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Abstract
With the rapid increase of the number of IoT devices, transmitting big amount of data from these devices to data centers
which are far away will cause problems like high latency or network congestions. Fog Computing provides a better
solution for Fog-enabled latency sensitive data services to place data on Fog nodes which are closer to the data generators.
However, recent studies only focus on the data placement problem of placing one single data replica to the proper Fog
node. Under the situation that there are several data consumers whose topology positions are different subscribing the
same data, one single data replica cannot meet the latency requirement of all the consumers. Hence, we build a multi-
replica data placement model iFogStorM for Fog Computing to formulate the problem of how many data replicas need to
be placed on Fog nodes and how to optimize the data placement. Furthermore, we propose a greedy algorithm based data
replica placement strategy, MultiCopyStorage, to reduce the overall latency. MultiCopyStorage uses a pruning method to
filter the inferior solutions calculates the overall latency and chooses the solution with the minimum overall latency as the
final solution. We conducted experiments on iFogSim, a toolkit for modeling and simulation of Fog Computing, evaluated
the proposed strategy with the CloudStorage strategy, Closest Node strategy, iFogStor strategy, and two kinds of heuristic
strategy, iFogStorZ, and iFogStorG. The experiment result demonstrates that MultiCopyStorage strategy reduces the
overall latency by 6% and 10% compared to iFogStor and iFogStorG strategy respectively. Meanwhile, execution time
of the MultiCopyStorage is less than the heuristic strategy, iFogStorG and iFogStorZ, which proves that the proposed
strategy can support real-time scheduling.
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1 Introduction

In recent years, there is a rapid development of Internet of
Things (IoT). It is predicted that the number of IoT equip-
ment will reach over 75 billion by 2025 [1]. Such a large
number of connected equipment will generate a massive

amount of data. To deal with the placement problem of
data, the traditional way is to transmit all of them to data
centers for storage and processing [2]. However, data cen-
ters in the cloud often fail to process and store the data
generated by a massive number (billions) of distributed
IoT devices [3] and could cause the problem of high
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latency, network congestion, poor quality of Service, etc.
[3]. To deal with the problem mentioned above, Cisco
proposes the concept of Fog Computing [4], which en-
gages the Fog nodes for data storage and processing.
Fog nodes are the type of network equipment which is
close to the users, e.g. routers, switches, set top boxes,
proxy servers, Base Stations(BS), etc. [5]. Nowadays,
more and more applications (e.g. intelligent surveillance,
smart cities, wireless sensor networks, etc) require to
store, process and obtain the data with extremely low
latency and the introduction of Fog Computing could
achieve this requirement. With the proper utilization of
the computing and storage capacity of Fog nodes, the
overall data transmission latency will drop down signifi-
cantly because typically Fog nodes are closer to the IoT
equipment than data centers. Hence, how to properly
place the massive amount of data generated by IoT equip-
ment on fog nodes which have different storage capacity
in order to minimize the overall transmission latency for
Fog-enabled data services is the main research topic in
this work.

In the area of Cloud Computing, [6, 7] have proposed
some data placement strategies. However, those strategies
both tend to place data replicas on the Cloud. Compared with
data centers, Fog nodes are more widely distributed in net-
work topology, larger in number and more limited in storage
capacity. As a result, the strategies proposed in [6, 7] cannot
be applied directly in the field of Fog Computing. To the best
of our knowledge, only in [8, 9], some data placement strat-
egies in the field of Fog Computing were proposed. However,
those strategies only focus on the data placement problem of
placing one single data replica to the proper Fog node. Under
the situation that there are several data consumers whose
topology positions are different subscribing the same data,
one single data replica cannot meet the latency requirement
of all the consumers. Hence, on the basis of [8, 9], we im-
prove the data placement model to support multiple data rep-
licas placement and the overall latency is significantly re-
duced compared to the single data replica strategies. The
multi-replica model proposed in this paper is a MILP model
which has been proved to be NP-hard for solving. It will take
an unbearable amount of time to solve the model by using
mathematical programming optimizer like CPLEX [10]. In
order to solve the model efficiently, we design a few heuristic
rules and propose a latency-aware strategy to dramatically
reduce the searching space for solving the target model. We
have conducted the extensive experiments. The results show
that the solving time of the model is significantly reduced and
the scheduling decision can be made at real time.

