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Abstract
In recent years, target detection framework based on deep learning has made brilliant achievements. However, real-life traffic
sign detection remains a great challenge for most of the state-of-the-art object detection methods. The existing deep learning
models are inadequate to effectively extract the features of small traffic signs from large images in real-world conditions. In this
paper, we address the small traffic sign detection challenge by proposing a novel small traffic sign detection method based on a
highly efficient end-to-end deep network model. The proposed method features fast speed and high precision as it attaches three
key insights to the established You Only Look Once (YOLOv3) architecture and other correlated algorithms. Besides, network
pruning is appropriately introduced to minimize network redundancy and model size while keeping a competitive detection
accuracy. Furtherly, four scale prediction branches are also adopted to significantly enrich the feature maps of multi-scales
prediction. In our method, we adjust the loss function to balance the contribution of error source to the total loss. The effective-
ness, and robustness of the network is further proved with experiments on Tsinghua-Tencent 100 K traffic sign dataset. The
experimental results indicate that our proposed method has achieved better accuracy than that of the original YOLOv3 model.
Compared with the schemes in relevant literatures our proposed method not only emerges performance superiors in detection
recall and accuracy, but also achieves 1.9–2.7x improvement in detection speed.
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1 Introduction

Traffic sign is meant to be one of the most critical elements in
transport systems because it provides instructive or warning
messages like road conditions and real-time traffic conditions
for vehicles and pedestrians. Complying with traffic sign law-
fully can greatly prevent traffic accidents and reduce conges-
tion. For human beings, identifying the traffic sign is an easy
task. However, for self-driving cars, locating and classifying
the traffic sign accurately and quickly remains an incredible
challenge. Therefore, traffic sign detection in autonomous ve-
hicles has been catching the attention from the computer

vision community incessantly for several decades [1–3].
Generally, traditional visual approaches for object detection,
which usually use manual features including color, texture,
and geometric to extract the regions of interest in an image,
are difficult to achieve desirable results in the field of traffic
sign detection [4–7]. With the vigorous development of arti-
ficial intelligence and computer vision technologies, deep
learning appears to be one of the most efficient solutions for
complex detection tasks, such as traffic sign detection, which
has high demands in the aspects of detecting accuracy and
response speed in multi-objects detection [8, 9].

Convolutional Neural Networks (CNNs) have been proved
to be capable of achieving superior performance in image
classification and object detection. The development of deep
learning has brought new directions to target recognition. As a
result, various excellent algorithms for object detection have
been reported successively. The representative methods can
be generally divided into two categories, respectively
proposal-based methods and proposal-free methods. The
proposal -based methods inc ludes Region-based
Convolutional Neural Network (R-CNN) series works
[10–13], and the proposal-free methods mainly contains You
Only Look Once (YOLO) model and Single Shot Multibox
Detector (SSD), which indeed work well on Pascal Visual
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Object Classes (VOC) [14] and ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [15]. In conventional target
recognition system, the objects to be detected are conspicuous
and typically occupy a large fraction of the whole image size.
Unfortunately, for the traffic sign detection, size of the objects
captured in real driving circumstances is much smaller. Since
inadequate pixel features can be extracted, the small but signif-
icant objects are usually neglected by the ordinary models. To
solve this problem, the intuitive solution is to design a more
complex networks with a large number of candidate boxes or
capture images that contain clearer objects with higher resolu-
tion. But this will additionally cause other troubles such as
exponentially increase of calculation complexity and uncontrol-
lability during training. Some constructive convolutional neural
networks [16–18] aimed at detecting small traffic signs have
been proposed, but failed to achieve satisfactory results in terms
of detection accuracy and detection speed.

In addition, detecting small object from a relativity large
image is not the only challenge. Under real-world conditions,
the captured pictures are usually filled with complicated back-
grounds, such as skies, buildings, roads, trees, pedestrians,
vehicles and streetscape, rather than with clean and monoto-
nous background. Numerous interference factors in the envi-
ronment, such as advertising symbols and other indications,
usually feature indistinguishable color saturation and contrast
from traffic signs. Besides, under realistic traffic conditions,
the detection environment is badly interfered by lighting,
blocking, shadowing, and even bending, tilting or color fad-
ing. Furthermore, the counterfeit traffic signs from surface
reflecting are also misleading elements for detection models.
All of these difficulties make the traffic sign detection in the
outdoor environment still an open problem.

In order to deal with above-mentioned challenging issues,
we propose an efficient algorithm based on the state-of-art
YOLOv3 model for real-life traffic sign detection. We opti-
mize the feature extraction network to reduce the redundant
residual block while keeping a competitive detection accura-
cy. In this way, we successfully decrease the amount of net-
work parameters and effectively speed up the calculation pro-
cess meanwhile. Moreover, the fourth scale prediction branch
is attached to shallower network, and smaller and denser an-
chors are also introduced. Therefore, more finely grained in-
formation can be utilized in the extra feature map. This natu-
rally enriches the feature maps of multi-scales prediction and
improve the detection accuracy. Additionally, we intensify the
penalties for category prediction to balance the weights of
location error and classification error.

