, Xiao-
gan, China. His main research
interests include cloud com-
puting, big data, pattern recog-
nition, and computer vision.

J Sign Process Syst (2021) 93:345–355354



Conghuan Ye received the
B.S. and M.S. degree in com-
puter science from Hubei
Normal University, Hubei,
China, in 2002, and Univer-
sity of Electronic Science
and Technology of China,
Chengdu, Sichuan, China,
in 2005, respectively. He
received the Ph.D. degree in
Huazhong University of Sci-
ence and Technology in 2013,
Wuhan, Hubei, China. Since
2018, he has been a professor
with the School of Computer
and Information Science,

Hubei Engineering University, China. Now, his research interests
include digital fingerprinting, digital right management, complex
network, and cloud computing.

Xuemin Zhang received the
Bachelor degree in computer
science from Hubei Normal
University, China, in 2001,
and the MA degree in com-
puter science from Wuhan
University of Technology,
China, in 2009. She is now a
professor in Hubei Engineer-
ing University. Her research
interests are in the areas of
Cloud computing, distributed
systems, Service Computing.
She is a member of the IEEE
and the ACM.

Fang Xu received the M.S.
and Ph.D. degrees from
Wuhan University, Wuhan,
China, in 2009 and 2016,
respectively. He is an Asso-
ciate Professor in the School
of Computer and Information
Science, Hubei Engineering
University, Hubei, China.
His research interests include
social computing, wireless
mobile networks, and con-
text aware computing. He
is a member of the IEEE
Computer.

Xiaochao Zhao received the
B.S. degree and Ph.D. degree
in software engineering from
Hunan University, Changsha,
China, in 2012 and 2018,
respectively. He has been a
lecturer with Hubei Engineer-
ing University since 2019.
His research interests include
image processing and com-
puter vision.

J Sign Process Syst (2021) 93:345–355 355


	Subspace Identification of Closed-Loop EIV System...
	Abstract
	Introduction
	Problem Formulation
	Notations and the SIV Framework
	New Closed-Loop Subspace Methods Under SIV Framework 
	Numerical Examples
	Example 1: A First Order System
	Example 2: A Fifth Order System

	Conclusions
	References