In summary, this paper makes the following contributions:

1. Under the multi-replica storage architecture for Fog
Computing, we propose a latency-aware model,

iFogStorM, which can support the multiple data replicas
placement.

2. We analyze the complexity of iFogStorM and further devel-
op a heuristic data placement strategy, MultiCopyStorage,
to solve the model efficiently even when the problem scale
is large.

3. We implement and integrate our latency-aware strategy
into iFogSim [2], and evaluate the performance of
MultiCopyStorage with extensive tests. The results show
that compared to the existing strategies, our strategy can
achieve much better performance in terms of reducing
data transmission latency and execution time.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 formulates the multiple
data replicas placement problem and constructs the latency-
aware model, iFogStorM. Section 4 proposes the heuristic
algorithm to solve the model. After evaluating the perfor-
mance of our strategy in Section 5, we summarize our conclu-
sions and points out the future work in Section 6.

2 Related Work

Many research efforts were done to propose some module
placement strategies. In [11], Mahmud et al. propose a
latency-aware heuristic module placement strategy.
According to the subscription relationship between mod-
ules and the tolerable delay, the modules should be placed
to the North end (near the cloud) as far as possible with-
out violating the maximum tolerable delay. Furthermore,
they propose a module forwarding strategy in order to
optimize number of computationally active Fog nodes
and reduce energy consumption. In [12], Taneja et al. ab-
stract the subscription relationship between modules into
a directed acyclic graph (DAG), and propose a placement
strategy to maximize the utilization of computing re-
sources of fog nodes. In [13], a method based on fuzzy
theory [14] for fractional evaluation of modules and fog
nodes is proposed, and then a matching model between
modules and fog nodes is established. Finally, the model
is solved by SCIP [15], an integer programming solver. In
[16], Skarlat et al. propose the concept of fog colonies,
which abstracts multiple fog nodes into a cluster, and then
propose a module placement model considering module
response time, CPU, memory and storage resources re-
quired by the module. On the premise of meeting the
corresponding constraints, the number of modules placed
in fog nodes was maximized. Sun et al. [17] also combine
multiple fog nodes into clusters and proposes a two-step
scheduling scheme: 1) resource scheduling among various
fog clusters. 2) resource scheduling among fog nodes in
the same fog cluster. For step 2, a multi-objective
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placement model is proposed to meet the minimum com-
pletion time of the module, and two objectives are pro-
posed: 1) minimize the service latency of the application
and 2) maximize the stability of the application. And a
NSGA-II [18] based strategies applied to the multi-
objective optimization of the model.

However, due to the heterogeneity of fog nodes, the com-
puting capacity and storage space of fog nodes are often asym-
metric, and the research mentioned above does not consider
the storage of data. Considering the case that data is stored in a
fog node with storage space and then forwarded to the con-
sumption service (module) which subscribes to the data, we
formulate the data placement problem.

In order to reduce the overall latency of data transmis-
sion, many solutions have been proposed recently. In [19],
Wang et al. propose a new architecture for computation and
storage offloading which can reduce the communication
cost and latency. In [8], Naas et al. propose a data place-
ment model of data production, storage and consumption.
The data can be produced by sensors or modules, and the
produced data is sent to a storage node (host) in the net-
work topology for storage and then forwarded to consump-
tion services (modules) which subscribe to the data. To
achieve the model proposed in [8], CPLEX MILP [10] is
used for accurate solution, and a heuristic graph
partitioning-based strategy, iFogStorZ, is proposed to re-
duce the complexity of the problem. iFogStorZ defines
Regional Point of Presences (RPOPs) as points of
partitioning but it does not consider the data flow between
different parts after partitioning. In [9], based on the model
designed in [8], a new graph partitioning method,
iFogStorG, is proposed, which balances the complexity
of various parts after graph partitioning and minimizes
the data flow across parts. This strategy improves the ac-
curacy of model solution to a certain extent. However, after
graph partitioning, all parts are still using CPLEX MILP
[10] for problem solving. Under large-scale scheduling, the
solving speed is not ideal for real-time scheduling. In ad-
dition, both iFogStorZ and iFogStorG are based on the
model proposed in [8]. The data produced by the data pro-
ducer is stored on only one single storage node (host).
When the corresponding number of data consumers is large
and geographically distributed, a single replica cannot
meet the latency requirements of all consumers.

