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Abstract
With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of
equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven
fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is
directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional
neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original
signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that
contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local
correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into
use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of
healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward
is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for compar-
ison. And the proposed multiscale learning neural network demonstrates considerable improvements.

Keywords Data-driven . Convolutional neural network . Fault diagnosis . Multiscale learning neural network

1 Introduction

Recent developments in intelligent production have intensi-
fied the need for early fault diagnosis. Early detection of
emerging faults is crucial for intelligent production systems
because it can prevent unexpected shutdowns and save con-
siderable cost [1–3]. Model-based, knowledge-based (also
known as data-driven), and hybrid approaches are considered

the three major categories of fault diagnosis. The acquisition
of equipment operation data has become easy because of the
development of intelligent manufacturing, and this situation
promoted the development of data-driven fault diagnosis
methods which require a large amount of historical data but
do not need to establish an explicit system model. Therefore,
these methods are suitable for complex systems with high
integration [4, 5].

With more and more advantages of artificial intelligence
(AI), many scholars began to engage in related research. The
foundations and algorithms of reinforcement learning (RL)
are systematically presented by Li C. et al., and some cyber-
physical systems examples are given [6]. Meanwhile the AI is
increasingly used in various fields, especially in the industrial
fields. Han Qiu et al. proposed a practical data fusion trust
system for decision making in the smart vehicle driving sys-
tems [7]. The discrete wavelet transform (DWT) was used in
cloud servers to protect user data by Qiu H. et al. [8], and the
effectiveness of it have been verified. Gai K. et al. proposed an
error prevention adjustment algorithm to alert doctors when
they make unusual decisions in tele-health domains [9].
Original fault diagnosis method is to judge fault types by
experts according to waveform features after converting the
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vibration signal into frequency domain. This method relies
heavily on expert knowledge. However, artificial intelligence
can effectively solve this problem.

The vibration signals are most widely used even though
they contain a lot of noise. Because of the large amount of
noise, the vibration signal usually needs to be feature extracted
before used in fault diagnosis [10]. However, feature extrac-
tion is complicated and greatly affects the final results.
Principal component analysis (PCA) shows good perfor-
mance in feature selection. For example, PCA has been ap-
plied to the selection of important features after decomposing
a vibration signal using wavelet packet transform [11].
Although PCA is effective in representing common features
of the same type of data samples, it is unsuitable for
distinguishing different samples. Therefore, the main role of
PCA is to diminish the dimension of the eigenmatrix. As a
common machine learning method, SVM demonstrates re-
markable performance in breakdown diagnosis. For example,
SVM was used for fault diagnosis by Si J. et al., and the good
performance of it was proved when there is a small number of
samples compared with popular neural network approaches
[12]. A number of researchers have proposed the use of
SVM in fault diagnosis in combination with signal processing
feature extraction methods to improve accuracy. The raw sig-
nal was processed and feature extracted by wavelet denoising,
and then adopted SVM to fault diagnosis [13, 14]. Despite a
good performance in binary classification, SVM suffers from
several major drawbacks, such as low efficiency when dealing
with large data or multi-classification problems, overfitting,
and low training speed [15, 16]. Compared with SVM, artifi-
cial neural network (ANN) shows high precision and strong
robustness when samples are abundant. In addition, the data
preprocessing methods which are applied to extract feature
can improve the performance of ANN. After processing by
J48 decision tree (DT) [17] and empirical mode decomposi-
tion (EMD) accompany with Hilbert Huang transform [18],
the features are chosen as the input of ANN. Nevertheless, the
performance of traditional feature extraction methods is limit-
ed when processing high-dimension or unstable-signal data.
ANN also has the defect of low learning efficiency.

