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Abstract
Image restoration and denoising is an essential preprocessing step for almost every subsequent task in computer vision.
Markov Random Fields offer a well-founded, sophisticated approach for this purpose, but unfortunately the associated
computation procedures are not sufficiently fast, due to a high-dimensional optimization problem. While the increase of
computing power could not solve this runtime issue appropriately, we address it in a mathematical way: we suggest an
analytical solution for the optimum of the inference problem, which provides desirable mathematical properties. In practice,
our new method accelerates the runtime via reducing the computational complexity of the image restoration task by orders
of magnitude, independent from the smoothing intensity. As a result, Markov Random Fields can be considered for modern
big data problems in computer vision, especially if numerous images with equal sizes are processed.

Keywords Markov Random Fields · Image restoration · Computational complexity · Optimization

1 Introduction

Among other areas in computer science, image processing
and computer vision are nowadays facing an increasing
number of big data applications. Hence, huge datasets
consisting of a multitude of images need to be processed
in parallel. In order to deal with this new requirement, the
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efficiency of algorithms has become crucial. Regarding the
tasks of image restoration, pattern enhancement and noise
reduction, faster tools (such as e.g. convolution) increased
in popularity compared to slower, model-based approaches.

Markov Random Fields (MRF) provide an image
restoration procedure, first suggested by Geman and Geman
[6], with a strong theoretical background, based on Bayesian
inference for a spatial stochastic model. In contrast to
convolution-based methods, the MRF procedure can be
proven to reach an optimal and mathematically tractable
result for image restoration. Unfortunately, in spite of
their promising model and properties, performing Bayesian
inference requires a continuous optimization by an iterative
scheme for each single image in a high-dimensional space,
such as Gradient Descent (GD). Furthermore, the runtime
of the optimization (which is proportional to the number
of iterations) highly depends on a smoothing parameter,
indicating the degree of noise reduction. Therefore, a higher
level of noise on the image will result in a longer runtime of
the denoising procedure.

From a mathematical perspective, gradient-based opti-
mization methods are known to converge towards the opti-
mum for real-valued, differentiable, convex target functions
[4]. Nevertheless, the speed of convergence might be very
low. Even though improvements for this method increase
the convergence rate by e.g. employing conjugate gradients
instead of the steepest descent direction [7], they do not
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sufficiently solve the issue for a high number of independent
optimization problems.

We propose to solve the runtime issue of the MRF
model for image restoration in a different way: due to
the quadratic structure of the target function, we solve the
optimization problem explicitly and thereby solve a linear
equation system. By investigating the properties of the
resulting matrix, we detect that solving the system can be
achieved via a Block Cholesky Decomposition [5], which
saves valuable computation time. Additionally, the method
shows the benefit that the resulting matrix only depends
on the neighborhood structure, the image size and the
smoothing parameter and not on the image content - hence,
multiple images can be processed by forward and backward
substitution using one constant matrix decomposition.

We apply the MRF image restoration procedure to
three different images, comparing GD and the analytical
optimization method for different smoothing intensities.
The results provide evidence for two desired properties of
our suggested method: firstly, the quality of noise reduction
is improved as the exact optimum is returned instead of
an approximation. Secondly, the computational complexity,
indicated by the runtime comparison of the algorithms,
is significantly reduced, especially if multiple equally-
sized images are processed successively. In summary, our
proposed method is able to enhance the usability of MRFs
for image restoration significantly.

2Markov Random Fields for Image
Restoration

According to [1], a MRF is a multivariate stochastic process,
which describes a field of random variables by their local,
spatial dependencies. In contrast to Markov chains, i.e. a
category of univariate stochastic processes, a random field
consists of multiple dimensions, usually interpreted as space
or space-time components. The so-called Markov property,
which is frequently investigated in applications of time
series, is extended to a local neighborhood of nodes in the
corresponding undirected graph.

Applications of MRF models include image processing,
computer vision and geostatistics. In the context of image
analysis, MRFs can be used for low-level image transforma-
tion and filtering, as well as for higher-level tasks, such as
object or texture classification, see e.g. [2].

2.1 Theory of Markov Random Fields

In general, an MRF model consists of a graph G =
(V , E), which defines spatial neighborhoods by the edges
E between the nodes in V . Each node v ∈ V is considered
as a random variable, with n = |V |, i.e. n is the number of

nodes in V . As the joint probability distribution P over all
nodes in V is n-dimensional, it is rarely possible to estimate
it in any practical model. To resolve this issue, each node
v ∈ V is assumed to fulfill the Markov property, i.e.

