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Abstract
Eliminating the negative effect of adverse environmental noise has been an intriguing and challenging task for speech technology.
Neural networks (NNs)-based denoising techniques have achieved favorable performance in recent years. In particular, adding
skip connections to NNs has been demonstrated to significantly improve the performance of NNs-based speech enhancement
systems. However, in most of the studies, the adding of skip connections was kind of tricks of the trade and lack of sufficient
analyses, quantitatively and/or qualitatively, on the underlying principle. This paper presents a denoising architecture of
Convolutional Neural Network (CNN) with skip connections for speech enhancement. Particularly, to investigate the inherent
mechanism of NNs with skip connections in learning the noise properties, CNN with different skip connection schemes are
constructed and a set of denoising experiments, in which statistically different noises being tested, are presented to evaluate the
performance of the denoising architectures. Results show that CNNs with skip connections provide better denoising ability than
the baseline, i.e., the basic CNN, for both stationary and nonstationary noises. In particular, benefit by adding more sophisticated
skip connections is more significant for nonstationary noises than stationary noises, which implies that the complex properties of
noise can be learned by CNN with more skip connections.
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1 Introduction

Speech enhancement, aiming at eliminating the negative ef-
fect of environmental noises from the target speech, is a fun-
damental task for speech applications includingMan-Machine
speech interaction, hearing assistive devices, etc. [1–3].
Although microphone array-based speech enhancement tech-
niques have been widely implemented in practical speech sys-
tems [1], monaural speech enhancement is still an intriguing

and challenging problem. Numerous signal processing tech-
niques have been developed for the task over the past decades.
For example, spectral subtraction and Wiener filtering are two
of the most fundamental unsupervised noise suppression al-
gorithms and have been studied extensively for various prac-
tical problems [4]. More sophisticated algorithms including
the minimum mean squared error (MMSE) estimation, opti-
mally modified log-spectral amplitude (OM-LSA) speech es-
timator, subspace projection, to name only a few, have been
presented in literature [4, 5]. However, due to the diversity of
noise conditions in real-world applications, these methods
suffer from the inability to estimate and reduce the nonstation-
ary noises effectively.

In recent years, neural networks (NNs)-based deep learning
systems, e.g., the deep neural network (DNN), the convolutional
neural network (CNN), etc., have been widely implemented for
automatic speech recognition (ASR) [6–9] and the recognition
performance of such systems significantly outperform the con-
ventional HiddenMarkovModels (HMMs)-based systems [10].
The success of NNs inASRhas inspired the study ofNNs-based
speech enhancement. Fu et al. proposed an SNR aware CNN
model for speech denoising [11]. ACNNwas trained to estimate
the SNR of the noisy speech, with which a specific SNR-
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dependent CNN is selected (from a pool of pre-trained SNR-
dependent CNNs) to denoise the current input speech. In [12],
denoising autoencoders (DAEs) were constructed with fully
connected convolutional topology. Results showed that better
performance can be achieved by the mapping-based DAs than
that by the explicit masking-based ones. In [13], a convolutional
network architecture with multiple skip connections was pro-
posed. The authors modified the convolutional Encoder-
Decoder (CED) network proposed in [14] by removing max-
pooling layers and adding skip connections to the convolutional
layers. The results showed that the denoising performance of the
proposed architecture, even with very small network size, was
better than that of the Feedforward Neural Network (FNN) and
the Recurrent Neural Network (RNN) [15]. More recently, so-
phisticatedCNN-based architectures with skip connections were
adopted for monaural speech enhancement [16, 17]. So-called
generative adversarial networks (GANs) [18, 19], in which the
generator and the discriminator are all composed of CNN struc-
tures, were adopted for speech enhancement with remarkable
success in both waveform and spectral domains.