In addition, many scholars have proposed some data
placement strategies for multiple replicas in distributed
environments such as big data computing. In [20], based
on the network topology and the storage load of each
node, a multiple replicas data placement strategy is pro-
posed on the Hadoop platform, which ensures load
balancing and data transmission performance. In [21],
Wu et al. propose a multiple data replicas placement strat-
egy under the tree network, which significantly reduced

the cost of the entire tree network. In [22], Lizhen et al.
propose a genetic algorithm based data replica placement
strategy for scientific applications in Clouds. The experi-
ment result shows that when the number of replicas
changes from 1 to 2, the data transfer time decreases by
nearly 50%. In [23], Rajaretnam et al. propose a dynamic
multi-copy placement strategy for data grid. According to
the request frequency of data, the number and the loca-
tions of data replicas are dynamically adjusted. However,
to the best of our knowledge, no other research has pro-
posed multiple data replica placement strategies in the
Fog Computing environment.

Therefore, we propose the multiple data replicas placement
model, iFogStorM, in view of the deficiency of the model
above. A data producer can send data to multiple Fog nodes
for storage at the same time, and consumers who subscribe to
the data can choose any one of the storage nodes to get the
data. In order to achieve the model, we propose a greedy
algorithm based strategy, MultiCopyStorage, which can ob-
tain the nearly optimal solution under the speed requirement
of real-time scheduling.

3 System Modeling

As shown in Fig. 1, we assume that our system architec-
ture is composed of a certain number of Fog nodes (con-
sist of Region Point of Presences (RPOPs), Local Point of
Presences (LPOPs) and Gateways), data centers, IoT
equipment such as sensors and a set of services. A
Region Point of Presence (RPOP) covers a geographical
zone in ISP infrastructures and a Local Point of Presence
(LPOP) is assigned to a Remote Point of Presence
(RPOP) in the hierarchical system. Services can be de-
ployed on any of the data centers, Fog nodes or IoT
equipment. Generally, the service on IoT equipment will
generate the raw data, which will be processed by the
services on Fog nodes. Services can be divided into two
types, data producers, denoted by DP = {dp1, … , dpi,
… , dpn}, and data consumers, denoted by DC = {dc1,
… , dck, … , dcq} (note that a service can be both produc-
er and consumer). Every Fog node which has storage ca-
pacity can be the data hosts, denoted by DH = {dh1, … ,
dhj, … , dhm}. All the data produced by data producers
must be stored on at least one of the data hosts and it
takes a certain amount of time to transmit those data to
the data hosts (in single replica placement model pro-
posed in [8], the produced data is only stored on one data
host). The data produced by data producer dpi is denoted
by datai.Note that if the services are the producers but not
deployed on sensors or other IoT equipment which can
produce the data themselves, they must have the con-
sumption relation with other services (i.e., these services
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are consumer services too and consume the data transmit-
ted from other services). Each consumer has a subscrip-
tion relationship with the data generated by the producer,
which is denoted by pcik. A simplified multi-replica data
flow example is shown in Fig. 1. Note that every service
deployed on IoT equipment is a producer (we do not mark
them so in the figure for the sake of clarity).

Under the above architecture, the model named iFogStorM
is proposed, aiming to solve the multi-replica data placement
problem (see the main notation in Table 1). Before presenting
the model in detail, the following constraint conditions are
first given.

1) cijk denotes that the data consumption relation, i.e., if dck
obtains (consumes) datai from dhj then cijk is set to 1 else
cijk is set to 0. There is at least one replica of datai being
placed on the host nodes:

∑m
j ∑

q
kcijk ≥1 ∀i ð1Þ

2) xij denotes that a replica of datai placed on dhj.In the case
where there exists a consumer obtaining datai from dhj,
there must be a replica of datai placed on dhj:

xij ¼ 1; ∑q
kcijk ≥1

0; ∑q
kcijk ¼ 0

�
ð2Þ

And (2) is equal to (3), (4), (5)

xij≥cijk ∀i;∀ j;∀k ð3Þ
xij≤∑q

kcijk ∀i;∀ j ð4Þ

xijϵ 0; 1f g ∀i;∀ j ð5Þ

3) storj denotes the storage capacity of dhj and si denotes the
size of datai.The total storage usage of all the data replicas
placed on dhj must be smaller than the storage capacity:

∑n
i si

*xij≤stor j∀ j ð6Þ

4) pcik denotes the subscription relationship between dck and
datai.When pcik = 1, which means that there is a

Figure 1 Architecture of multi-replica Fog storage system.