Briefly, the main contributions of this paper are described
as follows:

1) We propose an optimized model and corresponding algo-
rithm to efficiently classify and detect small objects like
traffic signs in high-resolution images.

2) Network pruning is elaborately utilized to effectively
minimize the network redundancy and model size while
keeping a competitive detection accuracy.

3) Four-scale prediction branch is introduced to further en-
rich the feature maps of multi-scales prediction, which
facilitates the utilization of more fine-grained information
in additional feature maps.

4) The loss function optimization is performed by intensify-
ing the penalties for category prediction to balance the
contribution of each component error to the total loss.

Our proposed scheme performs well on the Tsinghua–
Tencent 100 k benchmark with 92% recall and 94% accuracy.
The experimental results demonstrate that our proposedmodel
offers major advantages over previous works [19, 20], espe-
cially in terms of detection recall and accuracy. Moreover, the
detection speed is roughly increased by a factor of 1.9–2.7.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the related studies about object de-
tection algorithms based on CNNs for traffic sign detection
and recognition. The detailed description of our algorithm and
model architecture are thoroughly described in Section 3.
Section 4 discusses the overall experimental results of our
proposed traffic sign detection algorithm. Finally, certain con-
clusions and further remarks are summarily presented in
Section 5.

2 Related Work

2.1 Object Detection Algorithms Based on CNNs

Object detection is a computer vision task to exactly locate the
bounding boxes of objects in a given picture and mark the
category of the objects. As deep learning methods are widely
applied to computer vision over the past few years, most of the
state-of-the-art object detection algorithms, such as R-CNN
series works [10–13], OverFeat, SSD [21], and YOLO series
works [22–24], have used CNNs and achieved impressive
success in various fields of object detection and classification.

Faster Region-based Convolutional Neural Network
(Faster R-CNN) and Region-based Fully Convolutional
Networks (R-FCN) have a made a quantum leap forward
among the series networks of R-CNN based on regional pro-
posals, which are known as the two-stage method and have
certain advantages in terms of accuracy of object detection
base on the deep learning method. Both of them optimize
the detection speed and precision by employing region pro-
posal network (RPN) instead of selective search algorithms.
R-FCN proposed a concept of the position-sensitive score
map which introduced location information of the target into
the ROI pooling. However, the two-stage approaches are
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computationally inefficient, and the computation process is
resource-intensive .

Furthermore, Sermanet et.al. team proposes an end-to-end
network OverFeat and has taken the crown of ILSVRC2013.
They synthesize identification, localization and detection
tasks into a CNN-only based framework, rather than recogni-
tion after the region is proposed. The SSD algorithm intro-
duces multi-scale feature maps for detection by adding
convolutional feature layers to the end of the truncated base
network. The detection speed of SSD is considerably faster
than faster-RCNNwith the same detection accuracy. Joseph J.
et al. sequentially proposed YOLO series works [22–24].
YOLO model converted the target classification and localiza-
tion tasks into regression problems, and the detection speed of
it has increased dramatically. With new multi-scale predic-
tions techniques, the state-of-art model, named YOLOv3,
not only provides high detection accuracy and speed, but also
greatly improves the performance of small object detection.

2.2 Traffic Sign Detection and Recognition

Since the traffic signs play an important role in guiding driv-
ing behavior on the road, traffic sign detection has been con-
sidered essential in automated driving. Traditional visual ob-
ject detection methods failed to adapt to the complex environ-
ment, multiple and small target sample detection, and real-
time response requirements in real traffic scenarios.
Benefiting from the rapid development of vehicle networks
and intelligent transportation systems, extensive research on
real-life traffic sign detection has been conducted in recent
years.

Zhu et al. [19] at Tsinghua University create a large-scale
Chinese traffic sign benchmark named Tsinghua-Tencent
100 K, which covers more realistic scenes, traffic sign catego-
ries, and image instances. Furthermore, they build on the work
of Huval et al. [25] by improving OverFeat framework and
introducing three streams after the final branch to simulta-
neously detect and classify traffic signs with a recall rate of
0.91 and an accuracy of 0.88. In [26], Li et al. innovatively
propose a Perceptual GAN (PGAN) model to deal with the
low-resolution object detection problem. In, Meng et al. de-
compose the original large image into patches and successful-
ly applied Small-Object-Sensitive-CNN (SOS-CNN) to the
image pyramid. Both of them efficiently boost traffic sign
detection performance, especially for small objects. Tian et.al
[18] utilize recurrent attention for multi-scale analysis and
local context information, which effectively improved recall
and precision by about 1.0%. Yang et al. [17] combine atten-
tion network and Fast R-CNN to classify traffic signs robustly
according to color features. Lu et al. [27] propose a visual
Attention Proposal Model (APM) to locate attention regions
and further predict the classification and bounding boxes of
objects in each region of interest. Song et al. [20] compress the

CNNmodel to improved efficiency for the small object detec-
tion without reducing recognition accuracy. All these works
made some improvements in the speed of object detection.
Jain et al. [28] use a genetic algorithm (GA) to optimize the
number of epochs and hype-parameters during the training
period to refine the classification accuracy of traffic targets.
Kim et al. [29] report a novel feature embedding scheme with
the representative class templates, which perform well on un-
seen traffic sign recognition.