The effectiveness of adopting skip connections to CNN was
first investigated in image recognition [20, 21]. It was shown that
the features passed by skip connections carried more useful de-
tails for the CNN to recover an image. Similar results were
obtained in speech enhancements, e.g., [13, 22], where skip con-
nections force theNN to learn the noise properties. Generally, the
statistical properties of speech are much more complex than that
of noise. Therefore, learning the noise properties could achieve
better performance than learning the speech ones, as demonstrat-
ed by [13]. In [13], skip connections were added between the
convolutional layers and their corresponding deconvolutional
layers, which equivalent to subtract the NN output (i.e., the noise
signal) from the noisy input for the denoised speech. In [22], a
denoising architecture was constructed with a deep
convolutional network topology, where skip connections were
added between network inputs and outputs to learn a posterior
SNR. As a result, the estimated SNR is multiplied with the noisy
input to obtain the denoised speech.

Although the effectiveness of adding skip connections to
NNs for speech enhancement have been demonstrated, there is
still lack of sufficient analyses, quantitatively and/or qualitative-
ly, on the underlying principle. This study aims at investigating
the inherent mechanism of the skip connections in learning the
noise properties in the CNN-based speech enhancement.We first
elaborate that, in NN-based speech enhancement using spectral
magnitudes as input features (as in [13]), adding skip connec-
tions forces the networks to estimate the residual signal (i.e., the
additive noise rather the speech) which is similar to the noise
estimation in spectral subtraction; On the other hand, in NN-
based speech enhancement using log-spectral magnitudes as net-
work inputs (as in [22]), skip connections enable NN to learn the
signal to noise ratio (SNR), which can be equivalent to a
posterior SNR as computed inWiener filtering. Then, NNs with

different skipping schemes for speech enhancement are present-
ed. Specifically, two skipping schemes, with the baseline CNN
[22] for comparison, are implemented. To evaluate the effective-
ness of different systems, a set of speech enhancement experi-
ments are conducted. In particular, statistically different noises
are adopted to study the performance of the skipping in CNN in
learning the noise properties. Results show that the CNNs with
skip connections provide better denoising ability than the base-
line for both stationary and nonstationary noises. In particular,
benefit from addingmore sophisticated skip connections is more
significant for dealing with nonstationary noises than for station-
ary noises, which implies that the complex properties of noise
can be learned by CNN with more skip connections.

The rest of this paper is organized as follows. Section 2
describes the fundamentals of NN-based noise reduction.
The three systems adopted in this study and their mathemati-
cal principles from signal processing point of view. Section 3
presents the experimental setup including data preprocessing,
the neural networks training parameters and post processing of
the results for performance evaluation. Section 4 gives results
and analyses. The final section concludes this work.

2 System Descriptions

2.1 NN-Based Speech Enhancement

Most of the traditional monoaural speech enhancements can be
regarded as an explicit masking-based noise suppressing. The
denoised output is obtained from the noisy input via specific
operations, e.g., multiplying the noisy spectra by an SNR-
dependent gain (a posterior SNR) to suppress the noise com-
ponents in Wiener filtering. On the other hand, many NNs-
based speech enhancements adopt a mapping scheme
[11–13]. As demonstrated in [12], such a mapping-based meth-
od achieved significant improvement over the explicit ideal
ratio masking one on single-channel speech enhancement.

Assuming that there exists a linear/nonlinear mapping
function F which the NNs are trained to learn [23, 24]. In
CNN-based speech enhancement, the networks fed with the
noisy speech segments are trained to estimate the denoised
ones, and the well-trained CNN is generally a kind of nonlin-
ear mapping function. A structure of mapping-based speech
enhancement using NNs is illustrated in Fig. 1.

Let yt, xt and nt denote noisy speech, clean speech and the
additive noise, respectively, where t = 1 : Tand T is the number
of time frames, we have the signal model and the mapping
relationship as follows

yt ¼ xt þ nt ð1Þ
bxt ¼ bF ytð Þ ð2Þ
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where bF is an approximation of F learned by the NNs andbxt
is the estimated speech. Generally, the NNs are trained with
the objective function of minimizing the mean squared error
(MSE) between xt and bxt, i.e.,
ε ¼ min∑T

t¼1 bxt−xt��� ���2
2

ð3Þ

In this study, the input features to the NNs are the log-
spectral magnitudes of speech. In particular, the tth frame of
clean speech is estimated from its splicing adjacent 7 frames
of the noisy input, i.e.,