Recent developments in deep learning (DL) have stimulat-
ed the interest of researchers. DL is an effective means to
overcome the aforementioned defects. Deep neural network
(DNN) consists of a mass of neural layers. With the advantage
of a deep structure, DNN can automatically extract deep fea-
tures that can represent classified information in the raw sig-
nal, thereby effectively avoiding the defect of hand-crafted
features [19]. Considering the good performance of DNN
methods in feature extraction, many scholars have applied
these methods to fault diagnosis, included auto-encoder
(AE) and deep belief network (DBN). Jia F. et al. [20]
applied the DNN to trouble diagnosis of rolling bearings and
had an vital find that the method which is put forward has the

ability to collect potential characteristics from the raw signals
which contain a lot of noise. And it is proved that the method
which is put forward has the better classification performance
than other shallow networks. Given the powerful ability of
DNN to collect potential messages from raw data, Xu F.
et al. [21] used DNN to collect features from roller bearing
oscillation signals and used PCA to diminish the dimension of
these characteristics. Fuzzy C-means (FCM) clustering was
then used for roller bearing fault identification. Compared
with other combinatorial methods like variation mode decom-
position (VMD), FCM shows better performance in fault di-
agnosis. Although deep auto-encoder networks can extract
potential features from raw data, it is hard for them to classify
the fault and severity. Chen RX. et al. [22] wedded a deep
sparse auto-encoder to extract fault severity features and a
classifier layer for severity identification; In order to overcome
the problem of overfitting, Gaussian yawpwere applyed to the
training samples. The sparse auto-encoder is also employed to
extract features and train a classifier for identifying induction
motor faults [23]. Different from the research of Chen RX
et al., during the training, a regularization means which is
known as “dropout” was used to avoid overfitting.

As a effective DL method, Convolutional neural networks
(CNNs) are population for classification application, and have
been extensively utilized for image recognition and fault di-
agnosis. Apart from extracting potential features hidden in
signals, CNNs can detect local features. Ince T. et al. [24]
proposed 1D CNNs based early fault-detection system. The
system can propose raw vibration signals, thus avoiding fea-
ture extraction. However, the capability of 1D CNNs to detect
the local correlation of signals is deficient. Wen L. et al. [25]
proposed a method to divert raw time-domain signal data into
2D grayscale used for 2D CNNs to diagnose faults. The meth-
od shows good performance and is worth popularizing in fault
diagnosis.

Traditional machine learning methods do not have the abil-
ity of feature extraction, so it is necessary to manually extract
features according to the actual situation, which greatly in-
creases the complexity of fault diagnosis and makes the diag-
nosis accuracy not high. A multiscale learning neural network
of 1D and 2D CNNs is proposed in this study to solve the
above problems. This network combines the advantages of
two network structures and can extract 1D features in the
signal and determine their local correlation. The proposed
network is tested on the Paderborn dataset, and the classifica-
tion accuracy of it is compared with traditional fault diagnosis
methods. Comparisons show that the proposed network can
effectively extract 1D and 2D features of the raw signal, and
its diagnostic accuracy is considerably improved.

The other part of this paper is summarized as follows.
Working principle of 1D and 2D CNNs is briefly introduced
in Section 2. A multiscale learning neural network of 1D and
2D CNNs is developed in Section 3. The performance of the
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method which is put forward is validated on the Paderborn
dataset in Section 4. The verdicts and later study directions are
presented in Section 5.

2 Review of CNNs

Similar to other computational techniques, CNNs are inspired
by the image recognition mechanism of the mammal visual
cortex. Unlike in global image processing methods, the im-
ages from the retina are processed layer by layer in a distrib-
uted manner. A set of neural cells directly acts on the input to
collect basic characteristics, such as edges. Convolution is the
general way of processing images whose function is spatial
linear filtering. Local connectivity, weight sharing and shift
invariance are the three most important features of convolu-
tion, which makes CNNs require minimal pre-processing.
Different from other DNN, CNNs adopt a smaller convolution
kernel to process the input image, in order to extract features
that are small but crucial [26].

CNNs usually comprise convolution, pooling, and full-
connection layers. Jianfeng Zhao et al. [27] proposed local
feature learning blocks (LFLBs) to collect the local correla-
tions of enter data, which is made up of one convolution layer
and one pooling layer. And the working mechanism of CNNs
can be summed up as follows: the convolution kernel slides
through the entire image with an appropriate stride, which
eventually forms a complete feature map to extract local fea-
tures. The extracted features vary with the different convolu-
tion kernel weight matrices used in different convolution
layers. The convolution layer is always connected to a sub-
sampling layer (such as max-pooling) by a nonlinear mapping
function (such as ReLu). The appropriate subsampling layer
exerts a good effect on reducing the dimension of the input
without losing information. After the connection of multiple
LFLBs, the local features extracted are entered into fully con-
nected layers for classification. During the training course to
improve the performance of network, All weights are con-
stantly renewed,such as the convolution kernel in different
layers.