Table 1 Notation Dictionary.

Notation Description

n The number of data producers

m The number of data hosts

q The number of data consumers

datai The data which is produced by dpi
dpi The data producer

dhj The data host

dck The data consumer

cijk dck gets datai from dhj
storj The storage capacity of dhj
cp The number of consumers that subscribes the same data

b Minimum data exchange granularity

lrjk Time required for dck to get b from dhj
lwji Time required for dpi to transmit b to dhj
trijk Time required for dck to get datai from dhj
twji Time required for dpi to transmit datai to dhj
xij A replica of datai places on dhj
si The size of datai
pcik dck subscribes datai
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subscription relationship between dck and datai, there
must be at least one replicas of datai placing in the fog
nodes and dck choose one of the fog nodes which has
replica of datai to obtain the data .Thus, in this case, one
of the cijk when j ∈m is equal to 1 .When pcik = 0, dck
needn’t to obtain datai, so in this case, all of the cijk when
j ∈m is set to 0.

∑m
j cijk ¼ pcik ∀i;∀k ð7Þ

5) lrjk denotes the time required for dck to obtain b from dhj
and lwji denotes the time required for dpi to transmit b to
dhj. trijk denotes the time required for dck to obtain datai
from dhj and tsji denotes the time required for dpi to trans-
mit datai to dhj.The relationships between them are:

trijk ¼ 1

b
⋅si⋅lrjk ð8Þ

tsji ¼ 1

b
⋅si⋅lwji ð9Þ

We define the overall latency as the sum of the required
time of storing data on the data host and the time of trans-
ferring them to the data consumers. Note that the more
replicas are placed on fog nodes, more required time is
needed to store data while probably (not definitely) the less
time of transferring them to the consumers is needed be-
cause the superfluous replicas which are not data providers
of any data consumers would not be beneficial to decrease
the time of data consumers to achieve the data they need.
Since there is a negative correlation between the data trans-
mitting time from data producers to data hosts and that
from data hosts to data consumers, there is a trade-off
between them and that’s the reason we set overall latency
as the scheduling objective. Moreover, the number of rep-
licas of a piece of data is affected by the number of con-
sumers that subscribe the specified data (which is denoted
by cp) and in general, the bigger cp is, the more replicas
would be needed to achieve our goal of minimizing the
overall latency. The required time is calculated according
to the minimum latency between nodes as shown in (8) and
(9). The problem can be modeled as follows:

Minimize∑
n

i
∑
m

j
∑
q

k
cijk ⋅trijk
� �þ xij⋅tsji

� �
ð10Þ

s:t: ∑
m

j
∑
q

k
cijk ≥1 ∀i ð10aÞ

xij≥cijk ∀i;∀ j;∀k ð10bÞ

xij≤ ∑
q

k
cijk ∀i;∀ j ð10cÞ

∑
n

i
si*xij≤stor j∀ j ð10dÞ

∑
m

j
cijk ¼ pcik ∀i;∀k ð10eÞ

cijkϵ 0; 1f g ∀i;∀ j;∀k ð10f Þ

xijϵ 0; 1f g ∀i;∀ j ð10gÞ

4 MultiCopyStorage: A Greedy Data
Placement Strategy

4.1 Overview of the Greedy Data Placement Strategy

Similar to the data allocation (or resource management)
model proposed in [24–26], iFogStorM can’t be solved
in polynomial time and it is a MILP model. Thus solv-
ing the formulated model is NP-hard. It will take an
unbearable amount of time to solve the model by using
the mathematical programming optimizer such as
CPLEX [10]. In order to solve the model efficiently,

Table 2 Experimental
Parameters. SI 96 bytes

SO 960 bytes

Ns 15

tp 1000 ms

Np 10

Tsim 600 s

Table 3 Network
Latency. Network link latency(ms)

IoT-GW 10

GW-LPOP 50

LPOP-RPOP 5

RPOP-DC 100

RPOP-RPOP 5

DC-DC 100

Table 4 Data Host
Storage Capacity. Data host Storage capacity

GW 1GB

LPOP 100GB

RPOP 1 TB

DC 1 PB
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in this paper we design a few heuristic rules and pro-
pose a latency-aware strategy to dramatically reduce the
searching space for solving the target model. In partic-
ular, the greedy strategy MultiCopyStorage, which is
based on iFogStorM model, is proposed in this section.
MultiCopyStorage is a greedy strategy for solving the
problem of data placement in the Fog Computing area,
which can greatly improve the solving speed while
maintaining the quality of the solution when the prob-
lem scale is large.