bX t; f ¼ bF Y t−4⋯t⋯tþ2; f
� � ð4Þ

where subscript f = 1:F and F denotes the total number
of frequency representation index. The human auditory sys-
tem is less sensitive to the noise near the high-energy regions
of spectrum (the formant peaks) [25]. Based on the masking
effect of the auditory system, a weighting factorWt, f is applied

in ℓ2 norm of jX̂ t; f −X t; f j to compute the loss function for
CNN, i.e.,

Wt; f ¼ A zð Þ
A

z
γ

� � ¼ 1−∑p
i¼1aiz

−i

1−∑p
i¼1aiγiz−i

ð5Þ

ε ¼ min∑T
t¼1∑

F
f¼1‖jX̂ t; f −X t; f j þ log jWt; f j þ 10−10

� �
‖ 2
2 ð6Þ

In (5), A(z) is the linear prediction (LP) polynomial and ai
are the LP coefficients, γ is the parameter to control the energy
of the error near the formant peaks and p is the prediction
order. In the experiments, γ and p are set to be 0.9 and 10,
respectively.

In general, the curve ofWt, f is inversely proportional to the
envelope of log-spectral magnitudes Xt, f. It serves as a penalty
factor to reduce the contribution of the error near the formant
peaks while placing more emphasis on the spectral valleys.

2.2 CNN with Skipping Architectures

Figure 2 gives different CNN architectures. Figure 2(a) shows
a very deep CNN architecture as presented in [26]. The net-
work consists of repetitions of very deep convolutional layers
and max-pooling layers. Figure 2(b)-(d) are three CNN-based
denoise architectures presented in this study, noted as CNN0,
CNN1, and CNN2, respectively. As illustrated, CNN0 is mod-
ified from the one in Fig. 2(a) but with significantly reduced
complexity, i.e., max-pooling layers are removed and the
depth of each convolutional layer is reduced and variable to
stack encoding and the corresponding decoding layers (three
Encoder-Decoder frameworks). By reducing the network
complexity, the new CNN structure is expected to achieve
faster convergence (i.e., reducing the processing delays) with-
out significant loss in denoising performance.

Upon CNN0, two skip connection schemes, as proposed in
[20, 21], respectively, are adopted to generate CNN1 and
CNN2. In CNN1, as shown in Fig. 2(c), a single skip connec-
tion from the network input to the output of the last
convolutional layer is added to CNN0. By adding the raw
input features to the output of the last convolutional layer,
the system indirectly forces the CNN to learn the residual error
between the noisy speech and the clean speech by back-
propagation.

Given the features being the spectral magnitudes, as in
[13], this method works in an end-to-end mapping from the
noisy features to the clean features, i.e.,

X ¼ Y þ R ð7Þ
where Y, R, X denotes the spectral magnitudes of the network
input, the output from the last convolutional layer, and the
estimated speech, respectively. This mapping is similar to
the spectral subtraction method, i.e.,

X ¼ Y�N ð8Þ

where N denotes the noise. That is, the CNN tends to learn
(the output from the last convolutional layer, R) the noise
components (in negative).

On the other hand, if the features are set as log-spectral
magnitudes, as adopted in this study, Eq. (7) should be mod-
ified as

log Xð Þ ¼ log Yð Þ þ log Hð Þ ¼ log Y � Hð Þ ð9Þ
where log(H) denotes the output from the last convolutional
layer, and H is equivalent to a posterior SNR estimated in
Wiener filtering.

In CNN2, multiple skip connections are added upon
CNN1. As illustrated in Fig. 2(d), besides the single skip con-
nection as in CNN1, multiple skip connections are added to
each Encoder-Decoder (ED), respectively. Given the log-
spectral magnitudes being the network features, skip

Fig. 1 Diagram of mapping-based speech enhancement framework with
NNs.
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connections in CNN2 enable the CNN to estimate a posterior
SNR in each ED, and the denoised speech in each ED can be
obtained by multiplying the posterior SNR with the noisy
input. This process can be regarded as a Wiener filtering com-
posed of multiple filters.