2.1 1D CNN

To integrate feature extraction and fault classification into a
network, we use 1D CNNs to act on raw vibration signals
directly. The raw vibration signals, which are linearly scaled
into the [0, 1] interval, are utilized as the input of 1D CNNs.
An LFLB that contains convolution and subsampling layers is
shown in Fig. 1. The lth-layer LFLB of 1D CNNs is described
in this figure, in which the red dotted and green lines represent
convolution and subsampling operations, respectively [28].

In 1D CNNs, the extracted features of the lth-LFLB can be
calculated as follows:

ylk ¼ f blk þ ∑
i¼1

Nl−1

cov1D Wl
k ; S

l−1
i

� � !
; k ¼ 1; 2; :::;Ml ð1Þ

whereNl − 1 represents the quantity of the output at the (l-1) th-

LFLB, blk represents a scalar bias which is located in the kth

neuron at the lth-LFLB, Wl
k is the kernel of the kth neuron at

the lth-LFLB, Sl−1i represents the outlet of the ith neuron at the
(l-1)th-LFLB, cov 1D is a 1D convolution operation, and f(·)
represents the activation function of the convolution layer.

A pooling layer follows the convolution layer at the lth-
LFLB, and the output of it can be calculated as follows:

Sl ¼ ss Y l� � ð2Þ

where ss represents the downsampling operation.
The local features that contain implicit fault information are

extracted by these LFLBs when the raw vibration signals that
are sampled with an appropriate frequency to be a 1D vector
are passed to the 1D CNN. The local features learned from
raw signal by one-dimensional LFLB are shown in Fig. 2. The
input is the amplitude in the time domain, and the colors
represent the receptive fields of different 1D LFLB.

Figure 1 Illustration of the LFLB in 1D CNNs.

Figure 2 The local features learned from raw signal by one-dimensional
LFLB.
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The characteristics which is the most prominent of convo-
lution layer are local area connectivity and shared weights,
allowing the convolution layer has the function of learning
kernel. The convolution layer has a strong capability for local
feature extraction due to the convolution operation. The
pooling layer have the ability of reducing the dimension of
features to make it robust when there is noise or distortion. As
the most common subsampling function, max-pooling select
the maximum value in the sampling region as the output,
which can collect the most important characteristic of the in-
put. The LFLB can be configured in terms of different tasks,
and the performance aiming at different tasks varies from dif-
ferent structure and parameters of LFLB.

The local features extracted by these LFLBs are eventually
used for fault diagnosis. Softmax is used as the classifier of
this architecture, which can be defined as

zi ¼ ∑
j
h jWji ð3Þ

softmax zið Þ ¼ pi ¼
ezi

∑n
j¼1ezi

ð4Þ

where zi and hj represent the outlet of penultimate layer and is
the inlet of the softmax function. Wji represents the weight
connecting the penultimate and softmax layers.

2.2 2D CNNs

Deep convolutional neural networks (DCNNs) have got sig-
nificant achievements in computer visual sense [29] and are
increasingly used in medical imaging [30]. Different from 1D
CNNs, 2D CNNs can be used for learning 2D local correla-
tions and extracting hierarchical correlations. The architecture

of typical 2D CNNs, which comprises two stages [31], is
shown in Fig. 3. The first stage is composed of a few
LFLBs, and the second stage comprises a full connec-
tion layer and a classification layer. Similar to an LFLB
in 1D CNNs, an LFLB in 2D CNNs contains convolu-
tion and pooling layers.

The convolution layers contain a great quantity of convo-
lution kernels, which are also called filters. The input is con-
voluted by a set of weights to form a feature map. All neurons
in the same filter share weights, which cuts the computational
complexity of CNNs. If the input of the convolution layer is
X ∈ RA × B, in which A × B is the dimension of the inlet matrix,
then the outlet of the convolution layer is able to be reckoned
as follows:

Cn ¼ f X n*Wn þ bnð Þ ð5Þ
where Xn and Cn represent the inlet and outlet of the nth
convolution layer, respectively; ∗ represents the convolution
operation; Wn is a convolution kernel of the nth convolution
layer, and its size is chosen according to the actual situation;
and bn is the nth bias. Activation function f is finally wedded
to the consequence.