P(v|w ∈ V ) = P(v|w ∈ N (v)), (1)

where N (v) ⊂ V is defined as the set of neighbors of
node v in the graph G. This property implies that each node
exclusively depends on its neighbors, but is conditionally
independent from all other nodes in G, provided that the
neighbors are known.

Under the assumption that the Markov property holds,
the joint probability distribution P can be decomposed into
the product of the probability distribution over the complete
subgraphs in G, i.e. the so-called cliques Cl of G, where
l ∈ N denotes the clique size. This can be explained by the
Hammersley-Clifford theorem [3], which characterizes the
joint probability distribution of anMRF explicitly: a random
field fulfills the Markov property if and only if its joint
probability distribution is a so-called Gibbs distribution.
The Gibbs distribution is characterized by the probability
density function fGibbs : Rn → R,

fGibbs(x) = Z(β)−1e−βE(x), (2)

where β ∈ R is the distribution parameter, Z(β) is a
normalizing constant and E : Rn → R is called the energy
function. The latter is required to be decomposable into
clique potentials Vl : R

l → R, introducing the impact of
each clique in Cl . In summary, it follows that the (global)
joint density function fGibbs is decomposed into (local)
marginal densities. Consequently, Eq. 2 can be decomposed
as well:

fGibbs(x) ∝
∏

{i}∈C1

e−βV1(xi ) ·
∏∏

{i,j}∈C2

e−βV2(xi ,xj ) · . . . (3)

This result renders unnecessary to determine the joint
(global) distribution P over all nodes in V - instead, the
marginal (local) distribution over each clique is sufficient to
specify the MRF model.

In low-level image analysis, each node v ∈ V usually
refers to one pixel in the image. The edges in the graph
are commonly defined as a regular 4-, 8-, 12- or 24-
neighborhood structure, see Fig. 1. Such models are highly
complex due to the high number of nodes, especially in
high-resolution images containing up to several millions of
image pixels. This results in the need for fast algorithms and
high computing power to process the model in a reasonable
period of time.

In the following, we will restrict to the task of image
denoising and pattern enhancement using a MRF model.
This task is categorized as a low-level problem in image
processing literature and will be tackled by a well-known
Bayesian inference procedure.
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(a) 4-neighborhood (b) 8-neighborhood

(c) 12-neighborhood (d) 24-neighborhood

Figure 1 Regular 4-, 8-, 12- or 24- neighborhood structures are usually
used for low-level MRF models for image analysis.

2.2 TheModel for Image Restoration

Li [2] presented a Bayesian image restoration approach,
based on the assumption that a denoised image corresponds
to a continuous, 2-dimensional surface. In MRF models
for computer vision, the maximum a posteriori (MAP)
probability in combination with decision theory is the most
popular approach to derive statistical models. For a given
grayscale image, let S be a set of image pixels (given by
their x- and y-coordinates) and n = |S| is the number
of pixels in the image. For reasons of simplicity, the 2-
dimensional index set S will be reduced to 1 dimension
in the following, assuming a column-wise numbering of
the image pixels. Models for image restoration and image
denoising commonly consist of the real (noisy) pixel
intensities d ∈ R

n, the underlying true pixel values x ∈ R
n

and an error term ε ∈ R
n. Hence, we define the observation

model as

d = x + ε, (4)

where ε is assumed as homogenous Gaussian white noise,
i.e. εi ∼

i.i.d.
N(0, σ 2). Note that the restriction of variance

homogeneity, i.e. σi ≡ σ, ∀i ∈ {1, . . . , n}, is not mandatory
for the model, but will be assumed in this paper. With this
setup the likelihood function L of the restored image values
x (which is defined as the probability density function of d
given x) is given as

L(d|x) =
(
2πσ 2

)− n
2
e−U(d|x), (5)

where

U(d|x) =
∑

i∈S

(xi − di)
2

2σ 2
(6)

is the so-called likelihood energy. Notice, that Eq. 5 is a
special case of a Gibbs distribution (2), where only single-
site clique potentials, i.e. corresponding to cliques of size 1,
are considered for the energy function.