As shown in Fig. 2(b)-(d), considering the correlation
among the splicing adjacent frames, multiple adjacent frames
are stacked to feed into the CNNs (CNN0-CNN2) in order to
estimate the current target frame. Besides, for single skip con-
nection, a convolutional layer (or a Lambda layer) without
activation functions is applied to resize the input frames (sev-
en log-spectral magnitude frames in this study) for the target
noisy features which subtract the NN output (i.e., the noise
signal) for the denoised speech.

2.3 CNN-Based Speech Enhancement System

Figure 3 gives the diagram of the CNN-based speech enhance-
ment system. A mapping-based CNN model is trained in the
training stage with the training data, i.e., pairs of the log-
spectral magnitude features extracted from the noisy speech
and the corresponding clean speech. The choice of log-
spectral magnitude mapping method is motivated by the fa-
vorable performance of mapping-based NN model for speech
enhancement and dereverberation as suggested in [12, 27].

In the enhancement stage, the trained CNN-based speech
enhancement system is fed with the log-spectral magnitude
features of testing noisy speech so as to generate the enhanced
log-spectral magnitude features. The phase information ex-
tracted from testing noisy speech, inverse fast Fourier

transform (IFFT) and overlap-add method are employed to
synthesize the enhanced time-domain signal.

•

Clean/Noisy
Samples

Feature
Extraction

CNN
Training

Noisy
Samples

Feature
Extraction

CNN
Decoding

Waveform
Reconstruction

Training Stage Enhancement Stage

Framing FFT

|•|

Arg(•)

Log(•)

Feature Extraction

Exp(•) IFFT Overlap Add

Waveform Reconstruction

Fig. 3 Diagram of CNN-based speech enhancement system.
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Fig. 2 Diagram of a very deep CNN (a), the proposed basic CNN architecture (b) and CNN with different skip connections (c-d).
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3 Experimental Setup

3.1 Data Preprocessing

A set of speech enhancement experiments are carried out to
evaluate the performance of different CNN-based speech en-
hancement systems described in Section 2. In particular, both
stationary and nonstationary noises are adopted for evaluation
such that the effects of different skip connections could be
analyzed comparatively.

Two open access databases, i.e., THCHS-30 [28] and ESC-
50 [29], are adopted in the experiments. THCHS-30 is a
Mandarin speech database containing a training set (10,000
utterances), a development set (893 utterances) and a test set
(2495 utterances). Each utterance contains a Mandarin sen-
tence with sampling rate of 16 kHz. In this experiment, the
training data consists of 1000 utterances randomly pick out
from the training set, the validation data consists of 100 utter-
ances randomly pick out from the development set, and the
test data consists of all utterances from the test set.

ESC-50 consists of 2000 environmental audio recordings.
It is adopted to generate the noisy data for the experiments.
The recordings were originally sampled at 44.1 kHz and are
down-sampled to 16 kHz in this study.

To evaluate the systems performance with stationary vs. non-
stationary noises, we compute the stationarity of all the noise
recordings in ESC-50 and select 10 stationary noises and 10
nonstationary noises based on their stationarity. To do so, the
augmented Dickey–Fuller test (ADF test) [30] is applied to
compute the stationarity of the noise data. The critical value
[31] and p value [32] tests are then implemented. In specific,
the statistic results, critical values and p-values of each noise can
be computed through ADF test. According to ADF test princi-
ple, those noises with test statistic less than critical values or p-
values less than a threshold (a value approaching zero) can be
considered as stationary, while those with statistic results greater
than critical values or the p-values greater than the threshold are
nonstationary. In this study, more stringent test conditions are set
to test the stationarity of the noise, i.e., only those noises with
test statistic less than critical values as well as p-values less than
a threshold (0.05) are labeled as stationary, while those with
statistic results greater than critical values and p-values greater
than 0.05 are labeled as nonstationary. A Python module (name-
ly adfuller in statsmodels) [33] is utilized for implementing ADF
test. As listed in Table 1, 10 types of stationary noises with
lowest p-values and 10 types of nonstationary noises with
highest p-values are selected as stationary and nonstationary
noise dataset for the experiments.