In the iFogStorM model, after determining the placement
of all the replicas, it is also necessary to determine which host
the consumer obtains the data from. In the MultiCopyStorage
strategy, a heuristic rule is added: all consumers get the corre-
sponding data from the host that stores the subscribed data
replica with the lowest latency, so as to reduce the scope of
searching for good solutions. It is a greedy algorithm in es-
sence. In turn, every piece of data is placed in the local optimal
placement solution with the lowest overall latency. After
obtaining all the local placement solutions of every piece of
data, the final solution is obtained. The procedure of finding
the local optimal solution for every piece of data is a recursive
procedure. Starting with the case of one replica, the recursion
is carried out level by level until the latency cannot be reduced
even if the number of replicas increases. Moreover, a few
heuristic pruning strategies are used to control the number of
recursion levels.

In summary, the following heuristic rules are applied when
solving the model:

1. The consumers select the host which holds the replica of
data that they subscribe to and offers the least latency as
the node to obtain the subscribed data from.

2. When the number of replicas is higher than the number of
consumers for that data, it deemed impossible to have the
optimal solution with the minimum overall latency be-
cause of the extra write latency of the replicas that not
being used by any of the consumers.

3. In every recursion level, only the nodes that reduce the
overall latency after adding to the temporary solution are
considered as the candidate nodes for the next recursion
level.

4.2 The Algorithm Details

In this subsection, we present the greedy algorithm,
MultiCopyStorage, and discuss it in detail.

MultiCopyStorage is shown in Algorithm 1. In the algo-
rithm, for each data that needs to be placed, its candidate
nodes are initialized to be all host nodes (line 4), and then
the recursive procedure (line 6) is performed in order. After
each recursive solution, the idle capacity of the host where the

data is placed is updated (lines 7-9), and then the placement
result of this data is added to the final result (line 10).

The recursive process uses the RecursiveSolve() function
to solve the problem. When the number of recursive layers
(which indicates the number of replicas) becomes more than
the number of consumers subscribed to each data, adding
more replicas of the data will only increase the write latency
and will not reduce the read latency. Therefore, returning the
current placement and latency cost (lines 1-3) is a better
choice. In lines 7-17, we try to choose among candidate hosts
the best node to place a new replica of the data on. To achieve
this, we calculate the latency of different placement situations
(line 10), add the host to the set of candidate hosts for next
recursive level (line 12), and record the placement solution
with the minimum latency (line 13-14). If there is at least
one placement solution which offers lower latency than the
currently best solution, the placement solution with the mini-
mum latency is recursively passed to the next level (lines 18-
21). The best placement solution and its minimum latency at
the current level are updated after the recursion is completed
(lines 22-25).

In order to clarify our algorithm, we illustrate the
RecursiveSolve() procedure which is the core-part of the
algorithm in detail. At first, the candidates are initialized to
all the data hosts in the system architecture. After initiali-
zation, we iterate all the candidates and calculate the score
of temporary solutions when adding the corresponding
candidate to the data hosts of the to-be scheduled data.
Then we record the solution whose score is the smallest
and add the solutions which are lower than the minimum
score of the previous recursion level to the next candidates
set. Note that adding a replica would cause the increase of
transmitting time from data producers to data hosts (let’s
call it write latency), so there must be several consumers
which originally get data from another replica in the pre-
vious recursion level changing their original data provider.
They decide to obtain data from the newly added replica
because it is closer. And the increase of write latency can
be offset by reducing read latency for several consumers
(time for transmitting from data hosts to data consumers).
In other words, the new added replica Bsteal^ the con-
sumers from other replicas. And for those replicas fail to
Bsteal^ enough consumers from other replicas in the cur-
rent recursion level, they can’t be able to offset the write
latency in the next recursion level too. Thus, some hosts
which have a possibility to help obtaining a lower score are
put into the next candidates set. And those not in next
candidates set would not be considered in the next recur-
sion level. After the iteration of candidates set, we greedily
take the temporary solution with minimum score as cur-
rently best solution and go into the deeper recursion level
in order to find out that if the score could be lower when
the number of replicas is bigger.
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The latency is calculated by the function CalculateScore().
It calculates the write latency in lines 4-6 and the read latency
in lines 7-15. When calculating the read latency, the algorithm
traverses the consumers, calculates the read latency from the
consumer to the nearest host, where the data replica is placed
and the corresponding time is added to the overall latency.

