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Abstract
In general, Convolutional Neural Networks (CNNs) have a complex network structure consisted of heavy layers with huge
number of parameters such as the convolutional, pooling, relu-activation, and fully-connected layers. Due to the complexity and
computation load, CNNs are trained on a cloud environment. There are a couple of drawbacks on learning and performing on the
cloud such as security problem of personal information and dependency of communication state. Recently, CNNs are directly
trained at the mobile devices in order to alleviate those two drawbacks. Due to the resource limitation of the mobile devices, the
structure of CNNs needs to be compressed or to reduce training overhead. In this paper, we propose an on-device partial learning
technique with the following benefits: (1) does not require additional neural network structures, and (2) reduces unnecessary
computation overhead. We select a subset of influential weights from a trained network to accommodate the new classification
class. The selection is made based on the information of the contribution of each weight to output, which is measured using the
entropy concept. In the experimental section, we demonstrate and analyze our method with a CNN image classifier using two
datasets such as Mixed National Institute of Standards and Technology image data and Microsoft Common Objection in Context
data. As a result, the computational resources at LeNet-5 and AlexNet showed performance improvements of 1.7× and 2.3×,
respectively, and memory resources demonstrated performance improvements of 1.4× and 1.6×, respectively.
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1 Introduction

Deep-neural networks (DNNs) have been creating tremen-
dous change and advance in various academic or industry
fields. In particular, Convolutional Neural Networks
(CNNs) [1] have made rapid progress in academic field
due to the ImageNet dataset and many advanced networks
such as GoogleNet [2], ResNet [3], and VGGNet [4].
Recently, for the applications that provide intelligent ser-
vices using these developments, CNNs are getting be im-
bedded to various mobile devices such as smartphone, tab-
let personal computer, drone, and embedding board. The
CNNs perform well on the image classification such as
detecting dangerous situations by predicting people’s be-
havior from videos captured through mobile device cam-
eras, and taking pictures on a mobile device and giving
information of the pictures. However, in general, the

CNNs have a complex network structure which consists
of heavy layers and a lot of parameters such as the
convolutional, pooling, relu-activation, and fully-
connected layers. Due to the complexity and computation
load, the CNNs are learnt and run on large-scale cloud
networks. However, there are two obstacles on learning
and performing on the cloud network: 1) Security of per-
sonal information becomes vulnerable because an inter-
change of information is getting easy, and the possibility
of personal information leakages by hacking operations. 2)
Learning and running can be unstable because cloud com-
munications have a high dependency of mobile network
state. Thus, some researchers [5–12, 18–33] have studied
for making the structure of CNNs compressed and efficient
and light learning of CNNs in order to learn and run the
network (“network” can be exchangeable with “network of
CNN or DNN” from here) directly at the mobile devices.
The representative methods for the compression of net-
work structure are weight matrix reconstruction [5–8],
quantization [9, 10], and pruning [11, 12]. Also, a popular
method for efficient and light learning is the transfer learn-
ing that trains the networks by utilizing the information of
an existing network. It reduces learning cost when new
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classes or patterns, which are not known during training
the existing network, happen.

A variety of approaches for the transfer learning, such
as the incremental-transfer [18], the parameter-transfer
[19–23], and the feature-transfer [24–33], have been de-
veloped by transferring additional network structures, fea-
ture values, classifier weights, etc. for new classes. The
incremental-transfer method (transferring an additional
network structure) reconfigures an existing network by
connecting an additional network for new classes in par-
allel with the existing network. However, the method has
a disadvantage that requires the structure overhead for
designing the addit ional network structure. The
parameter-transfer (transferring characteristic values) con-
structs a network by utilizing the common features ex-
tracted from the feature filters of an existing network.
The feature-transfer (transferring the weights) trains an
existing network by using only the common weights ob-
tained from analysis of the differences of the weights. The
analysis is done based on the distribution of input data of
existing classes and the new class. However, the methods
require unnecessary computation overhead of analysis of
the weight differences.