To generate the noisy data, 8 of 10 noise types are selected
randomly from both stationary and nonstationary noises as given
in Table 1. That is, there are 16 types of noises serving as the seen
noise dataset for training, validating and testing the denoising
systems. The rest 4 types of noises (2 stationary and 2

nonstationary, as listed in bold text in Table 1) are served as the
unseen noise dataset for testing. As for SNR, seven seen levels
(−6 dB to 12 dBwith step at 3 dB) and two unseen levels (−5 dB
and 5 dB) are adopted to generate noisy speech. As demonstrated
in Table 2, there are totally 16,000 noisy utterances (i.e., 1000
clean utterances × 16 noises ×1 SNR randomly selected from the
seven SNRs) in the training set, 1600 noisy utterances (100 clean
utterances × 16 noises×1 SNR randomly selected) in the validat-
ing set, and 2495 noisy utterances (2495 clean utterances ×1
noise randomly selected from the seen noises ×1 SNR randomly
selected) in the test set. To evaluate the generalization of the
systems, there are another 2495 utterances (2495 clean utterances
×1 noise randomly selected from the four unseen noises ×1 SNR
randomly selected from the two unseen SNRs) in the test dataset.

To further investigate the effects of skip connections in the
CNN-based denoising systems for stationary and nonstation-
ary noises, another four test sets (Set 1–4 in Table 2), each
containing 2495 noisy utterances, are generated. Specifically,
each of the sets are generated with seen stationary noises, seen
nonstationary noises, unseen stationary noises and unseen
nonstationary noises, respectively.

3.2 Feature Extraction

Each time-domain signal is segmented into a sequence of frames
by multiplying a Hamming window function (32 ms frame
length and 24 ms overlapping). To each frame, 512-point FFT
is implemented and the log-spectral magnitudes of the first 257
frequency components are calculated to compose a vector of 257
components. To a specific frame, a 7*257-dimensional feature
matrix is generated as the input to each network system, as
described in Section 2.3. Before being fed into the networks,
the input features are normalized to the normal distribution.

3.3 Network Setting

Layer weights and bias for the CNN-based speech enhance-
ment systems are initialized as in [34], which will be updated
using the back-propagation algorithm [35]. Activation func-
tions used in the experiments are all “ReLu”. All networks are
trained for 86 epochs with gradient descent optimization using
Adam optimizer with a batch size of 512. The learning rate is
initialized to be 0.0015 with β1 = 0.9, β2 = 0.999 and ϵ = 10−8.
During the whole training stage, the learning rate is utilized to
control the gradient rate of the loss function optimized by the
optimizer. To smooth the curve of the loss function defined by
Eq. (6), the learning rate decreases in exponential decay rate
(initialized to 0.9) per epoch. Besides, batch normalization
and ℓ2 regularization (λ = 10−4) are applied to each fully con-
nected and convolutional layer in order to accelerate the train-
ing and to avoid overfitting. In the experiments, only those
models with the best evaluation results for the validating
dataset are used in the test stage.
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3.4 Evaluating Metrics

Three objective metrics, i.e., the perceptual evaluation of
speech quality (PESQ) [36], the short-time objective intelligi-
bility (STOI) [37], and the logarithmic spectral distance (LSD)
[38], are adopted for performance evaluation.

PESQ, recommended by ITU-T as Standard P.862, is an
objective speech quality assessment. To compute PESQ, a
linear combination of disturbance parameters is used to pre-
dict subjective mean opinion score (MOS). Generally, the par-
tial compensation in PESQ is implemented to avoid the need
for using a large number of parameters to predict quality. Two
parameters, one symmetric disturbance (dSYM) and asymmet-
ric disturbance (dASYM), are combined to predict the speech
quality. The predictor processing in PESQ is as follows

PESQ ¼ 4:5−0:1dSYM−0:0309dASYM ð10Þ
where dSYM and dASYM are calculated by the disturbance pro-
cessing model in PESQ [36]. In general, the higher PESQ
score, the better perceptual speech quality. For normal

subjective test material, the values lie between 1.0 (bad) and
4.5 (no distortion). PESQ may fall below 1 in extremely high
distortion conditions, but this is very uncommon.