However, few researchers demonstrate that their work has
achieved satisfactory results in proper balance between accu-
racy and speed, taking into account of real-life traffic sign
especially small object detection tasks. Unlike Pascal VOC,
COCO, or other common object detection tasks, real-life traf-
fic sign detection needs to deal with challenging objects that
make up a much smaller proportion of the image than before.
For example, in the Tsinghua-Tencent 100 K dataset, most
traffic signs may be only 50 × 50 pixels or less, scattered
across a 2048 × 2048-pixel image, each one just filling less
than 0.1% of the image. Note that even bigger signs with size
of 400 × 400 pixels occupy only 3.8% of the total image area.
In other widespread datasets, it may account for close to 20%
of each image. As a result, many reported models with supe-
rior performance are not considered to be directly applicable
for traffic sign detection applications. In order to improve the
detection performance, it is important to consider the charac-
teristics of traffic signs when designing the network architec-
ture. Due to the high efficiency and accuracy of the YOLOv3
detector, especially for small targets.We propose an improved
end-to-end method based on YOLOv3 model. It has excellent
performance in the traffic sign detection tasks.

3 Improvement of Network Structure

3.1 Method Overview

Although the CNN has achieved outstanding achievements in
the field of object detection, no model that is well qualified for
the task of traffic sign detection, both in terms of detection
accuracy and speed. In this paper, we construct a deep neural
network based on YOLOv3 for traffic sign detection.

The YOLOv3 model is one of the state-of-the-art object
detection systems. It benefits from the advantages of the re-
sidual network, which allows the construction of deeper net-
work to improve the nonlinearity in the network, and signifi-
cantly improves the classification and detection effects.
YOLOv3 brings up three feature maps extracted from differ-
ent scales to predict objects. Small feature maps provide se-
mantic information, and large ones has finer-grained informa-
tion. The different features are concatenated by stacking adja-
cent features into different channels using a routing layer.
When given an input image, the input image is partitioned
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into S × S grids. Each grid cell predicts three bounding boxes.
Each predicted bounding box contains 4 coordinates (tx, ty, tw,
th) to determine the location relative to the center of the grid. It
then predicts a confidence score (to), which is the probability
of the grid will detect an object for each bounding box using
logistic regression [24]. Assuming that the offset of the cell
from the upper left corner of the image is (cx, cy), and that the
width and height of the bounding box prior are pw, ph, then the
predictions correspond to Equ. (1):

bx ¼ σ txð Þ þ cx
by ¼ σ ty

� �þ cy
bw ¼ pwe

tw

bh ¼ phe
th

σ toð Þ ¼ Pr ob jectð Þ � IOU b; objectð Þ

ð1Þ

The probability should be 1 when the prediction
bounding box coincides with the ground truth location to
the cutoff threshold, and 0 otherwise. We can get the con-
fidence value of each bounding box through prediction,
and select the bounding box with the highest confidence
in each grid cell to predict the object in the image. Each
box uses a multi-label classification to predict which clas-
ses the bounding box may contain. The binary cross-
entropy loss is used for the class predictions during train-
ing, instead of using softmax. The YOLOv3 model com-
bines a large number of previous works and performs well
in object detection, especially for small targets. The detec-
tion speed of this method is one of the fastest algorithms
available. To address the characteristics of the traffic sign
detection task, we put forward the following improvements
on the YOLOv3 network.

Figure 1 provides the architecture of our traffic sign detec-
tion method. First, the input image is cropped into 19 sub-
graphs according to the certain grids, and passed into the de-
tection network of the framework as one batch. Secondly, the
optimal bounding boxes and classes of the targets are gener-
ated from the prediction results of four different scale

prediction branch by non-maximum suppression (NMS).
Finally, the results of each subgraph are integrated into the
original image as the output of the entire detection network.
Next, we will discuss the detailed design of our method.