To solve the problems issued from the transfer learning, we
propose an on-device partial learning technique with no re-
quiring additional network structures and reducing the unnec-
essary computation overhead. First, we select the weights
which need to be trained from an existing network when a
new class happens. The weights are analyzed using the infor-
mation of importance of their contribution to outputs. The
importance of weights means that the weights have big con-
tribution to outputs for existing classes. The information of
weights is measured by modifying the entropy concept which
is widely used in information theory [34–39]. The entropy is
defined as the expected amount of information or the potential
amount of information. Thus, it is calculated by the probabil-
ity of an event occurring. However, the entropy formula can-
not be directly applied to the networks because the magnitude
of weights plays a critical role on whether the weights are
important to the output or not. Thus, we combine the entropy
concept with the magnitude of weights in order to develop a
new importance metric which is named as the qualitative en-
tropy. Based on the qualitative entropy, we partially learn the
existing network by training only the little important weights
on the existing classes. In the experimental section, we dem-
onstrate and analyze the qualitative entropy technique for the
CNN image classifier. We also show that our method outper-
forms in learning time and performance to the conventional
transfer leaning using two data sets such as Mixed National
Institute of Standards and Technology (MNIST) [40] and
ImageNet dataset.

The remainder of this paper is organized as follows.
Section 2 introduces various transfer leaning techniques

which are highly related to our work. Also, we explain
about various entropy applications using CNNs to help
understand the derivation of the qualitative entropy met-
ric. In Section 3, we derive the quantitative entropy metric
step by step. Section 4 demonstrates and analyze our
method and compare the classification performance with
the transfer learning method. Section 5 concludes this
paper.

2 Related Works

2.1 Transfer Learning for CNN

In order to reduce cost for rebuilding an existing CNN as new
classes occur, many researchers [18–33] worked on develop-
ing the transfer learning techniques. The transfer learning
makes it easier to learn new classes by using knowledge of
an existing network. There are three approaches for the trans-
fer learning such as the incremental-transfer, parameter-trans-
fer, and feature-transfer.

The incremental-transfer builds an architecture
consisting of a basic inference network and a small incre-
mental network. The basic inference network is fixed after
learning with large data set. The small incremental network
is learned with user-customized data set that users provide.
The learned small incremental network is connected with
the basic inference network in parallel so that the network
can classify the new classes without hurting the existing
network. The approach increased the classification accura-
cy from 76.3% to 93.2% in experiments using the 19 hand-
printed character image data sets provided from National
Institute of Standards and Technology [41] and the users’
customized dataset. However, the approach requires com-
putation overhead to learn the new networks connected to
the existing networks. The parameter-transfer extracts the
common feature of weight information in a classifier by
comparing and analyzing principal components of the
weights. In order to transfer the common feature of the net-
work for the new class, Killian et al. [19] used a Hidden
Parameter Markov Decision Process (HiP-MDP). Also,
Shin et al. [20] used an unsupervised CNN pre-training with
supervised fine-tuning. The found features are used to train
the network for new classes. Fernandes et al. [21] used a
method that encourages the source and target to share the
same coefficient signs. However, it is difficult to achieve
real benefits with these techniques because they use the
computational resource as a whole matrix-based operation.
To solve the problem, Long et al. [25] proposed a feature-
transfer technique that uses domain adaptation in neural
networks, which can jointly learn adaptive classifiers and
features from labeled data in the source and unlabeled data
in the target. Once the adaptation is done, the network is
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elaborately trained using residual transfer network [42, 43].
They used 20 newsgroups [44] dataset to model the approx-
imate network, and then the network is trained using SRAA
2 [45] and Reuters–21,578 [46]. Tjandra et al. [27] proposed
a feature transfer learning to assist the training process of the
end-to-end network. First of all, the method removes the
data of existing classes which are not categorized in the
existing network and learns the network by giving more
benefit to the weights of the new class. They evaluate the
accuracy performance of the method using the part-of-
speech tagging [47], the named entity recognition [48], the
relation extraction [49], and the semantic role labeling [50,
51]. Also, they demonstrated that integrating and leveraging
information from the new class is more useful for improving
the performance than excluding misleading training cases
from existing classes. Even though the feature transfer ap-
proaches show good performance with respect to the accu-
racy, unnecessary computational costs are incurred by fine-
tuning all weights of the existing networks. Thus, their
methods cannot be applicable to learning directly in mobile
devices as mentioned in the previous section.

In order to solve the problem, we learn partial weights in
the existing network without an additional structure and train-
ing full weights for new classes. To do that, we apply the
concept of entropy to select the weights for the partial learn-
ing. We mention about the applications of entropy for deep
learning systems in the following section.