Assuming that cp denotes the number of consumers that
subscribe to the same data, and n, m and q respectively
represent the number of producers, storage nodes and con-
sumers . The t ime complexi ty of the funct ion ,
CalculateScore(), which calculates the overall latency of
every solution is cp ∙m. The function RecurceiveSolve()
calls calculateScore() m times in each recursive level. The
max number of recursive levels is cp. Therefore, the time
complexity of this method is cp2 ∙m2.Finally, the main func-
tion, MultiCopyStorage (), must call RecurceiveSolve () for
each data. The total number of calls is n. Thus, the time
complexity of the algorithm is n ∙ cp2 ∙m2.

With the exhaustive search method, the time complexity is
non-polynomial. Assuming that in the extreme case, the num-
ber of replicas of every piece of data is from 1 to m and those

replicas can be placed on every Fog node. Then, there are n∙
∑m

l Cl
m different placement solutions, and n∙ ∑m

l Cl
m is approx-

imately equal to n ∙ (2m − 1). As a result, the exhaustive search
method would not be an efficient method and the time it takes
would exponentially increase with the growth of m.

5 Simulation and Performance Evaluation

5.1 Experimental Settings

In order to verify the validity of MultiCopyStorage strategy,
the extended iFogSim [2] is used for the simulation

experiments. iFogSim is a simulation platform for simulating
fog computing environment, which is extended in [27] by
Naas et al. to support the implementation of data placement
strategies in the fog computing environment. The fog nodes
consist of gateways(GW), Local PoPs(LPOP) and Regional
PoP(RPOP), forming the simulated network topology togeth-
er with data centers and sensors.

1000 GWs, 50 LPOP, 10 RPOP and 5 data centers were
used in the simulation environments. The packet size pro-
duced by the services deployed on IoTequipment and by other
services are set to SI and SO, respectively. Each GW is con-
nected with Ns sensors, which sends a packet every tp milli-
seconds. Consumers that consume data from sensors send a
packet after receiving and processing Np packets while other
consumers send one packet once they have finished process-
ing one packet from their data providers.

Table 2 shows the default values of the experimental
parameters.

Table 3 shows the network latency between different Fog
nodes while Table 4 shows the capacity of Fog nodes. The
evaluation experiments are conducted on a 16-core CPU and
32GB memory machine.

Two types of different workload are used in the evaluation:

1. Zoning workload: the consumers are situated in the same
geographical zone as the producers which produce the
data they subscribe to. A zone is a covered by at least
one RPOP.

2. Distributed workload: every service, wherever they are
located, may be the consumer of the data.

The simulation time is set to be Tsim. The number of
consumers that subscribe to the same data is cp. In order
to evaluate the overall latency, we conduct the experiments
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to compare the Mult iCopyStorage stra tegy with
CloudStorage [8], ClosestNode [8], iFogStor [8],
iFogStorZ [8] and iFogStorG [9] when cp = 1,5,15,30,50.
The CloudStorage strategy [8] is used to store all data
r ep l i c a s on the c loud compu t ing cen t e r wh i l e
ClosestNode [8] to place all data replicas on the nearest
storage node. In order to test the running speed of the
s t ra tegy, we tes t the running t ime of iFogStor
[8],iFogStorZ [8] and iFogStorG [8] under cp = 5, 30, 50
and GWs = [500,3000] and obtain the average value. We
have also utilized other optimization toolkits (e.g. Lingo
[28]) to test the running speed of iFogStor. We figure out
that the running speed of Lingo is almost the same as Cplex

[10] to solve the MILP model and they can both precisely
obtain the optimal solution. Since Cplex provides a usable
java interface while Lingo doesn’t, in the latter experi-
ments, we only utilize Cplex as the optimizer for
iFogStor [8],iFogStorZ [8] and iFogStorG [8].