3.2 Network Pruning

YOLOv3 is a universal object detection model with excellent
performance. For the practical scenario task of traffic sign
detection mentioned in this article, appropriate deletion of
the backbone network is an effective improvement method.
The network structure of YOLOv3 feature extractor has 53
stacked convolutions, called Darknet-53, which can be divid-
ed into five sections, including 1, 2, 8, 8, and 4 residual blocks
respectively (represented as 1–2–8-8-4 in Table 1). In order to
obtain the optimal network structure, we scaled down the dif-
ferent parts of the network structure and analyzed the detec-
tion performance and model size of the corresponding modi-
fied network. The experimental results are shown in Table 1. It
is noted that the detection performance of the 1–2–4-4-4 struc-
ture is relatively close to the original network, and the amount
of model parameters is significantly reduced.

3.3 Four Scale Prediction Branches

It is known that the shallow feature map in CNN contains
richer location information, and is more suitable for detecting
small targets with low resolution and inconspicuous features.
Considering the uneven distribution of the target sizes in the
Tsinghua Tencent’s 100 K dataset, most of them are small-
sized targets. The three scale prediction branches in the orig-
inal YOLOv3 structure are in the lower levels of the network,
and the 9 anchor priors obtained using k-means clustering
may be more inclined to large-sized targets because the deep
network can provide more semantic information. In order to
improve the detection performance of large targets, we added
a fourth scale prediction branch to expand the detection range
and enrich the feature maps for multi-scale prediction.

Figure 1 The overview of our traffic sign detection system. The input image is divided into 19 subgraphs as one batch and processed by the
convolutional layers, whose architecture is improved from YOLOv3. The final output module combines the predictions of all subgraphs.
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Traditional K-means clustering method uses the Euclidean
Distance function, with larger boxes generate more erroneous
clusters than smaller boxes. To this end, what we really want
is priors that lead to good IOU scores, independent of the size
of the box. The distance function can be computed as Equ. (2):

d box; centroidð Þ ¼ 1−IOU box; centroidð Þ ð2Þ

Then 12 clusters we get on the Tsinghua-Tencent 100 K
dataset were: (16 × 18), (20 × 20), (22 × 24), (26 × 28), (32 ×
34), (41 × 44), (53 × 58), (71 × 77), (98 × 107), (127 × 132),
(161 × 158), (230 × 211). The fourth scale prediction branch
is attached to the end of the second residual block section,
while the features maps obtained previously in the network
is merged in 2x up-sampling, similar to the connection of
intrinsic YOLOv3. In this way, the smallest three anchor box-
es are performed by the new fourth scale prediction branch,
while the first scale prediction branch can easily predict larger
objects using anchor boxes with additional scales. Large-size
objects are easier to predict due to the closer proximity of the
anchor boxes.

3.4 Loss Function Improvement

The loss function is one important criterion for evaluating the
performance of a model. The loss function in YOLOv3 is a
simple addition of differences, including coordinate errors,
confidence errors, and the classification errors. The loss func-
tion can be expressed by the following Equ. (3):

Loss ¼ Errcoor þ Errconf þ Errcls ð3Þ

where the loss function is simply summed, and the weights of
coordinate errors, confidence errors, and classification errors
are equal to 1. The confidence is defined as Equ. (4):

Confidence ¼ pr Objectð Þ � IoUtruth
pred ; pr Objectð Þ∈ 0; 1f g ð4Þ

However, in traffic sign detection task, the targets are
substantially divided into three categories: “warning”,
“prohibited” and “indication”, with yellow, red, and blue

outer circles, respectively. The internal patterns for each
category are somewhat different. In general, the models
have various misclassifications when predicting the target.
In particular, this misclassification is more pronounced
when the target is small. Considering the great similarity
of the categories in the Tsinghua-Tencent 100 K dataset,
it is more challenging to get the network to accurately
recognize the categories of traffic signs than to predict
the location of the targets. In the loss function of original
YOLOv3, the location error weight is equal to classifica-
tion error, which is unreasonable to directly apply to the
traffic sign detection task. In order to improve classifica-
tion mistakes, we attempt to increase the penalty for class
prediction, and the confidence loss and classification loss
among each scale prediction are multiplied by the corre-
sponding weights. Therefore, the overall loss function can
be defined as Equ. (5):