2.2 Applications of Entropy for CNN

Entropy is defined as the expectation of amount of infor-
mation under uncertain circumstance, which has been

used as a criterion for detecting and selecting important
or unimportant information in many fields such as data
mining, pruning, weight quantization, and sampling in
CNN. Bereziński et al. [52] proposed an entropy-based
approach for detecting malware based on abnormal pat-
terns in the computer network. They use the entropy of
probes passing bi-directionally across the router in order
to estimate the traffic characteristics such as flows dura-
tion, packets, and in(out)-degree. The detection of abnor-
mal probes is made by comparing the amount of informa-
tion of each characteristic with the estimated entropy. The
phenomenon of a computer network is usually very small,
and the abnormal information of network traffic represent-
ed by packet or byte number is hidden. In this situation,

Fig. 1 The overall process
schema for partial learning based
on qualitative entropy.

Fig. 2 An example for calculating the qualitative entropy.
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the entropy concept can work well on detecting the ab-
normal patterns because it tells potential amount of infor-
mation which is hidden between packets. Han et al. [53]
proposed an entropy-based filter pruning method to accel-
erate and compress existing CNNs. The importance of
each filter in the convolution layer is evaluated by the
entropy. The filter with a low entropy is considered to

hold less information, then the filter is considered as less
important. They remove the filter with the smaller value
of entropy according to the evaluated filter value by con-
sidering the amount of information transferred from the
filter to the next layer. The entropy technique showed
good pruning performance on the CNN structure of
VGGNet and ResNet trained with ImageNet [54] dataset.

Fig. 4 The entropy of a node and the amount of information of weights connected to the node in LeNet-5 (a), in AlexNet (b), The qualitative entropy of a
node and the qualitative amount of information of weights connected to the node in LeNet-5 (c), in AlexNet (d).

Fig. 3 Distribution of weights of fully-connected layer1 of LeNet-5 and AlexNet.
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Park et al. [55] proposed an entropy-based quantization
technique to reduce the inference cost of neural networks.
They cluster weights according to the importance of the
weights using the entropy concept to improve quantiza-
tion quality. The weights are grouped so as the entropy of
weights of each cluster is uniform unlike the random bi-
narization technique such as the binary quantization
[13–15]. By using the entropy for the quantization, the
compression performance can be improved because the
hidden information in weights is considered during clus-
tering. The entropy technique provided good compression
performance on the CNN structure of AlexNet [16],
GoogleNet, and ResNet with ImageNet dataset. Zilly
et al. [56] proposed an entropy sampling technique to
reduce the computational complexity in retinal image seg-
mentation using a CNN structure based on ensemble
learning. They estimate the probability for pixels with a
histogram of 256 bins represented using the retinal image
of each pixel. The entropy of the pixel is calculated using
the estimated probability. The entropy is used to find the
important pixels that have larger entropy than the average
entropy of whole pixels. They showed outperformance of
their method on the CNN trained with DRISHTI-GS [17]
dataset.

From abovemethods, the entropy has been proved that it can
be a useful approach for determining importance of information
in many fields. However, the entropy has a limit for being
directly expanded to various fields because the information
depends on network structure or dataset, so the entropy should
be modified. From the following we show how the entropy is
modified for finding weights suitable for the partial learning.

3 Qualitative Entropy Based Partial Learning

Figure 1 shows the schematic of overall process of the
qualitative entropy-based partial learning method which

enables to classify the part of weights to train the existing
network for the new classes. The entropy is employed for
calculating the expectation of amount of information of
weights for generating outputs as shown in Equation (1).
If the amount of information of a weight is lower than the
entropy of a set of weights, the weight is considered as
less important.

E NL
r

� � ¼ ∑
k
Pr ωL−1

rk

� � � A ωL−1
rk

� � ð1Þ

where, NL
r is the rth node in the Lth layer. E NL

r

� �
is the

entropy of NL
r , ω

L
rk is a weight connected from the kth

node in the Lth layer to the rth node of the next layer. Pr
ωL
rk

� �
is the probability of ωL

rk among the weights con-

nected to Nr. A ωL
rk

� �
is the amount of information that ωL

rk

holds. Each entropy means the expected value of the
amount of information held by ωL−1

rk connected to NL
r .