A pooling layer is always applied after the convolution-
layer to decrease the dimension of the input by sub-sampling
without loss of useful information. Max, mean, and weighted
pooling can be employed in the activation of the pooling layer,
but max pooling is the most commonly used in CNNs [32]; it
can be calculated as follows:

Pn ¼ max
Cn∈S

Cn ð6Þ

where Pn represents the outlet of the pooling-layer and S is the
pooling block size. The stride of the pooling-layer is usually

Figure 3 Architecture of typical 2D CNNs.
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similar to the length of the pooling window; therefore, the
dimension of the output is S times smaller.

A full-connection layer is always followed by a few
LFLBs, which are able to be wedded to different classification
models. Softmax regression is normally adopted as the last
layer for fault diagnosis, and its output is able to be counted
as follows:

O ¼
P y ¼ 1jx;W1; b1ð Þ
P y ¼ 2jx;W2; b2ð Þ

⋯
P y ¼ kjx;Wk ; bkð Þ

2
664

3
775

¼ 1

∑k
j¼1exp W jxþ bj

� �
exp W1xþ b1ð Þ
exp W2xþ b2ð Þ

⋯
exp Wkxþ bkð Þ

2
664

3
775 ð7Þ

where O andWj are the output of CNN and the weight matrix,
respectively. bj is the bias.

3 Multiscale Learning Neural Network of 1D
and 2D CNNs

CNN has been successfully used in numerous applications,
such as handwriting, face, and speech recognition. 1D CNN
is applied to fault diagnosis due to its good performance in

feature extraction, and 2D CNN is used for detecting 2D fea-
tures. This indicates that the correlation and information in a
local neighbor region are beneficial for fault diagnosis. This
section describes the proposed multiscale learning neural net-
work of 1D and 2D CNNs. We applied the min-max normal-
ization method to map the raw vibration signal into a [0, 1]
intermission. The equation is described as follows:

~x
k

i ¼
xki −min xk

� �
max xkð Þ−min xkð Þ ð8Þ

where xk ∈ RN represents the kth sample with N points and
min(·) and max(·) return the minimum and maximum values
in sample xk.

3.1 Structure of the Proposed Multiscale Learning
Neural Network

The proposed 1D and 2DCNNs network structure is shown in
Fig. 4. The network contains a one-dimensional CNN and a
two-dimensional CNN. The two CNNs are independent of
each other in the early stage of feature extraction. After a
few LFLBs, the features extracted by 1D and 2D CNNs are
fused in the subsequent classification stage and employed for
the final fault classification.

For ordinary CNNs, the classification ability is mainly im-
proved by augmenting the quantity of output channels and the

Figure 4 Structure of the
proposed network of 1D and 2D
CNNs.
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dimension of the convolution kernel; however, this increases
the computation and overfitting. The depthwise separable
convolution applied in this network can avoid this problem.
As shown in Fig. 5, the depthwise separable convolution com-
prises depthwise and pointwise convolution.

Assuming that we have a convolution layer with ker-
nels of DK ×DK × N, the input is DF ×DF ×M, the pad-
ding is 1, and the stride is 1. The mechanism of depthwise
separable convolution is to divide the kernels into
depthwise kernels of DK ⋅ DK ⋅M and pointwise kernels
of 1 ⋅ 1 ⋅ N. For ordinary CNNs, DK ⋅ DK ⋅M ⋅ N ⋅ DF ⋅ DF

represents the number of operations required, and DK ⋅
DK ⋅ N ⋅M represents the parameters of the convolution
kernel. Meanwhile, for depthwise separable convolution,
DK ⋅DK ⋅M ⋅DF ⋅DF +M ⋅ N ⋅DF ⋅DF represents the num-
ber of operations required, and DK ⋅DK ⋅M + N ⋅M repre-
sents the parameters of the convolution kernel. The results

indicate that depthwise separable convolution can reduce
parameters without performance degradation.