Loss ¼ ∑
S2

i¼0
∑
B

j¼0
1ob ji j xi−x̂ið Þ þ yi−ŷið Þ½ �

þ ∑
S2

i¼0
∑
B

j¼0
1ob ji j

ffiffiffiffiffi
wi

p
−

ffiffiffiffiffi
ŵi

p� �2
þ

ffiffiffiffi
hi

p
−

ffiffiffiffî
hi

q� �2
" #

þ λob j ∑
S2

i¼0
∑
B

j¼0
1ob ji j − CilogĈi

� �
− 1−Cið Þlog 1−Ĉi

� �	 

þ λnoob j ∑

S2

i¼0
∑
B

j¼0
1noob ji j − CilogĈi

� �
− 1−Cið Þlog 1−Ĉi

� �	 

þ λcls ∑

S2

i¼0
1ob ji ∑

c∈classes
−pi cð Þlog p̂i cð Þð Þ− 1−pi cð Þð Þlog 1−p̂i cð Þð Þ½ �

ð5Þ

where: S2 is defined as the number of grids in the input
image; B is defined as the number of bounding boxes
generated in each cell; (x, y, w, h) are defined as the coor-
dinates of the center, width, and height of the prediction
box; C is defined as the confidence of the prediction box;
p(c) is defined as the probability that the object belongs to
class c; And the parameter λobj is the weight of the con-
fidence loss that the predicted target center is within the
grid cell, with the value of 5. We set λnoobj = 1 instead of
being equal to λobj is used to fix the error mentioned in
YOLO [22]. As the confidence value of the grid cells that
do not contain objects in each image is approximately 0,
which distorts the influence of the confidence error of the
grid containing objects on the calculation of the gradient
of the network parameter. λcls is the weight of the cate-
gorical loss and λcls = 5 is chosen in this paper. It is worth
mentioning that we adopted the grid search method to
determine the weights of each part of the loss function,
including λobj, λnoobj, and λcls. Specifically, we limit the
search range of the three weights to a reasonable range of
[0.1, 0.5, 1, 3, 5, 10], then tried all possible parameter
combinations. In the experiment, we chose the F1 score

Table 1 Comparison of detection performance of the network
structures with different degrees of pruning. (In %).

Network structure All Small Medium Large Model size

1–2–8-8-4 Recall 90.82 89.25 93.11 85.59 236 M
Accuracy 90.47 88.29 93.27 85.48

1–2–4-4-4 Recall 90.80 89.70 92.66 85.84 211 M
Accuracy 90.45 87.83 93.40 86.84

1–2–2-2-4 Recall 87.72 85.75 90.67 80.87 198 M
Accuracy 90.71 89.07 93.24 84.42

1–4–2-2-4 Recall 88.40 87.81 91.18 83.04 204 M
Accuracy 90.34 88.51 93.14 83.89
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as a moderate function to evaluate the detection perfor-
mance of the model, which takes both the accuracy and
recall into account. Finally, we selected the optimal set of
hyperparameters as weights in the loss function and
retrained the model.

3.5 Model Construction

In this paper, we have explored several models according to
the characteristics of traffic signs, and made some improve-
ments based on the YOLOv3 model. Finally, three networks
are constructed to address the challenging traffic sign detec-
tion problem. The network structures of the proposed models
are illustrated in Fig. 2.

YOLOv3model is used as a reference comparison group to
verify whether the proposed model has improved the perfor-
mance of traffic sign detection. The network contains 23 re-
sidual blocks, divided into 5 residual sections, using as feature
extractor and three scale prediction branches to process the
obtained features.

The YOLOv3-Pruning network is pruned based on the
YOLOv3 network, by removing the third and fourth residual
blocks 4 convolutional layers, respectively. And the scale pre-
dicted branches remains unchanged. This ensures the feature
extraction capability of the network while reducing the num-
ber of network parameters to some extent.

The YOLOv3-4SPB network has four scale prediction
branches by adding a new one to YOLOv3. The fourth scale
prediction branch is connected after the second residual sec-
tion, which also incorporates the up-sampled features of the
third scale prediction branch as in the previous operation.
Finally, the YOLOv3-4SPB network in this paper predicts
bounding boxes at four different scales: 104 × 104, 52 × 52,
26× 26, and 13 × 13.

The YOLOv3-Final network has not changed the network
structure in the feature extraction part but increased penalties
for confidence loss and class loss in the calculation of the loss
function. We multiplied the confidence loss for the predicted
target center within the grid cell and the classification loss by a
weight of 5, respectively.

4 Experiments and Discussion

In this paper, we conducted experiments on the Tsinghua-
Tencent 100 K dataset which was released in 2016 as a bench-
mark for large-scale traffic signs of China. [19] The dataset
provides 100,000 real-world images with a resolution of
2048 × 2048, and containing 30,000 traffic-sign instances.
These images cover large variations in illuminance and weath-
er conditions. As shown in Figure 3(a) and Fig. 3(b), this
dataset has an obvious uneven distribution in the number of
instances per category and target size. In which, most in-
stances appear in relatively few classes and small traffic-
signs are most common. To make a better comparison with
other methods, we also ignored classes with fewer than 100
instances, leaving only 45 categories following [19]. Data
enhancement is also adopted to balance the severely uneven
numbers of instances in the different categories. We used a
variety of data enhancement methods, including appropriate
color dithering, image blurring, fancy PCA, rotating, and scal-
ing randomly, so that the instances of each class in one epoch
during training are above 1000 samples. Following the divi-
sion method in the original datasets, our training set contains
6105 images, including 15,698 traffic sign instances, and the
test set contains 3071 images, including 7812 instances.