The amount of information of each ωL−1
rk can be evaluated

by Equation (2).

A ωL
rk

� � ¼ −logPr ωL
rk

� � ð2Þ

If each A ωL−1
rk

� �
has a smaller value than E NL

r

� �
, it is meant

that less information is transmitted to NL
r . It is deciphered that

ωL−1
rk is not important for generating outputs during learning.

However, as shown in Equation (1) and (2), the entropy is
produced by products based on probability distributions of
weights only. If the probability distributions of the weights
are similar, the weights have the similar entropy. Even though
the weights have the similar entropy, the influence on the
output node can be different because the weights are trained
in a black-box pattern [57].

For example, as shown in Fig. 2, four nodes (i1, i2, i3, i4)
have the same value of 1 and are completely connected to the
node of L2. If the values of the weights connected to n1 of L2

Table 1 The weights selected by
Equation (7) for LeNet-5 Layer Weights Selected weights Selected weights(%)

Fully-connected layer1 400,000 272,195 68.04%

Fully-connected layer2 5000 3634 72.68%

Total 405,000 275,829 68.10%

Table 2 The weights selected by
Equation (7) for AlexNet Layer Weights Selected weights Selected weights(%)

Fully-connected layer1 38,000,000 23,943,187 63.01%

Fully-connected layer2 17,000,000 11,053,214 65.02%

Fully-connected layer3 4,000,000 2,800,745 70.02%

Total 59,000,000 37,797,146 64.06%
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are 1, 1, 1, and 2, then the entropy of the nodes is 0.431.
However, if the values of weights connected to n2 of L2 are
1, 1, 1, and 3, the entropy is 0.431, too. The entropy values of
n1 and n2 are the same. It is because the entropy is calculated
using the probability distribution only. Even though the entro-
py of n1 and n2 is the same, n2 has a greater impact on o1 and
o2 in L3. In order to solve the problem, we consider the quality
of the weights to avoid the case that the weights with much
information are misunderstood as insignificant due to their
high probability.

The quality of the weights needs to be normalized into
[0, 1] by using the sigmoid function because it helps to
avoid over-emphasizing on the contribution of weights
which are outside of a certain range of the distribution
of weights. In this paper, the normalized quality of the
weight as shown in Equation 3 is called as the qualitative
characteristics for convenience.

Q ωL
rk

� � ¼ 1
�

1þe
−ωL

rk

� � ð3Þ

where, Q ωL
rk

� �
is the quality of ωL

rk . The qualitative char-
acteristic depends on the degree of the importance of each

weight connected to one node. The formula of the quali-
tative information of each weight is obtained by plugging
Equations (2) and (3) into Equation (4).

QA ωL
rk

� � ¼ Q ωL
rk

� � � A ωL
rk

� � ð4Þ

where, QA ωL
rk

� �
is the qualitative information amount of

ωL
rk . Using the Equation (4), the qualitative entropy can be

derived as Equation (5).

QE NL
r

� � ¼ −∑
k
Pr ωL−1

rk

� � � logPr ωL−1
rk

� � � A ωL−1
rk

� �

¼ −∑
k
Pr ωL−1

rk

� � � QA ωL−1
rk

� � ð5Þ

where, QE NL
r

� �
is the qualitative entropy of NL

r . For most
CNNs. The probability distribution of the weights can con-
verge into a Gaussian distribution with bell-shape by the cen-
tral limit theorem [58] because CNN has a huge number of
weights in the fully-connected layer at least 5000. Therefore,
Equation (5) can be simplified as Equation (6).