5.2 Experimental Results

In the experiments regarding the overall latency, the latency of
data transmission is added to the current value of overall la-
tency after each experiment run is completed. The solving
time is obtained by taking the difference between the start time
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iFogStorZ(2) 125627 418700 1102180 2154203 3547545
iFogStorZ(5) 125627 479193 1130027 2165225 3559447
iFogStorG(2) 125627 407945 1104750 2154990 3536838
iFogStorG(5) 125627 411982 1113177 2165553 3558902
Mul�CopyStorage 125627 389383 1028257 1909793 3040228
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and the end time of each experimental run. The experiment
results are shown in Figs. 2, 3, 4, 5.

1) Overall latency: Fig. 2 shows that the latency achieved
by MultiCopyStorage with distributed workload is
63 .7% lower on average than tha t by the
CloudStorage strategy, and 36.8% lower than the
ClosestNode strategy. Figure 4 shows that the latency
of the MultiCopyStorage strategy with zoning work-
load is lower by 69.1% and 40.0% than that of
CloudStorage and ClosestNode, respectively. It can
be seen that compared with CloudStorage, both
ClosestNode andMultiCopyStorage reduce the overall
latency significantly. The reason for this is because in

CloudStorage, the data need to be transferred back and
forth between the producers and data centers. Since the
producers and the consumers often have a non-
negligible number of network hops to the data centers,
it is a better decision to place the data on the Fog nodes,
which are closer to producers and consumers.

Figure 3 shows the overall latency of different strategies on
distributed workload. When cp = 15, 30 and 50, the latency of
MultiCopyStorage drops by 1.94%,6.23% and 9.16%, respec-
tively compared with iFogStor and drops by 7.63%, 11.81%
and 14.57%, respectively, compared with iFogStorG(5). One
can observe that comparing with the single replica based models

1 5 15 30 50
iFogStor 105520 318860 843648 1624550 2668717
iFogStorZ(2) 105520 318915 843698 1624600 2668767
iFogStorZ(5) 105520 318915 843698 1624600 2668767
iFogStorG(2) 105520 319465 844748 1625650 2669817
iFogStorG(5) 105520 318910 843698 1624600 2668767
Mul�CopyStorage 105520 316492 834595 1609075 2636355
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Figure 5 Overall latency of
Different strategies on Zoning
workload.

1 5 15 30 50
CloudStorage 343440 1017167 2708243 5191597 8536460
ClosestNode 105520 701605 1570178 3134573 5219160
Mul�CopyStorage 105520 316492 834595 1609075 2636355

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

O
ve

ra
ll 

la
te

nc
y(

m
s)

cp(the number of consumers that subscribe to the same data)

CloudStorage ClosestNode Mul�CopyStorageFigure 4 Overall latency of
Different strategies on Zoning
workload.

1200 J Sign Process Syst (2019) 91:1191–1204



(e.g. iFogStor, iFogStorZ, iFogStorG), the overall latency of our
strategywith distributedworkload decreases as cp increases. This
is due to the fact thatMultiCopyStorage places replicas of data on
multiple hosts. When the number of consumers that subscribe to
the same data is large, placingmultiple replicas on different hosts
increases the corresponding writing latency slightly. However,
the consumers can read the datawithmuch lower reading latency
and consequently reduce the overall latency compared to the
single replica strategy. With Zoning workload, as shown in Fig.
5, the benefit of MultiCopyStorage declines slightly. When cp =
15, 30 and 50, the overall latency reduces by 1.07%, 1.14% and
1.21%, respectively, comparing with iFogStor. We can observe
that the latency of MultiCopyStorage decreases slightly com-
pared to other strategies. This is because when the consumers
are confined to a particular area, a single replica is enough to
minimize the overall latency effectively.When the consumers are
distributed, placingmultiple replicas across the network topology
manifests more prominent impact.