Once the raw vibration signals have been inputted to the
proposed network, the 1D and 2D CNNs are trained simulta-
neously. For the 1D CNN, the raw vibration data are directly
used for network training until the final 1D features are
learned, and we assume that these features are F1 − D.
However, for the 2D CNN, the raw vibration data must be
converted to a 2D image first, which can then be applied to
train the network. A full-connection layer follows with a few
of LFLBs that is made up of a convolution layer and a max
pooling layer to stretch the 2D feature map into 1D data; we
assume this data as F2 −D. The final features can be obtained
by a concatenate layer, which can be represented as follows:

F f ¼ F1−D; F2−D½ � ð9Þ

where Ff is the final features which will be the input of the
classifier. Softmax regression is employed as the last layer for
classification.

3.2 Conversion Method for Signals from 1D to 2D

2D CNN was applied to 2D image recognition and achieved
considerable success. Therefore, a conversion method is
employed in this study to change the raw vibration signals
from 1D to 2D, as shown in Fig. 6.

A possible correlation could exist between adjacent data for
a periodic signal. From the Fig. 6 we can see that the raw
vibration signals fulfill the 2D matrix by sequence. On the
prerequisite of pledging the continuity of the original signal,
the non-adjacent data are connected in two dimensions to
extract the correlation of the signal in the non-adjacent inter-
val, that is, 2D features. The raw signals are supposed to
transform into many sections that contain the same amount
of data to obtain the 2D matrix. Considering the diversity of
extracted features, the segmentation of sections has the fol-
lowing characteristics:

Figure 6 Illustration of the
conversion method for signals
from 1D to 2D.

(a) Depthwise convolution

(b) Pointwise convolution

Figure 5 Structure of depthwise separable convolution.
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1) The amount of data in each section is M.
2) Sections can be discontinuous.
3) Overlapping areas can exist between blocks.

In previous applications, 2n has often been used as the size
of the input image, such as 16, 32, and 64, and has been
proven to be effective. In this study, 64 is selected because
of the large amount of data in the dataset used in this work.
The conversion method gives an valid method to learn 2D
features of raw vibration data. This method can also be count-
ed without predefining extra parameters. Therefore, using this
method does not increase the amount of calculation in the
training process.

4 Case Studies and Experimental Results

The Paderborn dataset, which contains healthy bearings and
those with OR and IR faults, is wedded to this model to testify
the effectiveness of the proposed means. Artificial and real
damage are present in OR and IR. The models which is put
forward use Python 3.5 with TensorFlow to write and run on
Ubuntu 16.04 with a TITAN V GPU.

4.1 Description of the Dataset

In practical applications, due to the long service life of most
bearings, the system training dataset for obtaining different
damages is complicated; moreover, if damage is identified,
then the bear ing wi l l be immedia te ly replaced.
Consequently, only a small amount of data is available for
research. Aiming at this issue, Lessmeier C. et al. [33] provid-
ed Paderborn datasets comprising operating data from healthy
bearings, bearings with artificial damage, and those with real
damages due to an accelerated lifetime test. In order to main-
tain the controllability of the experiment, we only used ball

bearings of type 6203 in the research. In Table 1, the descrip-
tions of healthy bearings are listed.

Damages are supposed to be made on bearings to
obtain a dataset from damaged bearings. The three dif-
ferent methods for creating artificial damages are elec-
tric discharge machining (EDM), drilling, and manual
electric sculpting. In Table 2, the details of bearings
with artificial damage are listed. As we can see in the
table, KA represents the bearing number of outer ring
fault while KI represents the bearing number of outer
ring fault. IR denotes a bearing with damage of inner
race and OR denotes that of outer race. D and E of the
damage method represent drilling and electric engraving,
respectively.

Real damages on ball bearings are obtained from an accel-
erated lifetime test rig comprising a bearing housing and an
electric motor, as can be seen in Fig. 7. The particulars of
bearings with real damage are listed in Table 3, in which F
and P in the damage method represent fatigue and plastic
deformation, respectively.

After obtaining the damaged bearing, we gathered the
dataset from a modular examine device consisting of an elec-
tric motor (1), a torquemeasurement pole (2), a rolling bearing
examine module (3), a flywheel (4), and a load motor (5), as
shown in Fig. 8. Ball bearings which have different damages
are installed in the bearing examine module to produce the
data of experiment.