QE NL
r

� � ¼ −∑
k

1

σL−1ω

ffiffiffiffiffiffi
2π

p e
−

ωL−1
rk

−μL−1ωð Þ2
2σω2

� 	0
B@

1
CAlog

1

σω

ffiffiffiffiffiffi
2π

p e
−

ωL−1
rk

−μL−1ωð Þ2
2σω2

� 	0
B@

1
CA

⋅A ωL−1
rk

� � ¼ 1þln 2πσL−1ω
2ð Þ⋅∑kA ωL−1

rk½ � =

2 ¼ ln σL−1ω

ffiffiffiffiffiffiffiffi
2πe

p
 �
� ∑
k
A ωL−1

rk

� �

ð6Þ

where, σL
ω is the standard deviation of the weights in the Lth

layer, μL
ω is the average of the weights in the Lth layer. If

Equation (6) is applied for evaluating the entropy of
Figure 2, n1 and n2 become 0.116 and 0.212 respectively.
From the result, it is concluded that n2 has a greater impact
than n1. As shown in Figure 2, if values of nodes at lower layer
are changed, its subsequent nodes are affected. Consequently,
by partially learning about the weights that have a little influ-
ence on the output, the classification performance for the
existing classes can be preserved. The weights with little
amount of information can be selected by Equation (7) obtain-
ed from Equation (4) and (6).

QA ωL
rk

� �
≤QE NL

r

� � ð7Þ

However, the partial learning does not apply the above
method in the last layer. Since the last layer has no next
nodes to transmit information, the weights influence on the
output node independently. Therefore, it is efficient to
learn only the weights associated with the new classes.
Revisiting to the example of Figure 2, in the node n1, the
qualitative amount of information of ω11 obtained from
Equation (7) is 0.091, and the qualitative amount of infor-
mation of ω14 is 0.530. The qualitative entropy of the n1 is
1.789. In the node n2, the qualitative amount of informa-
tion of ω21 is 0.091, and the qualitative amount of

Table 4 Performance of partial learning as adding new class at a time
for ImageNet dataset

Classes Accuracy (%) Classes Accuracy (%)

Initial 500 62.8 – –

Trained on 50 61.5 300 59.3

Tested on 550 62.2 800 56.3

Trained on 100 61.7 350 58.2

Tested on 600 61.5 850 52.2

Trained on 150 60.8 400 56.3

Tested on 650 61.4 900 48.6

Trained on 200 59.1 450 55.7

Tested on 700 61.0 950 42.8

Trained on 250 60.2 500 50.6

Tested on 750 59.5 1000 32.1

Table 3 Performance of partial learning as adding new class at a time
for MNIST datase

Classes Accuracy (%) Classes Accuracy (%)

Initial 5 99.2 – –

Trained on 1 98.7 4 97.7

Tested on 6 99.06 9 93.19

Trained on 2 98.2 5 94.8

Tested on 7 98.25 10 89.74

Trained on 3 98.1 – –

Tested on 8 97.61 – –
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information of ω24 is 0.573. The qualitative entropy of the
n2 is 4.011. Because of the qualitative entropy, both qual-
itative and probabilistic characteristics are taken into con-

sideration, so that we can identify the weights with little
amount of information to generate outputs and train them
only. Our algorithm is summarized as below.

4 Experiment

We analyze the mechanism of our method and show the
performance using networks such as Lenet-5 [59] and
AlexNet. Lenet-5 consists of two convolutional layers
and two fully-connected layers. Each layer has weights of
500, 25,000, 400,000, and 5000 respectively. The network
is trained with the MNIST data set having 10 handwritten
image classes, 6000 pieces of each. AlexNet consists of

five convolutional layers and three fully-connected layers.
Each layer has weights of 3500, 307,000, 885,000,
663,000, 442,000, 38,000,000, 17,000,000, and
4,000,000 respectively. The network is trained with the
ImageNet dataset having 1 M images classified into 1000
categories. We modify the Tensorflow framework [60] by
adding a mask to ignore the weights not selected. Also, we
use the NVIDIA Titan X Pascal graphics processing unit
and NVIDIA Jetson TX1.

Table 5 Training time of partial
learning and transfer learning for
LeNet-5

Additional class numbers Partial learning(s) Transfer learning(s) Gap(s)

1 45 252 207

2 53 294 241

3 56 330 274

4 61 370 309

5 64 412 348
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4.1 Analysis of our Learning Method

Figure 3 shows the distribution of weights connected from
fully-connected layer1 to fully-connected layer2 of LeNet-5
and AlexNet, respectively. Since the distribution of weight has
a bell-shape, the qualitative entropy is calculated using
Equation (6) resulting in Figure 4.

Figure 4(a) and 4(b) show the entropy and the amount of
information obtained by using Equations (1) and (2) at a node,
in which the qualitative property is not applied yet. Figure 4(c)
and 4(d) show the qualitative entropy and the qualitative
amount of information obtained by using Equations (4) and
(6) at a node.