STOI is a short-time objective intelligibility measure. As in
[37], the short-time (386 ms) temporal envelopes of the clean
speech and the estimated speech are utilized to calculate STOI
scores, i.e.,

STOI ¼ 1

J ;M
∑ J ;M

xj;m−μx

� �T x j;m−μx

� �
‖x j;m−μx‖‖x j;m−μx‖

ð11Þ

where xj, m and x j;m denote the short-time temporal envelope
of the clean speech and the estimated speech, where j andm is
the time and frequency indexes; μ denotes the sample average
of the corresponding vector (x j or x j ); J and M are the total
number of frames and frequency bins. In general, STOI varies
from 0 (worst) to 1 (no distortion) and higher STOI illustrates
better perceptual intelligibility for speech signal.

LSD measures the logarithmic spectral distance (averaged
over all frames) between two speech samples (usually, a clean
one and its distorted version), i.e.,

LSD x;bx� �
¼ 1

T
∑T

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

F
∑F

f¼1 xt; f −bxt; f� �2
r

ð12Þ

Table 1 The information of
selected 20 noise types and the
corresponding p-values.

stationarity type p-
values

stationarity type p-values

Nonstationary Insects (flying)_1 0.747 Stationary Insects (flying)_4 1.914e-23

Crickets_1 0.654 Water drops 3.611e-19

Engine 0.653 Chirping birds_2 1.288e-18

Crickets_2 0.646 Clapping_1 3.358e-16

Insects (flying)_2 0.612 Clapping_2 4.474e-16

Crackling fire 0.562 Clapping_3 3.916e-14

Chirping birds_1 0.548 Chirping birds_3 4.017e-14

Insects (flying)_3 0.546 Insects (flying)_5 9.309e-14

Clock tick 0.526 Clock alarm 9.963e-13

Brushing teeth 0.523 Sea waves 2.698e-12

Table 2 Details about generating the training, validating and test data in
the experiments.

Train Val Test

Seen Unseen Set1 Set2 Set3 Set4

Clean
speech

1000 100 2495 2495 2495 2495 2495 2495

Noise 16 16 1(16) 1(4) 1(8) 1(2) 1(8) 1(2)

SNR levels 1(7) 1(7) 1(7) 1(2) 1(7) 1(2) 1(7) 1(2)

Noisy
speech

16,000 1600 2495 2495 2495 2495 2495 2495

the contents 1(n) means that only 1 type of data selected from the total n
types. Set1: seen stationary noise and seen SNR; Set2: unseen stationary
noise and unseen SNR; Set3: seen nonstationary noise and seen SNR;
Set4: unseen nonstationary noise and unseen SNR. In specific, the infor-
mation of both stationary and nonstationary noises used in Set 1–4 are
listed in Table 1

Table 3 Mean scores for PESQ, LSD and STOI obtained from different
speech enhancement systems.

PESQ LSD STOI

seen unseen seen unseen seen unseen

Noisy 2.32 2.24 1.67 1.86 0.86 0.85

Wiener 2.50 2.48 1.57 1.57 0.85 0.84

CNN0 2.71 2.47 0.99 1.16 0.86 0.85

CNN1 3.04 2.71 0.93 1.13 0.90 0.86

CNN2 3.22 2.76 0.87 1.10 0.92 0.87
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where x;bx donate the target speech and the enhanced speech,
respectively. T and F are the number of time frames and the
frequency bins, respectively. Lower LSD tells less signal dis-
tortions. LSD = 0 refers to clean speech.