All the experiments were completed with the environment
of two NVIDIA Tesla K80 GPUs with 12GB memory,
Ubuntu 16.04 operating system, cuda9.0, python 3.6. In the

Figure 2 The network structures of YOLOv3, YOLOv3-Pruning, YOLOv3-4SPB, and YOLOv3-Final.
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process of model training, the original 2048 × 2048 high-
resolution images were cropped to subgraphs with a resolution
of 416 × 416, which contains all the instances of the original
image. The models in our experiments were initialized using
some parameters of the published model of Darknet-53 and
retrained on the Tsinghua-Tencent 100 K dataset. The training
process was divided into three stages. First, all scale prediction

branches were trained on the feature extraction network
Darknet-53 for 40 epochs, then replaced with our feature ex-
traction networks, and continued training for 60 epochs. The
first two stages used Adam optimizer. Finally, all parameters
in network layers are released, and additional 30 epochs are
trained using Stochastic Gradient Descent (SGD) with mo-
mentum of 0.9 and a weight decay of 0.005 for finer tuning.
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Figure 4 The heat map of traffic
sign density in the Tsinghua-
Tencent 100 K dataset. The 19
dashed boxes in the figure are the
grids used to divide the original
2048 × 2048 high-resolution im-
age into subgraphs for the detec-
tion task.
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As mentioned earlier, the Tsinghua-Tencent 100 K dataset
is a special dataset for traffic sign. In this benchmark, the size
of the objects of interest is much smaller than in previous
benchmarks. How to detect such small size targets in such a
large resolution image is an important issue. If the original
2048 × 2048 high-resolution image is directly resized to a
low-resolution image of 416 × 416, this will make the size of
the pretty small objects of interest in the image shrink by a
factor of nearly 24. It will be a huge challenge for CNN net-
works to detect the targets with so few pixels information.
Therefore, the large, high-resolution image is broken down
into small fixed-sized patches before it is fed into the detection
network. In this way, the pixel information of the target in the
image is retained in several low-resolution subgraphs, but at
the cost of reduced detection speed.

In addition, we have analyzed the distribution of traffic sign
locations in the images from the Tsinghua-Tencent 100 K
benchmark. These images were captured from both vehicles
and shoulder-mounted equipment. [19] And the locations of
the captured traffic signs were not randomly distributed
throughout the image due to the relatively fixed perspective.
The heat map of the traffic sign density in the Tsinghua-
Tencent 100 K dataset is given in Fig. 4. Instead of even
distribution among the image, the traffic signs are concentrat-
ed in the upper part of the middle of the image, and few targets
can be seen in the lower part of the image. According to the
characteristics of the traffic sign distribution, we use non-
uniform partitioning when dividing the image into subgraphs.
As illustrated in Fig. 4, the grid in areas with densely distribu-
tion of signs is tighter than in places with sparse target distri-
bution. In order to ensure the accuracy of edge target recogni-
tion, we added somemargin when dividing the grid. This non-

uniform division method not only ensures the accuracy of
traffic sign recognition but also reduces the complexity of
network computation. Finally, we obtain one batch containing
19 subgraphs which are resized to 416 × 416 to replace the
original high-resolution image for the detection task. The ob-
ject detection results in all subgraphs are then combined ac-
cording to the corresponding coordinates and the complete
detection results are output. With this non-uniform division
method, the YOLOv3-Final model needs about 1.1 s to pro-
cess these 19 subgraphs. Instead of the conventional division
method, such that a high-resolution picture with 2048 × 2048
needs to be divided into 36 sub-images of 416 × 416, and it
takes an average of 1.7 s to process these images.

4.1 Detection Performance

We inherited the previous metrics employed for the Microsoft
COCO benchmark, and then separated all traffic-signs into
three parts of small, medium, and large size. The purpose of
dividing the traffic-signs into three categories is to better ex-
press the detector’s generalization ability and robustness to
different size targets. And we made a more detailed compar-
ison between the detection performances of the traffic sign
detection model which we constructed for different sizes. In
the Tsinghua-Tencent 100 K dataset, even large scale objects
occupy only 96–400 pixels, and the average proportion is less
than 1% of the entire image with a resolution of 2048 × 2048.
Compared to the proportion of each image could approach
20% in other widespread datasets, so this kind of traffic sign
detection task can still be considered as the detection of small
objects. For binary classification problems, samples can be
divided into four types: true positive (TP), false positive

Table 3 The performance comparison of different traffic signs detectors on the Tsinghua-Tencent 100 K dataset. (In %).

Object size All Small Medium Large Model size

YOLOv3 Recall 90.82 89.25 93.11 85.59 236 M
Accuracy 90.47 88.29 93.27 85.48

YOLOv3-Pruning Recall 90.80 89.70 92.66 85.84 211 M
Accuracy 90.45 87.83 93.40 86.84

YOLOv3-4SPB Recall 91.44 90.30 92.99 88.27 212 M
Accuracy 91.91 88.81 95.06 89.52

YOLOv3-Final Recall 92.25 90.61 94.29 88.78 212 M
Accuracy 93.80 91.21 96.31 92.19

Table 2 Detailed experimental
arrangement and related strategies
in ablation studies of our
proposed method.