In this experiment, the data collected from K001 and K002
are employed as testing data due to their long running time;
others are used as training data. The data gathered from the
man-made damaged bearing are also applied as training data,
and those collected from the bearings with real damage are
applied as testing data.

Table 2 Bearings with artificial damage.

Bearing code KA01 KA03 KA05 KA06 KA07 KA09 KI01 KI03 KI05 KI07 KI08

Component OR OR OR OR OR OR IR IR IR IR IR

Damage extent 1 2 1 2 1 2 1 1 1 2 2

Damage method EMD E E E D D EMD E E E E

Figure 7 Apparatus for the accelerated lifetime test.

Table 1 Operation parameter of healthy bearings during run-in time.

Bearing code K001 K002 K003 K004 K005 K006

Run-in period (h) >50 19 1 5 10 16

Radial load (N) 1000–3000 3000 3000 3000 3000 3000

Speed (/min) 1500–2000 2900 3000 3000 3000 2900

J Sign Process Syst (2019) 91:1205–1217 1211



4.2 Model Design and Experiment Results

The dataset needs to be processed in the beginning of the
experiment. The vibration data in the Paderborn dataset are
split into a number of sections, and each section contains 4096
pieces of data. The vibration signal is changed into the fre-
quency domain using a fast Fourier transform (FFT) to up-
grade the classification effect of the model. Then, a label is
added to the data, in which 0, 1, and 2 represent healthy, OR
damage, and IR damage, respectively, without considering
artificial and real damages. All healthy data are connected
together, and OR and IR damage data are processed similarly.
After shuffling the data of the three states, 15,000 pieces of
data are selected from each of the three states for training the
proposed model. The remaining data are adopted as testing
data to testify the classification precision of the model. The
model is practiced in 50 epochs. The accuracy of models with
different structures is verified to explore the influence of the
difference in layers between 1D and 2D convolution on model
accuracy, as can be seen in Fig. 9. The parameters of different
structures are listed in Table 4. In Table 4 and Fig. 9, 1D*3 +

2D*3 denotes the presence of three 1D convolution layers and
three 2D convolution layers. The kernel size and strides of the
max-pooling layer in 1D convolution are 3, whereas they are
both (2,2) in 2D convolution. Consequently, in Table 4,only
the parameters of the convolution layer are listed.

1D convolution can achieve a good classification effect,
and 2D convolution can find the correlation of signals in
non-adjacent intervals that 1D convolution cannot find. In this
experiment, network depth is increased layer by layer in the
form of 1D convolution having the same number of layers as
2D convolution or 1D convolution having onemore layer than
2D convolution to determine the network structure with the
highest accuracy of classification. As we can see from Fig. 9,
with the deepening of the network layer, classification accu-
racy is improved until three 1D convolution and three 2D
convolution layers remain. The classification accuracy of the
model decreases when four 1D and 2D convolution layers
exist. Consequently, the model with three 1D and three 2D
convolution layers is selected as the best structure.

We conducted a comparative experiment to examine if the
network structure which is put forward is able to make the

Table 3 Bearings with real
damage. Bearing code KA15 KA16 KA22 KA30 KI14 KI16 KI17 KI18 KI21

Component OR OR OR OR IR IR IR IR IR

Damage extent 1 2 1 1 1 3 1 2 1

Damage method P F F P F F F F F

Figure 8 Modular test rig.

Figure 9 Accuracy of models
with different structures.
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performance of ordinary convolutional networks better, and
the parameters of different structures and the results can be
seen in Table 5 and Fig. 10.

As we can see in Fig. 10, the performance of one-
dimensional CNN is already good, but two-dimension CNN
does not work as well due to its instability and low accuracy,
indicating that one-dimension CNN is more suitable than two-
dimension CNN for fault diagnosis based on waveform sig-
nals. However, the classification accuracy of 1D CNN is im-
proved when combined with 2D CNN. The 2D features are
connected to the features extracted by 1D CNN through the
concatenated layer in the network. Therefore, 2D CNN is

proven to have the capability to extract several features that
1D CNN cannot, and these can be called 2D features. The
classification accuracy of the network is improved because
the receptive field is increased after the addition of 2D CNN.