As shown in Figure 4 (a) and (b), more than 95% of the
weights is selected because the weights with smaller amount
of information than entropy are the majority. In this case, the
weights with high probability can be misunderstood as unim-
portant to the outputs because Equation (1) and (2) consider
the probability distribution only, regardless of the magnitude
of weights. In other words, most of weights are selected as not
retraining for the new cases. The entropy of (a) and (b) is
almost equal to 1.45 because the probability distribution of
both networks are almost the same as the Gaussian distribu-
tion as shown in Figure 3. On the other hand, the qualitative
entropy of (c) and (d) in Figure 4 is 0.015 and 0.09, respec-
tively. Although the probability distributions of (c) and (d) are
almost same, unlike (a) and (b), the weights are properly di-
vided by the qualitative entropy as seen in Table 1 and Table 2.

Table 1 shows the number of weights selected for each
layer in LeNet-5. The selected weight in fully-connected

layer1 and fully-connected layer2 is 272,195 out of 400,000,
3634 out of 5000 respectively. As the result, 68.10% of the
weights in the fully-connected layer is selected. Table 2 also
shows the number of weights selected for each layer in
AlexNet. The selected weights in fully-connected layer1,
fully-connected layer2, and fully-connected layer3 is
23,943,187 out of 38,000,000, 11,053,214 out of
17,000,000, and 2,800,745 out of 4,000,000 respectively. As
the result, 64.06% of the total weights of the fully-connected
layer is selected. As the size of network is bigger, the selected
weight ratio is smaller because Gaussian distribution is getting
close to bell-shape by the central limit theorem.

From the following section, we show the performance of
partial learning that trains the weights selected by qualitative
entropy.

4.2 Performance of Partial Learning

Table 3 shows the performance of classification accuracy of
the partial learning by adding a new class, usingMNIST. First,
five classes are trained using LeNet-5 as an initial network
structure.

The classification accuracy of the initial network is
99.20%. From the structure, we analyze the performance by
adding one class at a time. The accuracy results in 99.06%
(total of six classes), 98.25% (total of seven classes), 97.61%
(total of eight classes), 93.19% (total of nine classes), and
89.74% (total of ten classes), respectively, as new class is
added at a time. When a new class is added, there is almost
no accuracy difference between the six-class network

Table 6 Training time of partial
learning and transfer learning for
AlexNet

Additional class numbers Partial learning(s) Transfer learning(s) Gap(s)

50 39,024 165,833 126,809

100 40,857 180,916 140,059

150 42,973 197,478 154,505

200 49,312 210,191 160,879

250 51,676 225,124 173,448

300 54,448 241,834 187,386

350 56,134 255,369 199,235

400 57,812 270,604 212,792

450 60,678 286,971 226,293

500 62,902 321,173 258,271

Table 7 The Number of selected
partial learning weight and
FLOPs on embedded device.

Network Layer Selected parameters Total Initial Our(FLOPs)

LeNet-5 Fully-connected1 232,195 235,229 810 K 470.5 K
Fully-connected2 3034

AlexNet Fully-connected1 17,523,673 8,844,199 117 M 51.2 M
Fully-connected2 6,112,835

Fully-connected3 2,175,981
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structure and the original network structure. When two and
three new classes are added, the accuracy difference is less
than 1% and 1.6%, respectively. From adding the fourth new
class, the performance degrades because the network runs out
of information resources. The network should adopt new clas-
ses as well as keep the performance of the existing ones.

For ImageNet dataset, as shown in Table 4, the accuracy is
62.8% when the 500 classes are trained using AlexNet as an
initial network structure. Again, we analyze the performance
by adding one class at a time. For the classes 500 to 700, the
accuracies result in 62.2% (total of 550 classes), 61.5% (total
of 600 classes), 61.4% (total of 650 classes), 61.0% (total of
700 classes), where there is almost no accuracy degradation.
When 250 and 300 classes are added to the network, the ac-
curacies are 59.5% (total of 750 classes) and 56.3% (total of
800 classes) with accuracy loss of 3.3% and 6.5%, respective-
ly. From 350 new classes, the performance starts degrading
gradually.

Through the experiment, the partial learning gives better
performance than the transfer learning when adding up to
three new classes to the existing network. Our method can
be acceptable for the partial retraining about 40% of additional
new classes from an existing network.