Distribution heat
map

Network
pruning

Four-scale prediction
branch

Loss function
balance

YOLOv3 √
YOLOv3-Pruning √ √
YOLOv3-4SPB √ √ √
YOLOv3-Final √ √ √ √
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(FP), true negative (TN), and false-negative (FN), according
to the combinations of the true class and predicted class of the
learned objects.

Accuracy (A) and recall(R) are defined as Equ. (6) and
Equ. (7):

A ¼ TP
TP þ FP

ð6Þ

R ¼ TP
TP þ FN

ð7Þ

Since our network is made up of multiple modules, and the
improvement of the model is also composed of multiple op-
erations, we performed some ablation studies to verify its ef-
fectiveness and achieve the final performance. The detailed
experimental arrangement and related strategies are listed in
Table 2.

The comparison of experimental results evaluated on test
sets for Jaccard similarity coefficient 0.5 are shown in Table 3.
From which, it is noted that pruning has a significant impact
on medium object detection, with its accuracy rate decreasing
from 93.11% to 92.66%. This is because the deletion of the
middle 8 residual layers, which reduces the amount of feature

information of the medium object extracted by the network.
Considering that the detection performance of large targets
after pruning is better than that of the initial network, this
may be due to overfitting in the intermediate feature extraction
of the initial network, and the deeper network learned more
correct features after pruning. However, for all objects, we can
see that the recall and accuracy achieved byYOLOv3-Pruning
are almost the same as YOLOv3: 90.82% vs 90.80%, and
90.47% vs 90.45%, respectively. In other words, YOLOv3-
Pruning has comparable detection performance in this task,
even though a total of 8 residual layers are removed from
networks. This also implies that, for this traffic sign detection
task, the YOLOv3 network is over-parameterized. Moreover,
the model size of YOLOv3-Pruning is reduced by approxi-
mately 11.3%. A smaller model sizemeans less computational
resource consumption and shorter response times. It is espe-
cially important for mobile platforms such as automotive
applications.

Furthermore, we constructed the YOLO-4SPB model by
adding a scale prediction branch to YOLOv3-Pruning.
Obviously, the YOLOv3-4SPBmodel outperforms the former
in terms of both recall and he accuracy: 91.44% vs 90.80%
and 91.91% vs 90.45%. Especially in the aspect of large target
detection, the performance of the model has greatly improved:

Figure 5 Accuracy-recall curves of simultaneous traffic sign detection performance on Tsinghua-Tencent 100 K, for small, medium, and large signs.

Table 4 Comparison results of
detection performance for
different sizes of traffic signs on
Tsinghua-Tencent 100 K dataset.
(In %).

Object size All Small Medium Large Model size detect time

Fast R-CNN [11] Recall 56 24 73 86 342 M –
Accuracy 50 45 50 55

Faster R-CNN [12] Recall – 50 84 91 357 M –
Accuracy – 24 66 81

Zhu et al. [19] Recall 91 87 94 88 418 M 3.0 s
Accuracy 88 82 91 91

Song et al. [20] Recall – 88 93 89 375 M 2.1 s
Accuracy – 85 91 92

YOLOv3-Final (Ours) Recall 92 91 94 89 212 M 1.1 s
Accuracy 94 91 96 92
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recall and accuracy increased from 85.84% and 86.84% to
88.27% and 89.52%. The poorer detection performance for
large target using the YOLOv3 network directly may be due
to the fact that small objects are most common in the
Tsinghua-Tencent 100 K dataset, whereas the prior anchor
boxes obtained using k-means clustering may be closer to
the small size. Nevertheless, the fourth scale prediction branch
in the YOLO-4SPB model provides more elaborate anchor
boxes and achieves good results for large objects, which are
in line with our hypothesis.

After fine-tuning the weights of various errors in the
loss function, we achieved a significant improvement in
the detection performance of the model. As presented in
Table 3, the YOLOv3-Final model achieved 92.25% re-
call and 93.80% accuracy at a Jaccard similarity coeffi-
cient of 0.5 when all sizes of traffic signs are considered
together,. It is important to note that this improvement is
not biased towards the specified scale object. The accu-
racy and recall are all better than the previous model in
terms of performance for each size target. An illustration
of accuracy-recall curves for these methods is provided
in Fig. 5, which can further demonstrate the effectiveness
of the proposed the YOLOv3-Final model in performing
well on targets of different sizes. Therefore, the
YOLOv3-Final model was selected as the final model
for traffic sign detection.