A total of 100 samples are chosen from healthy, OR damage,
and IR damage to verify the performance of the best model with
three one-dimensional CNN and three two-dimensional CNN
and to show the classification effect of the method which is put
forward. Figure 11 demonstrates the classification results of
healthy, OR damage, and IR damage from top to bottom.
Three curves in each subgraph correspond to the probability
of the three labels. Similar to the first subgraph, the probability

Table 5 Parameters of different structures in Fig. 10.

Model structure 1D * 3 + 2D * 3 1D * 3 2D * 3

Conv1D
Parameters

Layer1(filters = 16, kernel_size = 7,
strides = 1)

Layer2(filters = 32, kernel_size = 5,
strides = 1)

Layer3(filters = 64, kernel_size = 5,
strides = 1)

Layer1(filters = 16, kernel_size = 7,
strides = 1)

Layer2(filters = 32, kernel_size = 5,
strides = 1)

Layer3(filters = 64, kernel_size = 5,
strides = 1)

*

Conv2D
Parameters

Layer1(filters = 16, kernel_size = (5,5),
strides = (1,1))

Layer2(filters = 32, kernel_size = (5,5),
strides = (1,1))

Layer3(filters = 64, kernel_size = (3,3),
strides = (1,1))

* Layer1(filters = 16, kernel_size = (5,5),
strides = (1,1))

Layer2(filters = 32, kernel_size = (5,5),
strides = (1,1))

Layer3(filters = 64, kernel_size = (3,3),
strides = (1,1))

Figure 10 Accuracy of the
proposed network and ordinary
convolutional networks.

Figure 11 Classification results
of the best model with three one-
dimensional CNN and three two-
dimensional CNN.
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of the healthy condition is lower than that of IR in three sam-
ples, which means that three samples of the healthy condition
are misjudged to have IR damage.

The confusion matrix of the best model with three one-
dimensional CNN and three two-dimensional CNN is present-
ed in Fig. 12. From the table above we can see that when the
classification precision of OR damage is 100%, three samples
of the healthy condition are misjudged to have IR damage, and
one sample of IR damage is misjudged to be in a healthy
condition. This finding means that the proposed model is bet-
ter at finding OR damage, but errors exist in distinguishing
between healthy condition and IR damage.

We drew a comparison between the results of the model
which is put forward and the results of the SVM. In Table 6 we
are able to see the data that the accuracy for the training data
and testing data of the proposedmodel is both more than 98%.
However, the precision for the training data and testing data of
SVM is 100% and 41.3%, respectively. The results of SVM
appear to exhibit overfitting, but a great deal of training data
can be obtained. The best explanation is that SVM is unsuit-
able for fault identification of the original vibration signal, and
its classification performance can only be realized when com-
bined with a feature extraction method. By contrast, the di-
mension of samples adopted in this study is 4096, which leads
to the low training speed, and it is much lower than that of the
proposed model.

5 Conclusion and Future Work

A multiscale learning neural network is proposed to study the
features of frequency data and directly detect bearing faults. In

the proposed structure, two channel inputs that correspond to
one-dimensional CNN and two-dimensional CNN are applied
to study different traits. Owing to the different receptive fields
between 1D and 2D convolution, 1D CNN can learn the local
correlation of adjacent intervals while 2D CNN can learn the
correlation of nonadjacent intervals. The proposed method
can connect the extracted features from them and enhance
the accuracy of fault diagnosis.

The performance of the multiscale learning neural network
which is put forward is tested on the Paderborn dataset. The
results show that one-dimensional CNN has better perfor-
mance than two-dimensional CNN in fault diagnosis when
they are used alone. However, when combined with 2D
CNN, the classification accuracy of 1D CNN increases to as
high as 98.5%, which proves that 2D CNN is equipped to
learn the features that 1D CNN cannot. Furthermore, the same
data structure with the model which is put forward is
employed for SVM, and the consequence indicated that the
performance of multiscale learning neural network which is
brought forward is much better than that of SVM.

However, although the proposed multiscale learning neural
network is proven to be suitable for fault diagnosis of vibra-
tion signals, it may not demonstrate the same performance in
the classification of other signals. In the future, other struc-
tures will be considered to increase the generalization capabil-
ity of the model. We will also make research of transfer learn-
ing to shorten the training time of the model.
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