For the definition of a prior distribution we deploy the
Hammersley-Clifford-theorem (see Section 2.1). Hence, to
specify the prior distribution of an MRF we have to define
the clique potential functions Vl in the related Gibbs prior
distribution. For continuous, bounded surfaces usually only
pair-site clique potentials, i.e. cliques of size 2, are used (Li
[2]). For this purpose, we can define a function g : R → R

as follows:

V2(xi, xj ) = g(xi − xj ). (7)

This function g penalizes the deviation from a continuous
surface, effected by the difference xi − xj . In case of image
denoising and restoration it is required that g fulfills the
following properties:

g(ζ ) = g(−ζ ) (even) (8)

g′(ζ ) ≥ 0, for ζ ∈ [0, ∞) (non-decreasing) (9)

Various choices exist for g, related to smoothness assump-
tions, continuity properties, or labeling problems (Geman
and Geman [6], Li [2], Blake and Zisserman [8]). In this
paper we use a simple quadratic function

g(xi − xj ) = (xi − xj )
2. (10)

In case of discontinuities, this approach leads to an
oversmoothed result after energy minimization, i.e. the
right-hand side of Eq. 10 explodes numerically and entails a
large smoothing power. In order to avoid this phenomenon,
the user can choose a suitable smoothing function g.

According to the presented setup we can define the Gibbs
prior distribution via the potential functions as follows:

p(x) ∝
∏∏

{i,j}∈C2

e−βV2(xi ,xj ) =
∏∏

{i,j}∈C2

e−βg(xi−xj ), (11)

where C2 denotes the set of cliques of size 2. Consequently,
the so-called prior energy is the sum of all clique potentials

U(x) =
∑

i∈S

∑

j∈Ni

g(xi − xj ) =
∑

i∈S

∑

j∈Ni

(xi − xj )
2, (12)

where Ni is the set of neighbors of site (position) i. The
common neighborhood structures are 4, 8, 12, or 24 (see
Fig. 1), and the selection mainly depends on the desired
smoothing intensity.

Now we can apply Bayes’ theorem to merge the
likelihood energy (6) and the prior energy (12). Li [2]
derives the so-called posterior energy E(x|d) as follows:

E(x|d) = U(d|x) + U(x)

=
∑

i∈S

(xi − di)
2

2σ 2
+

∑

i∈S

∑

j∈Ni

(xi − xj )
2. (13)
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In order to determine the optimal restored image, the MAP
solution is defined as

x̂MAP = arg min
x∈Rn

∑

i∈S

(xi −di)
2+ϑ

∑

i∈S

∑

j∈Ni

(xi −xj )
2, (14)

where ϑ = 2σ 2. Obviously, if ϑ = 0, i.e. no noise occurs,
only the likelihood energy effects the posterior and the
MAP solution is equal to the input. However, the more ϑ

increases, the more impact on the MAP solution is given on
the prior energy term (i.e. the smoothness term).

Due to the fact that the minimization problem (14) is a
quadratic optimization problem over a continuous surface,
it is convex and possesses a global minimum. This fact
allows to apply any known optimization procedure. The
most common choice is to apply the GD algorithm starting
with an initial configuration x(0). The update step for the
iteration is given as

x(t+1) ←− x(t) − μ∇xE
(
x(t)|d

)
, (15)

whereμ is the step size and∇x is the gradient with respect to
x. Each component of the gradient, i.e. the partial derivatives
of E(x|d) w.r.t. xi , has the following structure:

∂E(x|d)

∂xi

= 2(xi − di) + 2ϑ
∑

j∈Ni

(xi − xj ). (16)

This iteration converges towards the optimum point x̂,
where ∇xE(x̂|d) = 0.

One big disadvantage of this procedure is the runtime of
the GD algorithm. To minimize the number of iterations,
one could extend or change the algorithm (e.g. Geman et
al. [6] suggest a simulated annealing algorithm), but our
experiments showed that a higher smoothing parameter
increases the number of iteration steps, which are needed to
reach the optimum. In Section 4, exact results on the runtime
and the concrete number of iterations will be shown and
compared to our suggested approach.

2.3 RelatedWork

Apart from the MRF approach for image restoration
presented in this work, various other methods for image
noise removal exist in literature. A short survey on those
methods can be found e.g. in the papers of Motwani et
al. [10] and Buades et al. [11], where several state-of-
the-art approaches are listed. In [10], the authors present
two categories of approaches for noise removal in images:
Spatial Filtering and Transform Domain Filtering. They
further introduce several subcategories for each of them.

While Spatial Filtering methods directly apply a filter
to a local group of pixels, Transform Domain methods
focus on suitable transformations of the image to separate
signal from noise. Popular examples for transformations

are e.g. the Fourier or the Wavelet transform. According
to its definition, the Markov Random Field model used in
our work [6], is a typical example for the Spatial Domain
category. Also other possibilities to apply MRF structures
to images exist, e.g. Markov models for modelling Wavelet
coefficients (cf. [12] or [13]).