3.5 Post-Processing of the Results

It is a general knowledge that dealing with nonstationary noise
is much more difficult than dealing with stationary noise for a
speech enhancement system. A score normalization method,
i.e., the Z-score [39], is adopted for post-processing the raw
results, such that the ability of different skipping schemes on
learning the noise properties under different noise conditions
can be compared fairly. Z-score is a common method used for

data preprocessing and have been adopted in many NNs-
based classification systems [40, 41]. To each of the three
objective metrics abovementioned, Z-scores are computed
from the corresponding raw scores as follows. Firstly, com-
pute a cumulative percentile corresponding to every element
of raw scores; Then, according to a normative table of the
normal distribution with zero mean and standard deviation
of 1, the percentiles computed in previous step is converted
to their corresponding Z-scores. For convenience, a fixed bias
of 5 was added to the Z-scores in this study.

4 Results and Discussion

4.1 Overall Performances

As described in Section 2.2, the proposed CNN-with-skipping
denoising system can be regarded as a mapping-based version of
the Wiener filtering. Therefore, although the main objective of
this study is to investigate the contributions of adding different
skipping in CNN for speech enhancement, it is worthwhile to
include Wiener filtering for comparison in and only in this sub-
section. Specifically, the parametric Wiener filtering [42] where
parameters α and β both set as 1 is adopted in the experiment.

Table 3 gives mean scores of PESQ, LSD and STOI for
noisy speech (Noisy) and speech outputs from Wiener filter-
ing (Wiener), CNN without skipping (CNN0), and CNN with
two different skipping (CNN1, CNN2). The ‘seen’ and ‘un-
seen’ stand for the scores obtained from test data with seen and
unseen noises as listed in ‘Seen’ and ‘Unseen’ test set of
Table 2. For each seen/unseen condition, overall performance,
i.e., mean scores over all noise types (both nonstationary and
stationary listed in Table 1) are computed. As illustrated,
CNN-based systems achieve better performances than
Wiener filtering for all metrics and in all conditions, except
that CNN0 is comparable to Wiener filtering for PESQ in
unseen data and STOI in both seen and unseen data. It is
obvious that adding skip connections to CNN can significant-
ly improve the denoising performance and best results can be
obtained by CNN2.

Table 4 Noise type dependent systems performance (Z-score) and per-
formance gaps between SN and NSN with seen noise.

Noisy CNN0 CNN1 CNN2

Z-s Z-s Gap Z-s Gap Z-s Gap

PESQ SN 3.89 5.37 +
0.08

5.60 +
0.03

5.95 -
0.01NSN 3.95 5.29 5.57 5.96

LSD SN 5.16 3.69 -
0.12

3.43 -
0.07

3.35 -
0.03NSN 4.85 3.81 3.50 3.38

STOI SN 4.58 5.34 +
0.06

5.68 +
0.02

5.83 +
0NSN 4.82 5.28 5.66 5.83

Table 5 Noise type dependent systems performance (Z-score) and per-
formance gaps between SN and NSN with unseen noise.

Noisy CNN0 CNN1 CNN2

Z-s Z-s Gap Z-s Gap Z-s Gap

PESQ SN 3.85 4.95 +
0.05

5.15 +
0.02

5.32 +
0.01NSN 3.89 4.90 5.13 5.31

LSD SN 5.12 4.02 -
0.09

3.84 -
0.01

3.67 +
0.02NSN 4.95 4.11 3.85 3.65

STOI SN 4.36 5.02 +
0.06

5.17 +
0.02

5.35 -
0.01NSN 4.45 4.96 5.15 5.36

Fig. 4 SNR and noise type dependent performances for different denoising systems under seen noise conditions.
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4.2 Noise-Dependent (Stationary Vs. Nonstationary)
Performances

To investigate how the skip connections can help CNN in
learning the noise properties, noise type dependent, i.e., sta-
tionary noise (SN) vs. nonstationary noise (NSN) perfor-
mances for the three CNN-based systems are given in
Table 4 for seen noises (i.e., Set 1 & Set 3 in Table 2) and in
Table 5 for unseen noises (Set 2 & Set 4 in Table 2). As
described in Section 3.4, Z-scores (Z-s) are computed from
the raw scores for fair comparison. To each system, the per-
formance gap between SN and NSN is also given in the tables.