Table 5 shows the training time required for partial learning
and transfer learning on LeNet-5 usingMNIST. The time gaps
between our method and transfer learning are 207 s, 241 s,
274 s, 309 s, and 348 s, respectively, as adding a new class to
the existing network up to five new classes. The time gap
increases as the network size gets bigger because the partial
learning gradually effects on reduction of the computational
complexity. For the transfer learning, the training time in-
creases as new classes are added due to the increase in the size
of the network structure. As the network gets bigger, the num-
ber of weights increases exponentially. Table 6 shows the
training time performance for AlexNet trained on ImageNet
dataset. As in Table 5, the time gap increases linearly because
the time required for learning is usually determined by the
number of data. This experiment takes more time than previ-
ous because the size of AlexNet is 140× bigger than LeNet-5
and ImageNet dataset is more complex than MNIST. In larger

networks, the difference can be even greater. Tables 5 and
Tables 6 show how unnecessary computations exist for tradi-
tional transfer learning because it initializes all the information
of the weight in the network and relearns upon addition of a
new class to the learned network. The tables show our partial
learning technique reduces computational overhead.

4.3 Analyzing Embedded Memory

Table 7 shows the selected weights for partial learning on
embedded device and the FLOPs. For LeNet-5, there are
232,195 selected parameters in the Fully-connected1 and
3034 in Fully-connected2, with a total of 235,229 weights.
As a result, the computational cost decreases for 1.7× due to
reducing the existing computational resource of 810 K FLOPs
to 470.5 K FLOPs. Whereas for AlexNet, 17,523,673,
6,112,835 and 2,175,981 are selected from Fully-connected1,
Fully-connected2, and Fully-connected3, respectively, with a
total of 8,844,199 weights is partially learned. As a result, the
computational resource of 117M FLOPs is reduced to 51.2M
FLOPs, which improves the computational performance by
2.3 × .

To test the performance of partial learning on embedded
devices, experiments made in Table 5 and Table 6 are repeated
for Jetson TX1. Table 8 shows the results training time per-
formance of Lenet-5 on embedded devices. When added up to
3 classes, partial learning takes 1121s, 1328s, and 1404s, re-
spectively. Our method is faster than transfer learning by
5188 s, 6028 s, and 6847 s, respectively. Similarly, Table 9
shows the results of Table 6 performed on embedded devices.
The time gaps between our method and the transfer learning
are 126,854 s and 140,057 s, respectively. Our experiments
are limited to three cases for Table 8 and two cases for Table 9
because Titan X Pascal GPU has an FP32 performance of
12.15 TFLOPs, while Jetson TX1 has only 500 GFLOPs.
Therefore, there is a performance difference of about 25×.
As seen in experiments, the more complex are the data and
the network, the more effective is the partial learning
technique.

Table 8 Training time
performance of partial learning
and transfer learning for LeNet-5
on embedded device.

Additional class numbers Partial learning(s) Transfer learning(s) Gap

1 1121s 6309 s 5188 s

2 1328s 7356 s 6028 s

3 1404s 8251 s 6847 s

Table 9 Training time
performance of partial learning
and transfer learning for AlexNet
on embedded device.

Additional class numbers Partial learning(s) Transfer learning(s) Gap

50 126,828 538,957 412,129

100 132,785 587,977 455,192
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5 Conclusion

In this paper, we proposed the on-device qualitative
entropy-based partial learning method to adapt the new
class to an existing network. We derived the qualitative
entropy metric to select the weights to be trained for
new classes by employing and modifying the entropy
concept. In order to derive a mathematical formula for
the metric, we assumed that the statistical distribution of
weights is a Gaussian. The derivation was achieved by
considering not only the probabilistic information but
qualitative characteristics of the weights. As shown in
the experimental section, the existing network is partial-
ly trained based on the qualitative entropy metric and it
outperforms the existing transfer learning with no loss
of accuracy in terms of learning cost and embedded
memory.

Even though our method achieved good performance com-
pared to the existing method, there is a further work. We need
to improve our technology by analyzing optimizing algorithm
so that it can more practically be used on the mobile device.
The other is to generalize our methodology by extending our
technology to other types of learning networks such as recur-
rent neural network and generative adversarial nets.
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