Talebi and Milanfar [14] present an approach to achieve
fast noise filtering using Spatial Filtering. They state the
general image restoration model form in the same way as
we do in this paper (4), but provide a more general form of
the restoration framework by

x̂i = arg min
xi∈R

∑

j∈S

Ki,j · (xi − dj )
2, (17)

where i ∈ S and Ki,j is an arbitrary kernel function,
measuring the similarity between xi and dj . The authors
suggest to solve the problem by performing an eigen-
decomposition of the model matrix. They point out that the
computational costs are high due to the high dimension of
the matrix, to solve this problem they use approximators
for the decomposition. Then, they analyze the MSE and
apply iterative approximations of image filters based on
their eigenvalues.

Instead of assuming normally distributed noise (which is
common in image processing), Le et al. [15] suggest a vari-
ational, edge-preserving approach in order to reconstruct
images with Poisson noise.

A distinct approach towards image restoration is pre-
sented by Dabov et al. [16]. In their work, the authors
suggested a method to remove noise from single image
fragments in a transformed domain, conserving major char-
acteristics within similar blocks. The deployed similarity of
fragments is obtained from a collaborative filtering method,
resulting in edge-preserving behavior.

The idea of using different MRF models for image
restoration is also investigated in other settings: for example,
a different MRF model to restore the image and, in parallel,
detect edges in the image in a robust way is employed by
Figueiredo and Leitao [17]. Babacan et al. [18] suggest
a generalized Gaussian prior model for MRF. Numerous
other models applying MRFs for image restoration exist.
They have in common the fundamental usage of Bayesian
inference to optimize the a-posteriori estimate of the image.

3 Proposed Solution

The main contribution to global image reconstruction and
denoising procedures of this paper is the development of
a closed analytical solution for the MAP-MRF estimator
(14) using a quadratic smoothness function g(·) (10). In
this section the theory behind the analytical solution and the
solution itself is presented.
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3.1 Analytical Solution

Resuming to the definition of the MAP estimator for x given
a noisy image d, we investigate the mathematical structure
of the problem in more detail in the following. Therefore,
we divide the formula in two separate parts:

x̂MAP = arg min
x∈Rn

n∑

i=1

(xi − di)
2

︸ ︷︷ ︸
(I)

+ ϑ

n∑

i=1

∑

j∈Ni

(xi − xj )
2

︸ ︷︷ ︸
(II)

.

(18)

We can now rewrite the right-hand side into matrix/vector
notation in order to derive a more compact representation.
The likelihood energy (I) can be converted to a simple vector
notation without extra effort

(I) = (x − d)T (x − d). (19)

For the prior energy (II) some algebraic manipulations are
needed to achieve the desired matrix structure:

(II) = ϑ

n∑

i=1

∑

j∈Ni

(xi − xj )
2

= ϑ

n∑

i=1

(xi1 − x)T Bi (xi1 − x),

where (Bi )j,k =
{
1 j = k ∈ Ni

0 else,

and 1 denotes a vector of n ones. Multiplying and collecting
terms we further obtain

(II) = ϑ

n∑

i=1

[
x2
i 1

T Bi1 − 2xi1T Bix + xT Bix
]

= ϑ

(
n∑

i=1

x2
i 1

T Bi1 − 2
n∑

i=1

xi1T Bix +
n∑

i=1

xT Bix

)
.

Observing that 1T Bi1 = |Ni | = Ni , say, where Ni

stands for the number of neighbors of pixel i, and denoting
1T Bi =: γ T

i , we arrive that

(II) = ϑ

⎛

⎜⎜⎜⎜⎜⎜⎝
xT diag(Ñ)︸ ︷︷ ︸

=:B̃
x − 2xT

⎛

⎜⎝
γ T
1

...
γ T
n

⎞

⎟⎠

︸ ︷︷ ︸
=:�

x + xT
n∑

i=1

Bi

︸ ︷︷ ︸
=B̃

x

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where Ñ = (N1, ..., Nn), B̃ ∈ R
n×n is a diagonal matrix

with diagonal entries Ni and 
 ∈ R
n×n is the adjacency

matrix of the whole image. The value 1 occurs at the j th
diagonal entry of the diagonal matrix Bi , if and only if i and
j are adjacent in the neighborhood graph. Hence, the sum

over the Bi’s exactly results in the number of neighbors for
each node, i.e. B̃ = ∑n

i=1 Bi = diag(Ñ). Finally,

(II) = 2ϑxT

⎛

⎝B̃ − �︸ ︷︷ ︸
=:G

⎞

⎠ x

= 2ϑxT Gx. (20)