As illustrated in Table 4, under seen noise conditions, per-
formances increase as the number of skip connections in-
creases (i.e., from CNN0 to CNN1 and to CNN2) for all met-
rics in both SN and NSN. Meanwhile, a gradually narrowing
gap can be achieved for all metrics with increasing skip con-
nections. In general, it is well recognized that tackling nonsta-
tionary noise is a relatively harder task than dealing with sta-
tionary noise in speech enhancement. Nevertheless, the dimin-
ishment in the performance gap tells that adding more skip
connections offers more significant improvement for NSN
than that for SN. That is, benefit by adding more sophisticated
skip connections is more significant for dealing with nonsta-
tionary noises than that for stationary noises, which implies
that the complex properties of noise can be learned by CNN
with more skip connections.

Under unseen noise conditions, as illustrated in Table 5,
similar performances as that under seen noise conditions can
be obtained. In particular, better performance can be achieved
in NSN than in SN for LSD and STOI with CNN2. The results
tell that the gain brought by skip connections for nonstationary
noises does not degrade at the unseen noises.

To further elaborate the performances, SNR- and noise-
dependent performances of different systems are given in
Fig. 4 (seen data) and Fig. 5 (unseen data). Similar perfor-
mances to that demonstrated in Tables 4 and 5 can be observed
from the two figures. In each specific SNR condition and
noise type, improved performances can be obtained when
more sophisticated skip connections are added to the CNNs.

Furthermore, for CNN0, there are significant performance
gaps between SN and NSN at each specific SNR conditions.
For CNN2, however, performances on NSN approache to, or
even exceed in some particular cases, that on SN.

Table 6 illustrates how the skip connections can help CNN
to learn the properties of noises with different complexity (in
the sense of non-stationarity) from Table 1. AS shown, the
overall performances for noises with descending p-values
(i.e., increasing stationarity) among three CNN-based systems
are demonstrated. All three systems perform better when pro-
cessing more stationary noises. In specific, the gaps between
two adjacent columns are reducing with more skip connec-
tions in CNN, which tells that more skip connections enable
the network to learn more complex properties of noise with
increasing non-stationarity. From signal processing point of
view, as elaborated in Section 2.2, the skip connections enable
the corresponding ED in the basic CNN to estimate the pos-
terior SNR, which is then multiplied to the noisy input of each
ED to obtain the enhanced features. More skip connections
added to different EDs can be regarded as the cascading of
multiple filters, with which better performance could be
achieved.

Fig. 5 SNR and noise type dependent performances for different denoising systems under unseen noise conditions.

Table 6 Mean Z-scores for PESQ, LSD and STOI obtained from dif-
ferent systems dealing with noise with descending p-values (increasing
stationarity).

metrics systems p-values

0.747 0.526 2.698e-
12

1.914e-
23

PESQ CNN0 5.21 5.30 5.35 5.45

CNN1 5.54 5.58 5.58 5.65

CNN2 5.95 5.97 5.94 5.97

LSD CNN0 3.88 3.80 3.71 3.64

CNN1 3.53 3.48 3.44 3.41

CNN2 3.41 3.36 3.36 3.34

STOI CNN0 5.25 5.29 5.33 5.38

CNN1 5.66 5.68 5.67 5.70

CNN2 5.82 5.84 5.82 5.85
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5 Conclusions

In this study, CNN-based denoising architectures with different
skip connections were proposed and investigated for speech en-
hancements. A set of experiments were carried out to evaluate
the denoising performances of the proposed architectures and, in
particular, to investigate the inherent mechanism of the skip con-
nections in learning the noise properties. Results showed that the
proposed systems significantly outperformed a parametric
Wiener filtering denoising algorithm in both ‘seen’ and ‘unseen’
test data conditions. Furthermore, results showed that adding
skip connections to CNNs can significantly improve the
denoising performance. In particular, for nonstationary noises
with statistically more complicated properties, adding more skip
connections to the CNNs might effectively reduce the perfor-
mance gap between stationary noises and nonstationary noises.
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