4.2 Comparisons and Discussions

In order to better demonstrate the effectiveness of our pro-
posed method on traffic sign detection, we also evaluated
our approach with other state-of-the-art methods of Zhu
et al. [19] and Song et al. [20], whose main work was also
completed on the Tsinghua-Tencent 100 K dataset. Table 4
shows the detection performance of our results in comparison
with previous publications in terms of average recall and ac-
curacy for each target scale. The overall results indicate that
our approach achieves remarkable improvements. In particu-
lar, our proposed model increases the recall and accuracy by
about 4% and 9% when used to detect small traffic signs
compared to Zhu et al. [19], and increased by about 3% and
6% compared to Song et al. [20], respectively. In addition, the
detection performance for medium and large targets is also
some improved. We speculate that this is due to the adoption
of up-sampling and fusion methods similar to FPN in the
feature extraction layer, which enables local feature fusion
between feature maps of different scales and significantly im-
proves the detection performance for small targets. More scale
prediction branches facilitate the fusion of shallower features.
These shallow features are fused with the up-sampled deep
features, which solves the problem that the dimension of deep
features is too small. At the same time, more network layers
deepened the depth of the network, and improve the effect of

Figure 6 Performance comparison of accuracy-recall curves of Fast R-CNN, zhu et al. [19]. and our approach for different object sizes.

Table 5 Comparison results of detection performance for 10 typical classes of traffic signs on Tsinghua-Tencent 100 K dataset. (In %).

Class i2 i5 io p10 p19 p26 p6 pm55 w55 w57

Fast R-CNN [11] Recall 0.32 0.69 0.65 0.51 0.79 0.6 0.54 0.79 0.5 0.56

Accuracy 0.68 0.71 0.51 0.54 0.67 0.67 0.66 0.57 0.7 0.38

Zhu et al. [19] Recall 0.82 0.95 0.89 0.95 0.94 0.93 0.87 0.95 0.72 0.79

Accuracy 0.72 0.92 0.76 0.78 0.53 0.82 0.87 0.6 0.86 0.95

Ours Recall 0.91 0.95 0.85 0.92 0.97 0.9 0.9 0.95 0.94 0.94

Accuracy 0.86 0.97 0.89 0.94 1 0.94 0.95 0.95 0.85 0.88
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feature expression is. More performance comparisons of
accuracy-recall curves for different object sizes are illustrated
in Fig. 6. The curves of Fast R-CNN and Zhu et al. are adopted
from [19]. We also give accuracy and recall for some typical
classes in Table 5. We achieve significant improvements in
several categories. This can be further noted by the fact that
our proposed model achieves such a large improvement in
these three types of targets.

Another advantage of our approach is that both model size
and detection speed exceed previous reports. As indicated in
Table 4, it can be observed that the model size of YOLOv3-
Final is only half of that of Zhu et al. [19], and nearly 43% less
than that of Song et al. [20]. The detection speed is also an
important factor besides accuracy in practical applications.
Especially for this traffic scenario, the shorter response time
of the model means that the driver can make corresponding
decisions earlier. This reduces the probability of traffic acci-
dents to some extent. In order to locate and classify all traffic
signs in an image with 2048 × 2048 pixels, our proposedmod-
el requires approximately 1.1 s. In comparison, Song et al.
[20] and Zhu et al. [15] take approximately 1.9x and 2.7x
times longer to complete the task, respectively. This is mainly
benefiting from the excellent feature extractor (Darknet-53) in
yolov3. Which has better performance and achieves higher
measured floating-point operations per second [24]. In addi-
tion, it is related to our trick mentioned above to narrow down
the scope of detection using the heat map.

Finally, taking into account factors such as detection accu-
racy, model size, detection speed, our proposed model not
only performs well in various types of traffic signs, especially
for small target detection, but also possesses the smallest mod-
el size, saves the computational cost and significantly im-
proves detection speed. From the comparison results in these
aspects, our approach is more effective in boosting small traf-
fic sign detection than the state-of-the-art methods of Zhu
et al. and Song et al..

5 Conclusion

In this paper, we proposed an efficient to address the challeng-
ing problem of small traffic sign detection in real-life, which
consists of an improved model YOLOv3-Final and its corre-
sponding efficient algorithm. The YOLOv3-Final model is
applied to the public Tsinghua-Tencent 100 K dataset and
exhibits good robustness for small traffic sign detection. In
order to improve the network’s ability of extracting the traffic
sign features accurately, various optimization strategies are
elaborately presented, including network pruning, the fourth
scale prediction branch, and loss function modulation. The
experimental results demonstrate that the YOLOv3-Final
model has a better performance compared to the original
YOLOv3 model, and outperforms over state-of-the-art

methods in terms of accuracy and speed. Therefore, our pro-
posed method is hopefully used for intelligent traffic sign
detection system.

For future work, we will compress the model and optimize
the detection algorithm, and add more visual objects to meet
the requirements of light-weight and real-time in practical au-
tonomous driving applications.
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