Combining the compact representations of the likelihood
energy and the prior energy, we can rewrite the MAP
optimization problem from Eq. 18 as

x̂MAP = arg min
x∈Rn

[
(x − d)T (x − d) + 2ϑxT Gx

]
. (21)

Due to the positive quadratic structure of the target function,
the optimization problem is convex and we can retrieve the
optimum by the gradient:

(21) ⇐⇒ 0 = ∇x

[
(x − d)T (x − d) + 2ϑxT Gx

]
. (22)

Since 
 is an adjacency matrix and B̃ is diagonal, G must
be a symmetric matrix and, as a consequence,

(21) ⇐⇒ x = (I + 2ϑG︸ ︷︷ ︸
=:M

)−1d, (23)

where I ∈ R
n×n is the identity matrix. In order to solve the

equation system (23), we emphasize some important matrix
properties. Since all columns and rows of G sum up to zero
∑

j

Gij = Gii +
∑

i �=j

Gij = 2B̃ii − 2
∑

i �=j


ij

= 2(B̃ii − B̃ii ) = 0 ∀i, (24)

the column space is linear dependent, i.e.
∑

i

gi = 0, (25)

where gi denotes the ith column of G. Therefore, G is rank
deficient and not invertible. While G fulfills the property of
weak diagonal dominance, i.e.
∑

i �=j

|Gij | ≤ |Gii | ∀i, (26)

the matrixM is strictly diagonal dominant, as it holds for all
i that
∑

i �=j

|Mij | = 2ϑ
∑

i �=j

|Gij | ≤ 2ϑ |Gii |

< 1 + 2ϑ |Gii | = |1 + 2ϑGii | = |Mii |. (27)

An important result from linear algebra (Garcia and
Horn [9]) implies that a matrix A is positiv definite, if it
fulfills the following properties:

– A is Hermitian (equivalent to symmetry in case of real
entries),

– all main diagonal elements of A are positive and real,
– and A is strictly diagonal dominant.

261J Sign Process Syst (2020) 92:257–267



Positive definiteness implies invertibility according to basic
results from linear algebra, Garcia and Horn [9]. The matrix
M satisfies all three conditions, therefore the inverse M−1

exists, as well as a unique solution of the equation system
(23) for arbitrary right side d̃.

A strong computational limitation is the large size of
the matrix M. In case of common image sizes with e.g.
500 × 700 pixels, the order of magnitude of matrix entries
is 1011. Computing the inverse of this matrix is expensive
w.r.t. storage space and, even worse, w.r.t. computation time,
as standard inversion algorithms require O(n3) operations.
Fortunately, the matrix properties of M permit to define a
more efficient procedure.

Firstly, the matrix M has a sparse structure, i.e. only
few entries differ from 0. Depending on the neighborhood
structure defined for the MRF, M has at most n · (|N | + 1)
entries unequal to 0, where n is the number of pixels and |N |
is the number of neighbors for each pixel. For instance, for
an image of size 500×700 together with an 8-neighborhood
structure, the number of matrix entries is approximately
1011, while only about 3 · 106 thereof are unequal to 0.
Secondly, M has a band structure, whose bandwidth only
depends on the image size and the neighborhood structure.
Figure 2 shows the structure of the sparse band matrixM of
an image with an 8-neighborhood structure and with ϑ =
1. In the subpictures you can see the exact matrix entries
of the main- and the minor diagonal, respectively. The

Figure 2 The sparse band matrix M calculated from the first three
pixel columns of an example image (500 × 700) with an 8-
neighborhood structure, with ϑ = 1, and a bandwidth of 2 · (k + 2),
where k is the number of the image rows.

subpicture of the main diagonal (upper right) further shows
the transition from the first to the second pixel column.

Nevertheless, M−1 is not a sparse matrix. Hence, it is
hardly possible to solve the equation system in a reasonable
amount of time. However, we can use an additional property
ofM, the block-band structure. This offers the possibility to
apply a Block Cholesky Decomposition without explicitly
calculating the inverseM−1.

3.2 Block Cholesky Decomposition

In general, the Cholesky Decomposition [5] of a Hermitian
positive definite matrix A ∈ C

n×n can be converted into the
form

A = LL�, (28)

where L ∈ C
n×n is a lower triangular matrix with real

positive diagonal elements and L� ∈ C
n×n is the conjugate

transpose of L. In the real-valued case, A ∈ R
n×n

must be symmetric and positive definite,then the conjugate
transpose L� reduces to L� = LT , L ∈ R

n×n. Given a linear
equation system

Ax = b, (29)

with x,b ∈ R
n, we can obtain x by solving the equations

Ly = b (forward substitution) (30)

and

LT x = y (backward substitution), (31)

with y ∈ R
n, without calculating the inverse of A.