2) Average replicas number: Fig. 6 shows the average
number of replicas of each piece of data achieved by
MultiCopyStorage. It can be observed that the number
of replicas climbs with the increase of cp. Generally,
the number of replicas is bigger on Distributed

workload than on Zoning workload since the con-
sumers of each data are distributed on distributed
workload and the more replicas are required to lessen
the transmit time of extracting the data. Moreover, one
cannot discuss a replication strategy without consider-
ing the overhead of replicating the data since more
replicas in the system accounts for greater overhead
in terms of additional network traffic and data storage
cost. Nevertheless, the average number of replicas
shown in Fig. 6 is acceptable since it is indirectly
constrained by our objective function. With the con-
straint of replicas number, the overhead could be
controlled.

3) Solving time: As shown in Fig. 7, compared with
Mu l t iCopyS t o r a g e , t h e s o l v i n g t ime o f
iFogStorZ(5),iFogStorG(5) and iFogStorG(10) strategy
increases significantly with the increase of GWs.
Compared with iFogStorZ(5),iFogStorG(5) and
iFogStorG(10), the solving time of MultiCopyStorage
decreases by 83.69%,85.75% and 68.18%, respectively,
when GW=3000 and cp = 5. Meanwhile, Fig. 9 illus-
trates that when cp = 50 and GW= 3000, the solving
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time of MultiCopyStorage is lower than iFogStorZ(5),
iFogStorG(5) and iFogStorG(10) by 39.01%, 50.69%
and 39.38% respectively. As can be seen from Figs. 7,
8 and 9, with the increase of cp , i t takes
MultiCopyStorage more time to solve the problem.

In conclusion, although iFogStor, based on a linear model,
can always get the optimal solution of the single replica place-
ment problem, when cp is large and the consumers are widely
distributed the single replica strategy fails to enable the distribut-
ed consumers to obtain the data with a low latency. In contrast,
MultiCopyStorage can reduce the overall latency to some extent.
As cp increases, the reduction in overall latency becomes more
prominent, althoughmore time is needed to solve the problem. In
addition, although the graph partitioning strategies e.g. iFogStorZ
and iFogStorG reduce the complexity of the linear model to a
certain extent, each partition still uses the CPLEX [10] to solve
the problem, which is very time-consuming compared with the
MultiCopyStorage strategy. It can be seen from the experiment
results that MultiCopyStorage is superior to other single replica
strategies in both solution quality and efficiency. This is because
of the fact that the MultiCopyStorage strategy is based on the
multiple data replicas placement model, which considers the
drawback of single replica model. Furthermore, some heuristic
rules are applied when solving the problem, which greatly re-
duces the solving time.

6 Conclusions and Future Work

In this paper, iFogStorM, a multiple data replicas placement
model for Fog Computing is proposed to reduce the overall
latency of data storage. Finding the optimal solution of this
model is a NP-hard problem. Therefore, based on iFogStorM,
we propose a greedy strategy calledMultiCopyStorage, which
applies a number of heuristic rules and greatly reduces the
scope of searching for good solutions. In order to verify the
proposed strategy, we extended iFogSim [2] to implement the
real-time simulation of the multiple data replicas placement
strategy, and conducted the experiments to compare our strat-
egy with the latest single replica strategies. The experiment
results show that MultiCopyStorage reduces the overall laten-
cy by 6% on average compared with FogStorage [8], and by
10% compared with the heuristic strategy iFogStorG [9].
Because of its high efficiency, MultiCopyStorage can be op-
erated at a high rate and offers good data storage solutions at
real time in the fog computing environment.

As for the data placement problem in Fog Computing, this
paper only considers the resource capacity as the limiting fac-
tor. Basically, the more replicas involve greater overhead in
terms of additional network traffic, data storage cost, CPU and
memory consumption due to transmission. In our study, the
number of replicas is indirectly constrained by minimizing the
overall latency but with the larger cp (the number of
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consumers that subscribe to the same data), the number of
replicas increases and the overhead would climb too. Hence,
there should be a trade-off between the performance in reduc-
ing the overall latency and the number of replicas. We will
further investigate this problem in future work. In addition, the
fixed latency is used for every network link when calculating
the overall latency, which does not consider the latency chang-
es due to network congestion. In addition, we do not consider
the stability of fog nodes. Thus, a trust evaluation mechanism
[29] may be introduced to prevent the cases like device faults,
network congestion. Furthermore, since cyber threats are
growing up with the development of cloud technology, some
Fog-based storage security scheme should be proposed to en-
sure the integrity, availability and confidentiality of the data
preserving in fog nodes [30, 31]. In the future, we will incor-
porate these factors and further improve the existing model.
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