The Cholesky Decomposition can also be applied for
blocks instead of scalar matrix entries. Hence, in order
to exploit the efficient decomposition to solve equation
systems, we divide the matrix M into blocks and obtain the
so-called block tridiagonal structure:

⎛

⎜⎜⎜⎜⎜⎝

A1 BT
1

B1 A2 BT
2

. . .
. . .

. . .
BN−2 AN−1 BT

N−1
BN−1 AN

⎞

⎟⎟⎟⎟⎟⎠
, (32)

with N ∈ N. Analogously to the scalar case of the Cholesky
Decomposition, this block matrix can be decomposed into

⎛

⎜⎜⎜⎜⎝

L1
C1 L2

. . .
. . .
CN−2 LN−1

CN−1 LN

⎞

⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎜⎝

LT
1 CT

1
LT
2 CT

2
. . .

. . .
LT

N−1 CT
N−1

LT
N

⎞

⎟⎟⎟⎟⎟⎠
.

(33)
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By comparing the elements of the original tridiagonal
block matrix (32) to the elements of the multiplied right
hand side of Eq. 33, we can solve the block equations for Ci

and LiLT
i and obtain the iterative block equation system as

follows:

L1LT
1 = A1

C1 = B1L
−T
1

L2LT
2 = A2 − C1CT

1

C2 = B2L
−T
2

...

LN−1L
−T
N−1 = AN−1 − CN−2CT

N−2

CN−1 = BN−1L
−T
N−1

LNLT
N = AN − CN−1CT

N−1.

In our case, the matrixM follows the required tridiagonal
block structure and furthermore, each block is a sparse
matrix. Figure 3 depicts the general block structure of M
for an 8-neighborhood structure, where A1, A and B are
symmetric blocks of size k×k and k is the number of image
rows. We can observe that the blocks of the minor diagonal,
B, are constant and only the first and the last block on the
main diagonal, A1, differs from all the remaining ones, A.
This useful property depends on the neighborhood structure,
the image size and the parameter ϑ . Hence, more neighbors
in the neighborhood structure imply a larger block size and
a higher number of distinct blocks occuring in the matrixM.

Figure 3 The tridiagonal block band structure of our matrix M in the
case of an 8-neighborhood structure.

Matrix inversion by standard methods requires O(n3)

operations and O(n · k) units of storage, where n is the
number of pixels. By exploiting the matrix properties of
M (sparse structure, tridiagonality, band-block structure)
and using the Block Cholesky Decomposition we reach a
complexity of ( n

k
) · O(k3) = O(n · k2) operations and(

n
k

) ·O (
k2

) = O(n ·k) units of storage, where k is the block
size.

4 Experiments & Results

For the demonstration and evaluation of our method, we
use three famous test images in grayscale [22]. For the
computation, we use an Intel Core i5 processor with 2.4
GHz on a 64-bit operating system and implementations
in the statistical software R [21] (version 3.3.3; 2017-03-
06). We deploy this software for both compared algorithms,
which guarantees comparable results, although R is known
to introduce some computational overhead compared to
other programming languages. However the main focus of
our evaluation is the proportion of improvement rather than
the absolute values.

We aim to point out that our algorithm is able to
retrieve an original image after homogenous Gaussian white
noise was added and that we can restrict the choice of
ϑ in an empirical way. Furthermore, we show the large
improvements in runtime compared to the conventional GD
algorithm.

To compare the results of the presented method dependent
on the input parameters, we deploy two measures for noise
quantification: the peak-noise-to-signal-ratio (PSNR) and
the structural-similarity (SSIM) [19]. The PSNR is defined
as

PSNR = 10 · log10
MAX2

I

MSE
= 20 · log10(MAXI ) − 10 · log10(MSE), (34)

where MAXI is the maximum possible pixel value (in case
of images, MAXI = 255) and the MSE is the typical mean
squared error. Typically, the PSNR is measured in decibel
(dB). The SSIM is a more complex measure and combines
the loss of correlation, the luminance distortion and the
contrast distortion by

SSIM (x, y) = cov (x, y)
σxσy

· 2xy

x2 + y2
· 2σxσy
σ 2
x + σ 2

y
. (35)

In Eq. 35, σ· denotes the standard deviation and σ 2· the
variance of the images and x, y are the means of the noisy
and the restored image. The SSIM ranges in [0, 1] and is
robust.

As mentioned in Section 2, the higher ϑ , the more
smoothing power will be reached. The optimization is a
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Figure 4 Test image
cameraman (256 × 256); a the
original image [22], b the noisy
image with σ = 20, c-e the
restored images with the exact
solution for ϑ = 0.01, ϑ = 0.05
and ϑ = 1.

(a) original (b) noisy (c) restored with = 0 .1

(d) restored with = 0 .5 (e) restored with = 1

ϑ

ϑ ϑ

function of ϑ and has no optimum, i.e. this is an unbounded
problem. Therefore, the choice of the parameter ϑ is left to
the user based on practical considerations.

To demonstrate the impact of the smoothing parameter
ϑ , examples with different values of ϑ are analyzed and
shown in Figs. 4 and 5. We add a homogenous Gaussian
white noise with a standard deviation of σ = 20 to
produce noise on an image. To compare these results to
results with a “real” noisy image, we use the test image
kennedy (see Fig. 6). The choice of ϑ = 0.07 for the
smoothness parameter is made empirically, resulting from
the best solution to the human eye. A noticeable fact (last

images of Figs. 4–6) is that our proposed global denoising
method is not edge-preserving.

In order to choose an “optimal” parameter we want
to point out the dependence of the PSNR and the SSIM
measurements from the smoothness parameter ϑ . Although
the optimal choice of ϑ is an unbounded problem, the range
of an adequate ϑ can be restricted by investigating PSNR
and SSIM. In Fig. 7 the PSNR and in Fig. 8 the SSIM for a
varying smoothness parameter are visualized. The red lines
indicate the values for the noisy image flower, whereas the
black circles are the values of the image after the application
of MRF with a given ϑ . We can see that in general for higher

Figure 5 Test image flower
(766×500); a the original image
[22], b the noisy image with
σ = 20, c-e the restored images
with the exact solution for
ϑ = 0.01, ϑ = 0.05 and ϑ = 1.

(a) original (b) noisy (c) restored with = 0 .1

(d) restored with = 0 .5 (e) restored with = 1

ϑ

ϑ ϑ
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Figure 6 Test image kennedy
(343 × 367); a the original
(noisy) image [22], b-c the
restored images with the exact
solution for ϑ = 0.07 and
ϑ = 1.

(a) original (noisy) (b) restored with = 0 .07 (c) restored with = 1ϑ ϑ

ϑ the PSNR and the SSIM are worse, but empirically an
optimal value for ϑ can be detected.

A central benefit of the proposed analytical method based
on the block Cholesky decomposition is the improvement
w.r.t. computational complexity, which is indicated by
a reduced runtime. In Table 1 the runtimes for several
smoothness parameters for the different test images are
presented; values for ϑ (first column), runtime of the GD
algorithm using integrated linesearch and the number of
iterations to reach the optimum (Runtime (GD), Number
of iterations), the runtime of our exact solution (Runtime
(CholDecomp)) and the relativ runtime improvement
(last column). Although computational overhead might
result from the choice of the programming language and
contribute to the absolute values, the relative improvement
factors clearly demonstrate a reduction of computational
complexity of the analytical solution compared to the GD
algorithm for all images. In detail, the factor is larger than
85%, in some cases it even reaches 98%. Thus, a significant
reduction of the complexity, indicated by the runtime is
achieved. Furthermore, the GD algorithm with integrated
linesearch needs a higher number of iterations for larger
values of ϑ to reach the optimum, whereas in our proposed

Figure 7 Test image flower; PSNR for different ϑ values (circles) and
the PSNR for the noisy (σ = 20) image (red line).

solution this parameter acts like a constant and does not
affect the runtime - hence, scalability w.r.t. to this parameter
can be guaranteed independently from the implementation.

5 Discussion

The complexity reduction of the suggested solution
compared to the GD procedure is clearly visible from
the experimental results. Most of the runtime is used for
the Cholesky Decomposition, whereas the forward and
backward substitution is done very quickly. Therefore, the
worst case for our algorithm is to restore only one image
using a given smoothness parameter ϑ . In concrete terms,
for the test image cameraman the entire runtime is about
7 seconds (see Table 1), out of these 7 seconds it takes
about 5.7 seconds to calculate the decomposition and only
1.3 seconds for the forward and backward substitution. In
case that several images with the same size, neighborhood
structure and ϑ are processed at once, the Cholesky
Decomposition is constant. Hence, if one has several equally
sized images, which require the same smoothing power (i.e.
the same degree of denoising), the runtime improvement

Figure 8 Test image flower; SSIM for different ϑ values (circles) and
the SSIM for the noisy (σ = 20) image (red line).
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Table 1 Runtime comparison
with the test images
cameraman, flower and
kennedy.

ϑ Runtime [s] Number of Runtime [s] rel.

(GD) iterations (CholDecomp) impr.

test image cameraman (256 × 256)

0.1 131 7 7 0.95

0.5 150 8 7 0.95

1 320 17 7 0.98

test image flower (766 × 500)

0.1 991 7 121 0.89

0.5 1104 8 122 0.89

1 2435 17 121 0.95

test image kennedy (343 × 367)

0.07 457 12 21 0.95

1 1250 33 21 0.98

of the presented method compared to the GD approach
will be even larger. Given this fact, several further fields
of application are accessible for our suggested method:
For instance, in manufacturing environments, where image
sizes and noise rates might not change due to constant
measurement equipment or in case of video processing,
where constantly the same image sizes are provided.

As mentioned in Section 3.2, the complexity of our
proposed denoising method is O(n × k2) (operations) and
O(n × k) (storage). Both of these quantities depend on the
number of pixels n, as well as the block size k. In order to
save time and storage space, the blocks should be chosen
as small as possible. Given an 8-neighborhood structure and
a column-wise numbering of the image pixels, the lower
bound of the block size equals to the number of rows in the
image, otherwise the block tridiagonal structure is violated.
W.l.o.g. we can rotate vertical images by 90◦ to reduce
the block size. Quadratic images therefore represent the
worst case w.r.t. complexity, as k = √

n implies that O(n3)

operations and O(n2) storage units are required.
The scalability of our method w.r.t. image size is good,

since the complexity grows linearly for an increasing
number of image pixels at a constant block size. Storage
and runtime issues are therefore significantly reduced by
our suggested procedure, compared to classical approaches
using the same MRF model. Further improvements are
possible by selecting a faster programming language. Image
processing for large images (e.g. HD images) is nonetheless
challenging for any utilized algorithm and hardware.

For applications, where edge-preservation is important,
our presented method is not adequate since with the
quadratic smoothness function g(·) sharp edges are over-
smoothed. Hence, it is sensitive to outliers. Lee [2] suggests
to correct this issue by using other smoothness functions
and varying the setting according to the specific application.
There is a wide range of smoothing functions to handle
distinct image types and requirements.

At the end, the choice of the adequate smoothness
parameter ϑ has a high influence on the result, but needs to
be left to the user in order to reach satisfying results for a
specific use-case.

6 Conclusion

In this paper, we provided a mathematical approach to
solve the issue of high computational complexity of the
Markov Random Field approach for image restoration.
By analytically deriving the optimal posterior Markov
Random Field over all image pixels given a continuous
prior function, we obtained an explicit representation of
the underlying surface. The matrix properties of this linear
equation system were exploited to prove the invertibility of
the system matrix and to compute the solution efficiently by
using Block Cholesky Decomposition.

Further, we showed a comparison of the results for
different images with respect to runtime and restoration
quality. In the presented cases, a runtime improvement
of more than 85% has been achieved in the current
implementation, compared to state-of-the-art approaches
for the same image restoration model (e.g. using Gradient
Descent optimization). The speed-up is even higher if
multiple images of equal size and noise intensity are
processed due to the constant decomposition of the equation
system, which launches new possibilities of application,
e.g. video processing or industrial image applications [20].
Regarding the quality of the presented analytical solution
of MRFs, the mathematical optimum of the restoration is
reached exactly and cannot be beaten by any other approach
for the same model. Unfortunately, due to the formulation of
the prior distribution, the procedure is not edge-preserving,
which might be a disadvantage for certain applications.

In order to improve the properties of the Markov Random
Field model with respect to edges and contours, other prior
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functions could be introduced, e.g. truncated quadratic or
exponential types. For the presented analytical approach,
this would result in a nonlinear (or even non-continuous)
instead of a linear equation system. Hence, numerical
optimization algorithms would be required and a solution
would not be feasible in a reasonable amount of time, due
to the high dimensionality. Instead, an adjustment of the
neighborhood graph of the Markov Random Field (e.g.
deleting edges in the neighborhood graph, which correspond
to very large image gradients) could possibly solve the
problem and preserve the mathematical structure in an
empirical way.
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